• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 6
  • 1
  • Tagged with
  • 25
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Processos oxidativos com hidroperóxidos, persulfatos ou perácidos, catalisados por espécies de cobre e de ferro com potencial aplicação em química ambiental / Oxidation processes with hydroperoxides, persulphates or peracids catalyzed by copper and iron species with potential application in environmental chemistry

Saulo Afonso de Almeida Filho 19 June 2015 (has links)
Neste trabalho, foram sintetizados complexos de cobre e ferro, com ligantes imínicos, obtidos a partir de 2-acetilpiridina e 2-(2-aminoetilpiridina) (apyepy), ou 2-acetilpiridina e 2-(aminometil)benzimidazol (apyambi), e com ligantes comerciais (ácido nitrilotriacético ou picolínico), capazes de catalisar a oxidação de poluentes, como benzeno, tolueno, etilbenzeno e xilenos (BTEX). Foi utilizado o tolueno como composto-modelo destes poluentes, que foi degradado com o uso de peróxido de hidrogênio, persulfato de sódio, ácido peracético ou peróxidos de metais alcalinos como agentes oxidantes. Os ligantes imínicos foram obtidos a partir de precursores carbonílicos e amínicos adequados, através de reações de condensação, e os correspondentes complexos metálicos de cobre(II), ferro(II) ou ferro(III) foram isolados utilizando métodos usuais de nosso laboratório. A caracterização dos compostos foi feita através de diversas técnicas analíticas e espectroscópicas: UV/Vis, infravermelho (IV) e de ressonância paramagnética eletrônica (EPR). Posteriormente, foi feita a inserção desses complexos de ferro e de cobre sintetizados em matrizes inorgânicas de niobatos e a verificação de sua reatividade em comparação com as mesmas espécies em solução. Monitorou-se a degradação do tolueno pelo peróxido de hidrogênio por cromatografia gasosa e os resultados obtidos indicaram boa atividade catalítica dos complexos, tanto em solução como inseridos em matrizes de niobato. Em solução, os complexos imínicos foram mais ativos que os de ligantes comerciais. Os compostos de ferro com ambos os ligantes imínicos mostraram-se melhores catalisadores que os correspondentes de cobre e um dos ligantes testados foi o mais eficiente (apyepy) com ambos os metais. A inserção em niobatos, aparentemente, preserva o catalisador e mantém sua atividade por mais tempo, mostrando que a inserção em niobatos beneficia o processo / In this work, iron and copper complexes were synthesized, with imine ligands obtained from 2-acetylpyridine and 2-(2-aminethylpiridine) (apyepy), or 2- acetylpyridine and 2- (aminomethyl)benzimidazole (apyambi) and commercial ligands (nitriletriacetic and picolinic acids) that are able to catalyze the oxidation of pollutant compounds as benzene, , ethylbenzene and xilenes (BTEX). Toluene was used as model compound of those pollutants, and its degradation was verified by using hydrogen peroxide, alkaline peroxide, sodium persulfate, or peracetic acid as oxidant agent. The imine ligands were obtained from adequate carbonyl and amine precursors, in condensation reactions, and the corresponding copper(II), iron(II) and iron(III) complexes were isolated by usual methods developed in our laboratory. Their characterization was carried out by analytical and spectroscopic techniques (UV/Vis, IR and EPR). Those complexes were then inserted in inorganic matrices (niobates) e its reactivity were compared to that of the analogous species in solution. Toluene degradation by hydrogen peroxide was monitored by gas chromatography, and the results showed good catalytic activity of all the complexes, both in solution and inserted into niobate matrices. In solution, the imine complexes were more efficient than the species with commercial ligands. The iron compounds with both imine ligands acted as better catalysts than the corresponding copper species, and for both metals those with the ligand apyepy were the most efficient in both cases. The insertion in niobates apparently preserves the catalyst and maintains its activity for longer, attesting that the insertion ameliorated the process.
22

Pristine and Doped Titanium Dioxide Studied by NC-AFM

Bechstein, Ralf 02 February 2009 (has links)
A commercial non-contact atomic force microscope was improved to achieve utmost resolution on a routine basis. This system was used to study the (110) surface of rutile titanium dioxide. The focus was on understanding contrast formation in terms of tip-sample interaction mechanisms. Moreover, chromium and antimony-doped titanium dioxide was investigated. The implications of transition-metal doping on the surface structure of this highly interesting photocatalyst was studied at the atomic scale.
23

Ab initio lattice dynamics in LiNbO3 and LiTaO3

Caciuc, Vasile 14 May 2001 (has links)
The ability of physics to provide an understanding of our Universe lies in the essential interrelation between experiment and theory. But physics does not provide us only reliable representations of the causes acting in nature. Its powerful experimental devices and theoretical methods are the underlying reason of the explosive technological development of our time. LiNbO3 and LiTaO3 represent only one example of the essential impact of both experimental and theoretical investigations on their technological applications. Particularly, LiNbO3 has been the subject of many experimental studies due to its applications in electro-optic and integrated optical devices. Also, the doped LiNbO3 with rare-earth and transition metals could be used, for instance, as a material for tunable lasers. The previous theoretical studies devoted to LiNbO3 and LiTaO3 focused on their electronic structure, being an attempt to understand the microscopic origin of the paraelectric-to-ferroelectric phase transition of these materials. The ab initio lattice dynamics investigations performed so far were mainly aimed to identify the role of the individual atoms vibrations in the energetic of the phase transition. The lack of a reliable model for the zone-center lattice dynamics in these compounds motivated us to investigate this issue by means of ab initio frozen-phonon calculations. On the background of the obtained phonon frequencies and eigenvectors, we unambiguously identified all zone-center modes for LiNbO3 and the A1 ones for LiTaO3. Due to the above mentioned enlargement of the technological applications of LiNbO3 by doping with various ions, we focused on the analysis of the ground-state properties of this material when doped with Fe and Cr. Even if the theoretical approach used in our calculations is not predictive with respect to the optical properties of the physical systems in study, a certain insight on this problem could be gained from the analysis of the effect of the atomic positions relaxation on the impurities energy levels localized in the optical band gap.
24

Mutual interactions of femtosecond pulses and transient gratings in nonlinear optical spectroscopy

Nolte, Stefan 16 November 2018 (has links)
This work is dedicated to a comprehensive experimental study on the interaction of femtosecond laser pulses with the nonlinear optical medium lithium niobate. The nonlinear optical response in the nanosecond regime was already studied extensively with a variety of techniques, whereas femtosecond pulses were mainly used in transient absorption or transient grating experiments. Naturally, the temporal resolution of these measurements depends on the pulse duration, however, dynamics during the pulse excitation were barely investigated. The motivation of this work is to widen the limits of femtosecond spectroscopy, not only to temporally resolve faster nonlinear optical processes, but further to show a sensitivity to other coupling mechanisms between the pulses and the material. Especially, the role of transient, dynamic holographic gratings is investigated with a careful determination of the pulse duration, bandwidth and frequency chirp. A basis of this work is established in the first part by studying the material response via light-induced absorption before focusing on the main topic, the pulse interaction with elementary (holographic) gratings, both self-induced and static, in the second part. By this detailed study, several features of femtosecond laser pulses, holographic gratings and the ultrafast material response can be revealed: (i) grating recording is feasible even with pulses of different frequencies, provided that their pulse duration is sufficiently short, (ii) grating based pulse coupling causes a pronounced energy transfer even in a common pump-probe setup for transient absorption measurements with (non-)degenerated frequencies, (iii) beyond expectation, oscillations in the phonon frequency range become apparent in different measurements. The presented results point towards appropriate future experiments to obtain a more consistent, microscopic model for the ultrafast response of the crystal, involving the interplay between photo-generated polarons, self-induced gratings, and phonons.
25

Ultrafast Photon Management: The Power of Harmonic Nanocrystals in Nonlinear Spectroscopy and Beyond

Kijatkin, Christian 01 April 2019 (has links)
The present work broaches the physics of light-matter interaction, chiefly using nonlinear optical spectroscopy in a newly developed framework termed as Photon Management Concept. This way, existing fragments dealing with specific properties of harmonic and upconversion nanoparticles (HNPs/UCNPs) are consolidated into a full and coherent picture with the primary goal of understanding the underlying physical processes and their impact on the application side, especially in terms of imaging techniques, via suitable experimental and numerical studies. Contemporary optical setups involving contrast-enhancing agents are frequently limited in their excitation and detection configurations owing to a specialization to a select number of markers. As a result, the bandwidth of experimental methods and specimens that may be investigated is severely restricted in a large number of state-of-the-art setups. Here, an alternative approach involving HNPs and UCNPs, respectively, is presented providing an overview from their synthesis to optical characterization and to potential fields of application. Based on their inherent flexibility based on their nonlinear optical response, especially in terms of wavelength and intensity tunability, the PMC alleviates prevalent limitations by dynamically adapting the setup to a sample instead of the preliminary culling to a reduced number of eligible specimens that must not change their optical properties significantly during investigation. The use of HNPs supersedes such concerns due to their nearly instantaneously generated, strongly anti-Stokes shifted, coherent emission capable of producing radiation throughout the visible spectral range, including infrared and ultraviolet wavelengths. This way, HNPs transcend the traditional field of imaging and introduces potential applications in optomanipulation or holographic techniques. Thorough (nonlinear) optical characterization of UCNPs and alkali niobate HNP ensembles is performed to assess the fundamental physical mechanisms interwoven with numerical studies leading to their wide-ranging applicability. Final remarks show that HNPs are ideal candidates for realization of the PMC and yet hold an even further potential beyond current prospects.

Page generated in 0.045 seconds