591 |
Mechanisms of nitric oxide control in endothelial and cardiac dysfunctionJoshi, Mandar S. January 2005 (has links)
Thesis (Ph. D.)--Ohio State University, 2005. / Available online via OhioLINK's ETD Center; full text release delayed at author's request until 2006 Aug 16.
|
592 |
Efeitos do fator de necrose tumoral - alfa sobre a expressão da sintase de oxido nitrico neuronal e induzivel em hipotalamo de ratos : implicações sobre o controle da fome / Inducible-NOS but not neuronal-NOS participate in the acute effect of TNF-alfa on hypothalamic insulin-dependent inhibition of flood intakeMoraes, Juliana Contin 16 February 2006 (has links)
Orientador: Licio Augusto Velloso / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Ciencias Medicas / Made available in DSpace on 2018-08-06T23:35:52Z (GMT). No. of bitstreams: 1
Moraes_JulianaContin_M.pdf: 1484102 bytes, checksum: 31482341aabc46ac3c7f655aead3fbd6 (MD5)
Previous issue date: 2006 / Resumo: Durante as últimas décadas tem se observado um aumento surpreendente na prevalência de obesidade e diabetes mellitus em populações de várias regiões do mundo, inclusive no Brasil. Diversos estudos epidemiológicos apontam o consumo de dietas ricas em lípides como um dos mais importantes fatores de risco para o desenvolvimento dessas patologias. Em recente trabalho em nosso laboratório, foi demonstrado que a oferta de uma dieta rica em lípides leva a uma maior expressão hipotalâmica de proteínas participantes de respostas pró-inflamatórias como TNF-a, IL-2, IL-6 e IL-ß. A citocina TNFa, agindo no hipotálamo, modula a ingestão alimentar e o gasto energético através de mecanismos incompletamente elucidados. Neste trabalho exploramos a hipótese de que, para modular a sinalização anorexigênica induzida por insulina no hipotálamo, o TNFa deve requerer a síntese de óxido nítrico. O TNFa ativa sinalização intracelular canónica no hipotálamo, com pico na concentração de 10-8 M. Esse efeito é acompanhado pela indução da expressão das formas neuronal e induzível da enzima NOS, em ambos os casos com pico em 10-12 M. Em adição, TNFa estimula a atividade catalítica de NOS. O pré-tratamento com TNFa em baixa dose (10-12 M) inibe a sinalização anorexigênica insulino-dependente. Esse efeito é abolido em camundongos iNOS mas não em camundongos nNOS knockout. Portanto, o efeito inibitório exercido pela baixa dose de TNFa sob a inibição da ingestão alimentar induzida por insulina depende, pelo menos em parte, da expressão de iNOS. Embora nNOS hipotalâmica seja induzida por TNFa, esta não participa da modulação TNFa-dependente dos sinais anorexigênicos da insulina. / Abstract: Obesity has reached epidemic proportion in several regions of the world. General changes in life-style, including consumption of fat-rich food, are amongst the most important factors leading to an unprecedented increase in the prevalence of this disease. In a recently work on our laboratory, we showed that high fat feeding (hyperlipidic diet) induced the expression of several pro-inflammatory cytokines and inflammatory responsive proteins in hypothalamus, like TNFa, IL-2, IL-6 e IL-lß. The cytokine TNFa, acting on the hypothalamus, modulates food intake and energy expenditure through mechanisms incompletely elucidated. Here, we explored the hypothesis that, to modulate insulin-induced anorexigenic signaling in hypothalamus, TNF-a would require the synthesis of NO. TNF-a activates canonical intracellular signaling in hypothalamus, peaking at 10-8 M. This is accompanied by the induction of expression of the inducible and neuronal forms of NOS, in both cases peaking at 10-12 M. In addition TNF-a stimulates NOS catalytic activity. The pre-treatment with TNF-a at low dose (10-12 M) inhibits insulin-dependent anorexigenic signaling. This effect is abolished in iNOS but not in Nnos knockout mice. Thus, the inhibitory effect exerted by low dose TNF-a upon the insulin-induced inhibition of food intake depends, at least in part, on the expression of iNOS. Although hypothalamic nNOS is induced by TNF-a it does not participate on TNF-a-dependent modulation of the insulin anorexigenic signals. / Mestrado / Ciencias Basicas / Mestre em Clinica Medica
|
593 |
L'Aronia melanocarpa est un puissant activateur de la NO synthase endothéliale : rôle des voies de signalisation rédox-sensibles / Aronia melanocarpa is a potent activator of endothelial nitric oxide synthase : role of redox-sensitive signaling pathwaysKim, Jong Hun 21 September 2012 (has links)
De nombreuses études ont indiqué que la consommation régulière d’aliments riches en polyphénols comme le vin rouge, le thé, ou les fruits est associée à une réduction du risque de pathologies cardiovasculaires chez l’homme et les animaux. L’effet bénéfique des polyphénols sur le système cardiovasculaire est dû, au moins en partie, à leur action directe sur les vaisseaux sanguins en améliorant la fonction endothéliale. En effet, de nombreuses études indiquent que les polyphénols induisent des relaxations dépendantes de l’endothélium dans les artères isolées en stimulant la formation endothéliale de monoxyde d’azote (NO). La comparaison des relaxations induites par 13 jus et purées de fruits différents dans les artères coronaires de porc a permis de sélectionner l’Aronia melanocarpa en raison de sa grande activité et de sa forte teneur en polyphénols. L’Aronia melanocarpa est un puissant inducteur de relaxations dépendantes de l’endothélium en stimulant la formation endothéliale de NO. Cette formation accrue de NO implique l’activation rédox-sensible de la voie Src/PI3-kinase/Akt qui va phosphoryler la NO synthase sur son site activateur entraînant une formation rapide de NO. A plus long terme, l’Aronia melanocarpa stimule l’expression de la NO synthase via un mécanisme rédox-sensible impliquant les voies PI3-kinase/Akt, JNK, et p38 MAPK, et entraînant la phosphorylation inactivatrice des facteurs de transcription FoxO1 et Fox3a; cet effet prévient la régulation négative de l’expression de la NO synthase endothéliale. En conclusion,nos études révèlent le potentiel d’Aronia melanocarpa à améliorer la protection vasculaire par la stimulation soutenue de la formation de NO. / Many studies indicated that the regular consumption of drink or food rich in polyphenols like red wine, green tea, fruits, vegetables and chocolate is associated with a reduction of the risk of cardiovascular pathologies in human and animals. The beneficial effect of polyphenols, well known as antioxidants, on the cardiovascular system is due at least partly to their direct action on the blood-vessels by improving the endothelial function. Indeed, many studies indicate that the polyphenols induce the endothelium-dependent vasorelaxation in the isolated arteries by stimulating the formation of endothelial nitric oxide (NO). Comparing the endothelium-dependent relaxations induced by 13 different fruit juices and purees in the isolated porcine coronary arteries, Aronia melanocarpa was selected due to its high activity and the highest polyphenol content. Aronia melanocarpa is a potent inducer of endothelium-dependent relaxation in coronary artery by stimulating the formation of endothelial NO. This increased formation of NO involves the redox-sensitive activation of the Src/PI3-kinase/Akt pathway leading to the phosphorylation of eNOS at the activation site, Ser1177, during the rapid formation. Further for the long-term, Aronia melanocarpa stimulates the expression of eNOS via a redox-sensitive mechanism involving PI3-kinase/Akt, JNK, p38 MAPK pathways and the subsequent inactivation of transcription factors FoxO1 and FoxO3a by phosphorylation; this effect prevents their negative regulation of eNOS expression. In conclusion, our studies reveal the potential of Aronia melanocarpa to improve vascular protection by stimulating in a constant way the formation of endothelial NO.
|
594 |
Vascular calcification in rat cultured smooth muscle cells : a role for nitric oxideAlsabeelah, Nimer Fehaid N. January 2016 (has links)
The underlying inflammatory storm in renal or diabetic disease may induce expression of inducible nitric oxide synthase (iNOS). Similarly, expression of iNOS or nitric oxide (NO) production in vascular smooth muscle cells (VSMCs) in a calcifying environment, may promote vascular calcification (VC) (Zaragoza et al., 2006). However, emerging data suggests that NO generated by either endothelial nitric oxide synthase (eNOS) or iNOS may protect VSMCs from VC (Kanno et al., 2008). Thus, the role of NO and its associated enzymes in the development of VC is unclear. The aim of this study was to identify whether NO produced by iNOS regulates calcification in VSMCs, and to further understanding of potential mechanisms that may mediate the actions of NO/iNOS. A significant and sustained production of NO by iNOS, which peaked at day 3 and declined thereafter was found in rat aortic smooth muscle cells (RASMCs) that were preactivated with lipopolysaccharide (LPS; 100μg ml-1) and interferon gamma (IFN-γ;100U ml-1) in the presence of calcification buffer (CB) containing calcium chloride (CaCl2; 7mM) and β-glycerophosphate (β-GP; 7mM). This was associated with formation of hydroxyapatite crystals (HA) or calcification plaques, observed via alizarin red staining (ARS) and/or fourier transform infrared (FT-IR) analysis. However, when RASMCs were incubated with the iNOS inhibitor GW274150 at 10 μM, together with LPS + IFN-γ + CB, HA crystal formation was abolished. When RASMCs were pretreated with diethylenetriamine/nitric oxide adduct (NOC 18) at either 30 or 50 μM for an hour prior to addition of CB, to generate NO; calcium levels were elevated leading to form HA crystals. However, the elevation of calcium caused by the presence of NO generated via iNOS, did not result in phosphorylation of mitogen activated protein kinases (p38 MAPK), extracellular signal-regulated kinases (Erks), and protein kinase B. Furthermore, there was a reduction of Runx2 levels (pro-calcific factor) which could be another pro-calcific factor involved in this mechanism. These findings suggest that NO may indeed play a fundamental role in calcification, enhancing mineralisation of smooth muscle cells. Furthermore, the expression of iNOS/ NO appears to be enhanced under conditions that favour calcification and these together may contribute to enhanced calcification with potential detrimental consequences in vivo.
|
595 |
Effect of Inhibition of S-Nitrosoglutathione Reductase on the NF-κB PathwayFears, Sharry L. 30 September 2009 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / S-nitrosoglutathione reductase (GSNOR) also known as glutathione- dependent formaldehyde dehydrogenase (FDH), is a zinc-dependent dehydrogenase. GSNOR oxidizes long chain alcohols to an aldehyde with the help of a molecule of NAD+. GSNOR was initially identified as FDH because of its role in the formaldehyde detoxification pathway. The only S-nitrosothiol (SNO) substrate recognized by GSNOR is GSNO. A transnitrosation reaction transfers NO from nitrosylated proteins or S-nitrosothiols (RSNO) to glutathione to form S-nitrosoglutathione. This GSNO is finally converted to glutathione disulfide (GSSG) by a two step mechanism. Cellular GSNO is a nitric oxide reservoir that can either transfer to or remove from the proteins a NO group. Reduction of GSNO by GSNOR depletes this reservoir and therefore indirectly regulates protein nitrosylation. GSNOR inhibitors which can increase the basal GSNO levels will be another potential therapy. Several GSNOR inhibitors were identified in our laboratory and the aim of this study was to understand their cellular effects. One of the experiments studied the effect of the compound on protein-SNO.
The role of nitric oxide in regulation of NF-κB pathway is reviewed by Bove and van der Vliet. We focused on identification of nitrosylated proteins using protein specific antibodies. We identified nitrosylation of IKKβ. So the question raised was whether nitrosylation of IKKβ affects its activity. IKKβ is responsible for phosphorylation of IκBα and phosphorylation of IκBα results in its degradation and activation of NF-κB pathway. Therefore, we studied the phosphorylation of IκBα in the presence of inhibitor C3. Results showed a dose-dependent decrease of pIκB. So the next question was whether the phosphorylation of IKKβ was affected by nitrosylation. We did not detect any change in pIKKβ with different concentrations of C3. The decreased degradation of IκBα caused by C3 translated into decreased NF-κB activity as seen by a dose-dependent decrease in amounts of ICAM-1 with increasing C3 concentration. This data supports the premise that the activity of transcription factor NF-κB is suppressed by inhibiting GSNOR with compound C3
|
596 |
The Design, Characteristics, and Application of Polyurethane Dressings using the Electrospinning ProcessKampeerapappun, Piyaporn 12 May 2008 (has links)
No description available.
|
597 |
Development of a Reactive Oxygen Species-Sensitive Nitric Oxide Synthase Inhibitor for the Treatment of Ischemic StrokeNash, Kevin Michael January 2017 (has links)
No description available.
|
598 |
INTERFERON-GAMMA MODULATES INTESTINAL P-GLYCOPROTEIN: MOLECULAR MECHANISM(S) AND CLINICAL IMPLICATIONSDIXIT, SANTOSH G. 29 September 2005 (has links)
No description available.
|
599 |
The Relationship of Genes and Environment with Exhaled Nitric Oxide in Children with AsthmaSpanier, Adam Jason 23 April 2008 (has links)
No description available.
|
600 |
Electron paramagnetic resonance (EPR) oximetry as a quantitative tool to measure cellular respiration in pathophysiological conditionsPresley, Tennille D. 30 August 2007 (has links)
No description available.
|
Page generated in 0.0885 seconds