• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 4
  • 2
  • 2
  • Tagged with
  • 23
  • 11
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Geometria das subvariedades do grupo de Heisenberg

Figueroa Serrudo, Christiam Bernardo 01 February 1996 (has links)
Orientadores: Francesco Mercuri, Renato Hyuda de Luna Pedrosa / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Científica / Made available in DSpace on 2018-07-21T04:22:43Z (GMT). No. of bitstreams: 1 FigueroaSerrudo_ChristiamBernardo_D.pdf: 1296783 bytes, checksum: 2c747937923788bac8b71eebe7f21984 (MD5) Previous issue date: 1996 / Resumo: Neste trabalho, estudamos a Geometria Riemanniana do grupo de Heisenberg H2n+l, calculando as métricas invariantes à esquerda e a base dos campos invariantes à esquerda. Calculamos, também a álgebra do grupo de isometrias de H2n+l, dando uma descrição total do grupo de isometrias para o caso de H3. Concluimos esta parte determinando as geodésicas de H2n+l. Em seguida, classificamos as superficies de curvatura média constante de H3 que são invariantes por grupos de isometrias. Depois estudamos a aplicação normal de Gauss para superficies em H3, o que nós permite mostrar a não existencia de superficies umbílicas. Estudamos, ainda, a equação dos gráficos de curvatura média constante, mostrando que não existem superficies mínimas compactas nem gráficos completos de curvatura média constante não nula. Posteriormente damos uma classificação parcial das superficies mínimas segundo o posto da aplicação normal de Gauss. Terminamos o trabalho apresentando as hipersuperficies de rotação em H2n+l. / Abstract: Not informed. / Doutorado / Doutor em Matemática
2

Sobre o produto tensorial não abeliano de grupos soluveis

Nakaoka, Irene Naomi 27 November 1998 (has links)
Orientador: Norai Romeu Rocco / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-07-24T10:33:20Z (GMT). No. of bitstreams: 1 Nakaoka_IreneNaomi_D.pdf: 1478087 bytes, checksum: e628ac305e31f8763c8dc1b3d717602d (MD5) Previous issue date: 1998 / Resumo: Não informado. / Abstract: Not informed. / Doutorado / Doutor em Matemática
3

Sigma-coberturas de grupos solÃveis finitos

Darlan Portela Veras 20 April 2007 (has links)
Estuda-se as coberturas de grupos finitos por subgrupos prÃprios. Mostramos alguns resultados sobre coberturas de grupos solÃveis por subgrupos maximais ordenados pelos Ãndices (sigma-coberturas). O resultado mais importante, relata que todo grupo solÃvel finitoadmite uma sigma-cobertura normal ou conjugada.
4

O problema do centro-foco para singularidades nilpotentes no plano / The center focus problem for planar nilpotent singularities

Itikawa, Jackson 22 March 2012 (has links)
O estudo dos pontos singulares em campos vetoriais analíticos é um problema quase completamente resolvido. O único caso que ainda permanece insolúvel é o caso monodrômico, em que as órbitas circundam a singularidade. Em sistemas diferenciais analíticos, se p é singularidade monodrômica, então p ou é um centro, ou é um foco. O problema do centro-foco consiste em determinar condições que diferenciem os casos em que p é um foco, daqueles em que p é um centro. O tema central desta dissertação é a investigação do problema do centro-foco em sistemas diferenciais analíticos com singularidade nilpotente. Este problema é bastante estudado, uma vez que ainda não existe um algoritmo eficiente para este caso, tal como ocorre em sistemas com singularidades não degeneradas. Estudamos duas técnicas bastante distintas. A primeira faz uso da teoria das formas normais e aborda o problema da maneira clássica, dividindo-o na investigação da monodromia e no estudo da estabilidade. O outro método investiga os sistemas diferenciais com singularidades nilpotentes como limite de sistemas com singularidades não degeneradas. A fim de avaliarmos sua eficiência e compreendermos as possíveis obstruções envolvidas, aplicamos os métodos a famílias concretas de sistemas diferenciais / The study of singular points in planar analytic vector fields is a problem almost completely solved. The only case that remains open is the monodromic one, in which the orbits turn around the singularity. In analytic differential systems, if p is a monodromic singular point, then p is either a center or a focus. The center-focus problem consists in determining conditions for distinguishing between a center and a focus. The main purpose of this work is the investigation of the center-focus problem in analytic differential systems with nilpotent singular points. This problem is still widely studied, since there is no algorithm for such case, comparable to the Lyapunov method for the case of non-degenerate singularities. We studied two different methods. The first makes use of the normal form theory and deals with the problem in the classic way, splitting it up in two parts: the investigation of the monodromy and the study of the stability. The latter investigates the differential analytic systems with nilpotent singular points as limit of differential systems with nondegenerate singularities. In order to evaluate the efficiency and understand possible obstructions, we applied the two techniques to concrete families of differential systems
5

Sur les plongements des hypersurfaces de Danielewski

Poloni, Pierre-Marie 25 June 2008 (has links) (PDF)
Dans cette thèse, nous étudions une classe d'hypersurfaces de $\mathbb{C}^3$, dites \emph{hypersurfaces de Danielewski}. Ce sont les hypersurfaces $X_{Q,n}$ définies par une équation de la forme $x^ny=Q(x,z)$ avec $n\in\mathbb{N}_{\geq1}$ et $\deg_z(Q(x,z))\geq2$. Nous établissons leurs classifications complètes à isomorphisme près, et à équivalence via un automorphisme de $\mathbb{C}^3$ près. Pour cela, nous introduisons le concept de forme standard et montrons que toute hypersurface de Danielewski est isomorphe, par un procédé algorithmique, à une hypersurface sous forme standard. Cette terminologie est justifiée par le fait que tout isomorphisme entre deux formes standards s'étend en un automorphisme de l'espace ambiant (ce qui n'est pas<br>vrai pour des hypersurfaces de Danielewski quelconques).<br>Nous étudions aussi les problèmes de l'équivalence stable et de l'équivalence analytique. Nous construisons notamment des exemples de polynômes $P,Q\in\mathbb{C}[x,y,z]$ pour lesquels il n'existe aucun automorphisme algébrique de $\mathbb{C}[x,y,z]$ qui envoie $P$ sur $Q$, bien que ces polynômes soient équivalents via un automorphisme de $\mathbb{C}[x,y,z,w]$.<br>La plupart de ces résultats reposent sur la description précise, grâce aux techniques développées par Makar-Limanov, des dérivations localement nilpotentes sur les algèbres des fonctions régulières des hypersurfaces $X_{Q,n}$.
6

Estruturas complexas comauto-espaços nilpotentes e soluveis / Complex structures having nilpotent and solvable eigenspaces

Santos, Edson Carlos Licurgo 25 June 2007 (has links)
Orientador: Luiz Antonio Barrera San Martin / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-10T11:48:47Z (GMT). No. of bitstreams: 1 Santos_EdsonCarlosLicurgo_D.pdf: 405695 bytes, checksum: 334d5172d85f7bc35539dbd900fbef67 (MD5) Previous issue date: 2007 / Resumo: Seja (g; [·,·]) uma álgebra de Lie com uma estrutura complexa integrável J. Os ± i-auto-espaços de J são subálgebras complexas de gC isomorfas a álgebra (g; [*]J ) com colchete [X * Y ]J = ½ ([X, Y ] - [JX, JY ]). Consideramos, no capítulo 2, o caso onde estas subálgebras são nilpotentes e mostramos que a álgebra de Lie original (g, [·,·]) é solúvel. Consideramos também o caso 6-dimensional e determinamos explicitamente a única álgebra de Lie possível (g; [*]J ). Finalizamos esse capítulo pruduzindo vários exemplos ilustrando diferentes situações, em particular mostramos que para cada s existe g com estrutura complexa J tal que (g; [*]J ) é s-passos nilpotente. Exemplos similares para estruturas hipercomplexas são também construidos. No capítulo 3 consideramos o caso onde os ±i-auto-espaços de J são subálgebras complexas solúveis e a álgebra complexa é uma álgebra de Lie semi-simples. Mostramos que, se a álgebra real é compacta, uma tal estrutura complexa depende unicamente de um subespaço da subálgebra de Cartan. Finalizamos esse capítulo considerando o caso em que as subálgebras solúveis complexas estão contidas em subálgebras de Borel de uma órbita aberta da ação dos automorfismos internos da álgebra real. Mostramos que, assim como no caso compacto, as estruturas complexas são determinandas, de modo único, por subespaços da subálgebra de Cartan. Ao final da tese apresentamos um procedimento, elaborado em MAPLE, que possibilita testar a identidade de Jacobi quando os colchetes de Lie são dados pelas constantes de estrutura / Abstract: Let (g; [·,·]) be a Lie algebra with an integrable complex structure J. The ±i eigenspaces of J are complex subalgebras of gC isomorphic to the algebra (g; [*]J )with bracket [X * Y ]J = ½ ([X, Y ] - [JX, JY ]). We consider, in chapter three, thecase where these subalgebras are nilpotent and prove that the original Lie algebra(g, [·,·]) must be solvable. We consider also the 6-dimensional case and determineexplicitly the possible nilpotent Lie algebras (g; [*]J ). We finish this chapter byproducing several examples illustrating different situations, in particular we showthat for each given s there exists g with complex structure J such that (g; [*]J ) iss-step nilpotent. Similar examples of hypercomplex structures are also built.In Chapter 3 we consider the case where the ± i eigenspaces of J are solvablecomplex subalgebras and gC is a semisimple Lie algebra. We prove that, if g is compact, such a complex structure comes from a subspace of the Cartan subalgebra.We finish this chapter by considering the case where the solvable complex subalgebras are contained in Borel subalgebras of an open orbit of the action of inner automorphisms of the real algebra.At the end of the thesis we present an algorithm, made in MAPLE, that allowus to verify the Jacobi identity when the Lie brackets are defined by the structureconstants / Doutorado / Mestre em Matemática
7

O problema do centro-foco para singularidades nilpotentes no plano / The center focus problem for planar nilpotent singularities

Jackson Itikawa 22 March 2012 (has links)
O estudo dos pontos singulares em campos vetoriais analíticos é um problema quase completamente resolvido. O único caso que ainda permanece insolúvel é o caso monodrômico, em que as órbitas circundam a singularidade. Em sistemas diferenciais analíticos, se p é singularidade monodrômica, então p ou é um centro, ou é um foco. O problema do centro-foco consiste em determinar condições que diferenciem os casos em que p é um foco, daqueles em que p é um centro. O tema central desta dissertação é a investigação do problema do centro-foco em sistemas diferenciais analíticos com singularidade nilpotente. Este problema é bastante estudado, uma vez que ainda não existe um algoritmo eficiente para este caso, tal como ocorre em sistemas com singularidades não degeneradas. Estudamos duas técnicas bastante distintas. A primeira faz uso da teoria das formas normais e aborda o problema da maneira clássica, dividindo-o na investigação da monodromia e no estudo da estabilidade. O outro método investiga os sistemas diferenciais com singularidades nilpotentes como limite de sistemas com singularidades não degeneradas. A fim de avaliarmos sua eficiência e compreendermos as possíveis obstruções envolvidas, aplicamos os métodos a famílias concretas de sistemas diferenciais / The study of singular points in planar analytic vector fields is a problem almost completely solved. The only case that remains open is the monodromic one, in which the orbits turn around the singularity. In analytic differential systems, if p is a monodromic singular point, then p is either a center or a focus. The center-focus problem consists in determining conditions for distinguishing between a center and a focus. The main purpose of this work is the investigation of the center-focus problem in analytic differential systems with nilpotent singular points. This problem is still widely studied, since there is no algorithm for such case, comparable to the Lyapunov method for the case of non-degenerate singularities. We studied two different methods. The first makes use of the normal form theory and deals with the problem in the classic way, splitting it up in two parts: the investigation of the monodromy and the study of the stability. The latter investigates the differential analytic systems with nilpotent singular points as limit of differential systems with nondegenerate singularities. In order to evaluate the efficiency and understand possible obstructions, we applied the two techniques to concrete families of differential systems
8

Grupos abelianos-por-nilpotentes do tipo homologico 'FP IND.3' / Abelian-by-nilpotent of homological type 'FP IND.3'

Rodrigues, Claudenir Freire 12 April 2006 (has links)
Orientador: Dessislava H. Kochloukova / Tese (doutorado) - Universidade Estadual de Campinas. Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-07T18:15:42Z (GMT). No. of bitstreams: 1 Rodrigues_ClaudenirFreire_D.pdf: 1150293 bytes, checksum: 63045fd15f6ef421699cbcf26de55d92 (MD5) Previous issue date: 2006 / Resumo: Neste trabalho estudamos grupos abstratos finitamente gerados G que são extensões cindidas de um grupo abeliano A por um grupo Q nilpotente de classe 2. Mostramos que se G tem tipo homológico F P3, então o quociente G/N também tem tipo homológico F P3 onde N é o fecho normal do centro de Q em G. Observamos que não existe classificação quando G pode ter tipo FP3, nem classificação para tipo F P2 ou ser finitamente apresentável. Por causa disso nós trabalhamos com um quociente especifico de G. Ainda fica em aberto se cada quociente de G tem tipo FP3 quando G tem tipo FP3. Observamos que isso vale quando G é grupo metabeliano, nesse caso a teoria de Bieri-Strebel pode ser aplicada / Abstract: We study abstract finitely generated groups G that are split extensions from A abelian group by Q nilpotent group of class two. We show that if G has homological type FP3 then the quotient group GjN has homological type FP3 too, where N is the normal closure of the center of Q in G. Since there is no classification when G is of type FP3, nor when G is of type FP2 or finitely presented we work with one specific quotient. It is an open problem whether every quotient of G has type F P3. This holds if G is a metabelian group and in this case the Bieri-Strebel theory applies / Doutorado / Doutor em Matemática
9

Sobre a influência dos centralizadores dos automorfismos de ordem dois em grupos de ordem ímpar / Centralizers of involutory automorphisms of groups of odd order

Rojas, Yerko Contreras 05 July 2013 (has links)
Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2014-09-18T15:33:16Z No. of bitstreams: 2 Dissertacao Yerko Contreras Rojas.pdf: 673331 bytes, checksum: 5359343f8c3a32e21369c3bc57917634 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-09-18T15:43:59Z (GMT) No. of bitstreams: 2 Dissertacao Yerko Contreras Rojas.pdf: 673331 bytes, checksum: 5359343f8c3a32e21369c3bc57917634 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-09-18T15:43:59Z (GMT). No. of bitstreams: 2 Dissertacao Yerko Contreras Rojas.pdf: 673331 bytes, checksum: 5359343f8c3a32e21369c3bc57917634 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2013-07-05 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This document presents an approach and development of some of the results of Shumyatsky in [14, 15, 16, 17, 18], where he worked with automorphisms of order two in finite groups of odd order, mainly showing the influence that the structure of the centralizer has on that of Group. Let G be a group with odd order, and ϕ an automorphism on G, of order two, where G = [G,ϕ], and given a limitation in the order of the centralizer of ϕ regard to G, CG(ϕ), which induces a limitation in the order of derived group G′ of group G, and we also verified that G has a normal subgroup H that is ϕ-invariant, such that H′ ≤ Gϕ and its index [G : H] is bounded with the initial limitation. With the same hypothesis of the group G and with the same limitation of the order of the centralizer of the automorphism, let V a abelian p-group such that G⟨ϕ⟩ act faithful and irreductible on V, then there is a bounded constant k, limitated by a function depending only on the parameter m, where m is tha limitation in the order of CG(ϕ), and elements x1, ...xk ∈ G−ϕ such that V = ρϕx 1,...,xk(V−ϕ). / O trabalho baseia-se na apresentação e desenvolvimento de alguns resultados expostos por Shumyatsky em [14, 15, 16, 17, 18], onde trabalha com automorfismos de ordem dois em grupos de ordem ímpar, mostrando fundamentalmente a influência da estrutura do centralizador do automorfismo na estrutura do grupo. Seja G um grupo de ordem ímpar e ϕ um automorfismo de G, de ordem dois, tal que G = [G,ϕ], dada uma limitação na ordem do centralizador de ϕ em G, CG(ϕ), a mesma induz uma limitação na ordem do grupo derivado G′ do grupo G, além disso verificamos que G tem um subgrupo H normal ϕ-invariante, tal que H′ ≤ Gϕ e o índice [G : H] é limitado dependendo da limitação inicial de CG(ϕ). Nas mesmas hipóteses do grupo G e com a mesma limitação da ordem do centralizador do automorfismo, seja V um p-grupo abeliano, tal que G⟨ϕ⟩ age fiel e irredutivelmente sobre V, então existe uma constante k, limitada por uma função que depende só da limitação de CG(ϕ), e elementos x1, ...xk ∈ G−ϕ, tal que V = ρϕx 1,...,xk(V−ϕ).
10

Affine Hermite-Lorentz manifolds / Variétés affines Hermite-Lorentz

Barucchieri, Bianca 26 September 2019 (has links)
Dans ce travail nous nous intéressons aux groupes cristallographiques, i.e. aux sous-groupes du groupe des transformations affines qui agissent proprement discontinûment et de façon cocompacte sur l’espace affine. Ce sont les groupes fondamentaux des variétés affines compactes et complètes. Nous classifions les groupes cristallographiques dont la partie linéaire préserve une forme hermitienne de signature (n,1). Grunewald et Margulis ont prouvé que ces groupes cristallographiques sont virtuellement résolubles (la conjecture d’Auslander affirme que c’est toujours le cas). Notre classification est effectuée pour n ≤ 3. Elle correspond à la classification, à revêtement fini près, des variétés Hermite-Lorentz plates, compactes et complètes en dimension complexe inférieure ou égale à4. Ce travail est inspiré par ceux menés par Bieberbach, puis Fried, et enfin Grunewald et Margulis sur les groupes cristallographiques dont la partie linéaire préserve une forme quadratique définie positive ou lorentzienne. En effectuant cette classification, nous avons été amené à étudier certains familles d’algèbres de Lie nilpotentes de dimension 8. Nous avons ensuite étendu cette classification à celle de toutes les algèbres de Lie 3-nilpotentes de dimension 8 ayant l’algèbre de Lie libre 3-nilpotente à 3générateurs pour quotient. Ce résultat peut être vu comme un pas dans la direction d’une classification des algèbres de Lie nilpotentes de dimension 8. Ensuite nous nous sommes demandé lesquelles de ces algèbres admettent une métrique pseudo-riemannienne plate et nous avons donné une réponse partielle. / In this work we deal with crystallographic groups, i.e. the subgroups of the group of affine transformations that act properly discontinuously and cocompactly on affine space. In otherwords they are the fundamental groups of compact and complete affine manifolds. In this thesis we classify such groups with the additional hypothesis that the linear part preserves a Hermitian form of signature (n,1). Grunewald and Margulis proved that such crystallographic groups are virtually solvable (the Auslander conjecture states that this is always true). Our classification is for n ≤ 3. It corresponds to a classification, up to finite covering, and for complex dimension at most 4, of flat compact complete Hermite-Lorentz manifolds. This is inspired by the works done by Bieberbach,then Fried, and finally Grunewald and Margulis who classified crystallographic groups whose line arpart preserves a positive definite or Lorentzian quadratic form. Making this classification we had to classify a family of 8-dimensional nilpotent Lie algebras. We then extended this classification toall the 8-dimensional 3-step nilpotent Lie algebras having the free 2-step nilpotent Lie algebra on 3generators as quotient. This result can be seen as a step in the direction of a general classification of nilpotent Lie algebras of dimension 8. We then wondered which of these Lie algebras admit flat pseudo-Riemannian metrics and gave a partial answer to this question.

Page generated in 0.0734 seconds