• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 692
  • 81
  • 77
  • 68
  • 41
  • 25
  • 14
  • 14
  • 6
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 1199
  • 406
  • 269
  • 190
  • 159
  • 152
  • 130
  • 126
  • 119
  • 100
  • 96
  • 95
  • 93
  • 91
  • 89
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
441

Models for predicting powder-polymer properties and their use in injection molding simulations of aluminum nitride

Kate, Kunal H. 13 December 2012 (has links)
Powder injection molding (PIM) is widely used to manufacture complex-shaped ceramic and metal components in high production volumes. In order to design and fabricate PIM components, it is important to know a number of material properties at different powder- polymer compositions. In this thesis, several predictive models for estimating rheological, thermal and mechanical properties as a function of powder-polymer mixtures were evaluated using experimental data obtained from the literature. Based on this survey, models were selected for predicting rheological, thermal and mechanical properties for aluminum nitride-polymer mixtures at various volume fractions of powder using experimental measurements of unfilled and filled polymers. The material properties were estimated for two aluminum nitride powder-polymer mixtures and used in mold-filling simulations. These results will provide new perspectives and design tools for identifying useful material compositions, component geometry attributes, and process parameters while eliminating expensive and time-consuming trial-and-error practices prevalent in PIM. / Graduation date: 2013
442

Electron Spectroscopic Study of Indium Nitride Layers

Bhatta, Rudra Prasad 28 March 2008 (has links)
Surface structure, chemical composition, bonding configuration, film polarity, and electronic properties of InN layers grown by high pressure chemical vapor deposition (HPCVD) have been investigated. Sputtering at an angle of 50-70 degrees followed by atomic hydrogen cleaning (AHC) was successful in removing the carbon contaminants. AHC is found to be the most effective cleaning process to remove oxygen contaminants from InN layers in an ultrahigh vacuum (UHV) system and produced a well ordered surface. Auger electron spectroscopy (AES) confirmed the cleanliness of the surface, and low energy electron diffraction (LEED) yielded a 1×1 hexagonal pattern demonstrating a well-ordered surface. High resolution electron energy loss spectra (HREELS) taken from the InN layers exhibited loss features at 550 cm-1, 870 cm-1 and 3260 cm-1 which were assigned to Fuchs-Kliewer phonon, N-H bending, and N-H stretching vibrations, respectively. Assignments were confirmed by observation of isotopic shifts following atomic deuterium dosing. No In-H species were observed indicating N-termination of the surface and N-polarity of the film. Broad conduction band plasmon excitations were observed centered at 3100 cm-1 to 4200 cm-1 in HREEL spectra acquired with 25 eV electrons, for a variety of samples grown with different conditions. Infrared reflectance data shows a consistent result with HREELS for the bulk plasma frequency. The plasmon excitations are shifted about 300 cm-1 higher in HREEL spectra acquired using 7 eV electrons due to the higher plasma frequency and carrier concentration at the surface than in the bulk, demonstrating a surface electron accumulation. Hydrogen completely desorbed from the InN surface upon annealing for 900 s at 425 ºC or upon annealing for 30 s at 500 ºC. Fitting the coverage versus temperature for anneals of either 30 or 900 s indicated that the desorption was best described by second order desorption kinetics with an activation energy and pre-exponential factor of 1.3±0.2 eV and 10-7.3±1.0 cm2/s, respectively. Vibrational spectra acquired from HREEL can be utilized to explain the surface composition, chemical bonding and surface termination, and film polarity of InN layers. The explanation of evidence of surface electron accumulation and extraction of hydrogen desorption kinetic parameters can be performed by utilizing HREEL spectra.
443

ECR Assisted Deposition of Tin And Si3N4 Thin Films For Microelectronic Applications

Vargheese, K Deenamma 07 1900 (has links)
The broad theme of the present research investigation is Ion Assisted Deposition of thin films and its effect on the properties of thin films. Though this activity has been of interest to researchers for more than a decade, the development of different types of ion sources with control over the ion flux and energy, makes it a current topic of interest. Ion assisted deposition was successful in depositing thin films of many material with desired qualities, however, there are certain class of materials whose deposition has been rather difficult. This has mainly been attributed to higher energies and low ion flux of conventional ion sources. The advent of ECR ion sources for thin film deposition has given impetus to the deposition of such materials. This is due to the low energy high-density plasma generated in this type of sources. Hitherto, these sources were widely used in PECVD techniques and only recently the importance of ECR sources in PVD techniques has been realized. This thesis is on the development of ECR plasma source for ion assisted deposition of thin films using PVD techniques. This thesis is organized into six chapters. The first chapter gives an introduction on the ion assisted growth of thin films and the importance of ECR plasma. A detailed discussion on various aspects of ECR sources has been included. The design details on the development of ECR source have been discussed in the second chapter. The performance of ECR source as analyzed by the Langmuir probe are also discussed. Variation of plasma parameters like ion density, electron temperature, plasma potential and floating potential as a function of pressure and microwave power have been studied using Langmuir probe analysis. An ion density of the order of 1011/cm3 was measured at a distance of 8 cm from the plasma source with a microwave power of 400 watts. This was comparable to the ion density reported in downstream plasma of ECR sources. The behavior of plasma parameters with variation in microwave power and pressure was explained on the basis of microwave transmission above critical ion density and the microwave power absorption. The uniformity of the plasma parameters at the substrate position (29 cm from the ECR source) was found to be ± 2% over a diameter of 12 cm, which makes the ion source suitable for ion assisted deposition. The third chapter deals with the simulation and experimental study of the ECR sputtering process. ECR sputter type sources are equipped with cylindrical targets. The sputtered flux distribution on the substrate depends on target geometry, sputtering pressure and target-substrate distance. The effect of cylindrical geometry on the distribution of sputtered flux has been simulated by Monte Carlo methods. It is found that the sputtered flux distribution at different pressures and target-substrate distances in ECR sputter type source differs from the conventional glow discharge sputtering system equipped with planar targets. The simulated results are compared with the experimental results. The simulated data agree very well with the experimental data. The deposition and characterization of the TiN thin films for diffusion barrier applications in copper metallization have been discussed in the fourth chapter. Titanium nitride films are prepared by ECR sputtering. The effect of high density ion bombardment on the morphology, orientation and resistivity of the films was studied. It was observed that films with atomic smoothness could be prepared by ECR sputtering. Also the high density ion bombardment has been found to be effective for the film growth in (100) orientation. The behavior of TiN films deposited by this method as a diffusion barrier in copper metallization has been investigated. The resistivity measurements and RBS depth profile studies showed that up to 700°C there is no diffusion of copper into silicon. This shows that ECR sputtered TiN can be used as an effective diffusion barrier in copper metallization. The fifth chapter contains investigations on the ECR assisted growth of silicon nitride films. The films are characterized for composition, morphology and chemical bonding using AES, RBS, AFM, XPS and FTIR. AFM studies revealed that ion bombardment results in the reduction of surface roughness, which indicates dense film growth. The effect of ion assistance on the optical and electrical properties is studied in detail. Films prepared with microwave power ranging from 100 to 200 watts are having bandgap and refractive index of 4.9 eV and 1.92 respectively. Interface state density of silicon nitride films prepared in the above mentioned range was found to be 5x10 10 eVcm2. These films exhibited a resistivity of 10 13 Ω, cm and critical field of 4 MV/cm. The electrical conductivity in these films has been explained on the basis of Poole and Frenkel conduction. The low value of interface state density, higher resistivity, and critical field show that good quality SiN4 films can be deposited with low energy high density ECR plasma. A detailed summary of this research investigation has been discussed in the last chapter. The thesis is concluded with a discussion on the need of focused ECR source to establish ECR assisted deposition as a versatile technique for the growth of thin films.
444

Synthesis and characterisation of molecular nanostructures / Synthese und Charakterisierung von molekularen Nanostrukturen

Borowiak-Palen, Ewa 16 July 2004 (has links) (PDF)
In this thesis, bulk and local scale spectroscopic and microscopic tools have been applied to investigate the purified raw material of SWCNT and synthesized MWBNNT, BN-nanocapsules, B-doped SWCNT and SiC nanostructures. Using bulk scale sensitive techniques, including optical absorption spectroscopy, Raman spectroscopy, high-resolution electron energy-loss spectroscopy, the average response of the whole sample is obtained. On the other hand, on a local scale transmission and scanning electron microscopy as well as TEM-electron energy-loss spectroscopy provide information on single tubes or other nanostructures. First, diverse chemical and oxidation methods for the purification of as-produced SWCNT were presented. Purified samples were investigated using TEM and OAS. The analysis of the optical absorption spectra in the UV-Vis energy range revealed that some of the chemical treatments are harmful to nanotubes. In contrast to the chemical treatments an oxygen burning procedure was used on the raw material in high vacuum and a temperature range 450?650oC. The purification processes of SWCNT by HNO3 and oxygen burning procedures resulted in SWCNT comprised of selected diameters and a reduced diameter distribution. Both HNO3 and oxygen burning treatments can be used to selectively remove SWCNT with smaller diameters from the samples. In addition, an adapted substitution reaction was used for the synthesis of multiwall boron nitride nanotubes. It was shown that the IR-response of MWBNNT can be used as a fingerprint to analyse MWBNNT. As in h-BN for the analysis one has to be aware of the sample texture and the LO-TO splitting of the IR-active modes. TEM images and B1s and N 1s excitation edges of the grown material reveal the presence of multiwall BN nanotubes with an inner diameter of 3.1 nm and with a larger interplanar distance than in h-BN. The electronic properties of the multiwall BN nanotubes as derived from the q-dependent dielectric function e(w,q) are dominated by the band structure of the hexagonal-like BN sheets, as revealed by the large degree of momentum dispersion observed for the p and s+p plasmons, in agreement with that previously reported for different graphitic allotropic forms. Moreover, a fast and highly efficient synthesis route to produce BN nanocapsules with a narrow size distribution was developed. This was achieved by an adapted substitution process using SWCNT as templates followed by a rapid cooling treatment. The IR responses reveal the strong dipole active fingerprint lines of h-BN with distinct differences, which are due to texturing effects and which highlight the BN nanocapsules potential application as a reference source when deriving the sp2 to sp3 ratio in BN species due to their random orientation Furthermore, the idea of substitution was used for the systematic studies of B-doped SWCNT. The experiments carried out have resulted in 1, 5, 10, and 15 % boron incorporated into the single wall carbon nanotubes. Core level excitation spectroscopy of the B1s and C1s edges revealed that the boron atoms substitute carbon atoms in the tube lattice keeping an sp2-like bond with their nearest C neighbour atoms. Our results show that a simple rigid band model as has been applied previously to intercalated SWCNT is not sufficient to explain the changes in the electronic properties of highly doped B-SWCNT and a new type of a highly defective BC3 SWNT with new electronic properties is obtained. Finally, different silicon carbide nanostructures were produced. The spectroscopic and microscopic data led to a good understanding of the formation process. NH3 acts as a source of hydrogen that plays a key role in the formation of the structures through its ability to decompose SiC at high temperature such that along with the stacking faults that arise from the many polytypes of SiC the produced SiC nanorods become porous then hollow and eventually are completely decomposed.
445

Intercalation von Stickstoff und Wasserstoff in Sr2N sowie ortsabhängige Feststoffcharakterisierung mit Laserablation

Chemnitzer, René 02 August 2006 (has links) (PDF)
Die Strukturen der Erdalkalimetall-Subnitride (EA2N) von Calcium, Strontium und Barium ermöglichen mit ihrem schichtartigen Aufbau aus EA6N-Oktaedern Intercalationsreaktionen. Die Redox-Intercalation von Stickstoff in Sr2N wurde an Einkristallen untersucht. Nur durch eine drastische Erhöhung des Reaktionsgasdruckes im Vergleich zu den Reaktionen an mikrokristallinen Proben wurde die Intercalation der Diazenidionen in die Kristalle zu Sr4N3 und SrN möglich. Für eine analoge Intercalation von Wasserstoff in Sr2N konnten die Reaktionsbedingungen dahingehend optimiert werden, dass erstmals phasenreines Strontiumnitridhydrid (Sr2N)H bzw. deuterid (Sr2N)D erhalten wurde. Anhand von Intercalationsreaktionen mit Sr2N Kristallen konnte gezeigt werden, dass der Intercalationsprozess, erkennbar an der deutlichen Farbänderung von schwarz nach bersteinfarben, von außen nach innen fortschreitet. Als Methode zur räumlich aufgelösten Analyse wurde die Laserablation, in Kombination mit einem ICP - Massenspektrometer (LA-ICP-MS) verwendet. In der Literatur beschriebene Quantifizierungsstrategien wurden auf die Anwendbarkeit für die gegebene Fragestellung untersucht. Mit der ortsaufgelösten Analyse von Einkristallen konnte gezeigt werden, dass die Intercalation von Stickstoff in die Kristalle kontinuierlich von den Kanten zur Kristallmitte fortschreitet.
446

Micro-Raman Spectroskopy Investigation of Hard Coatings

Werninghaus, Thomas 20 July 1999 (has links) (PDF)
Abstract: Micro­Raman Spectroscopy Investigation of Hard Coatings Diamond, silicon carbide, and boron nitride have attracted great interest in the last years, due to their excellent material properties. Especially the extreme hardness and the high thermal con­ ductivity of these materials favour them as protective layers. The very large hardness gave these materials, deposited as films on various substrates, their name: hard coatings. In contrast to di­ amond, silicon carbide and boron nitride can be n­ as well as p­doped, making them promising candidates for high speed and high temperature electronic applications. Contrarily to the materials mentioned above, carbon nitride was obtained in crystalline form just very recently. Up to now the deposited films mainly consist of amorphous or nanocrystalline, carbon­rich material. For all these material systems inelastic light scattering (Raman spectroscopy) has been already applied for the material properties investigation. However, these investigations usually were restricted to only one of the various Raman spectroscopy tools, described in this work: Incident laser light energy varia­ tion, temperature variation, utilizing the selection rules, measurements at varying sample positions, two­dimensional mappings and one­dimensional scans in the conventional plane­view and the addi­ tional cross­sectional sample geometry. In contrast to this, this work demonstrates the improvement of the information about the investigated material and/or the sample heterostructure obtained by using the combination of all the above mentioned techniques. In the case of the diamond material system, films deposited on silicon substrates were investigated and an interfacial graphitic layer of 2nm thickness was found by scanning across the interface, which was obscured in the conven­ tional plane­view sample geometry. Similar to this an ultra­thin top layer and buried intermixed regions were identified in the silicon carbide material system utilizing the cross­sectional sample geometry. In addition to this, the temperature and the incident laser light energy dependences for 5 SiC polytypes (3C, 4H, 6H, 15R, and 21R) were measured. A resonance enhancement for the 3C and the 21R polytype was found corresponding to their fundamental bandgaps at 2.46eV and ß2.8eV, respectively. For the other polytypes no resonance enhancement was found, due to their larger fundamental bandgap. In the boron nitride material system the spatial correlation model for Raman lineshape analysis was applied for the first time and the values of the asymmetric broad­ ening and the frequency downshift for decreasing crystal sizes were evaluated. This was measured for single crystals of different size and for films deposited on silicon substrates. The correlation lengths in the ten nanometer region found for the deposited films corroborate the nanocrystalline nature of these films. Additionally incident laser light energy was measured, revealing the 488.0nm (Ar + ) and 482.5nm (Kr + ) laser lines as the optimum laser lines for the boron nitride investigation. Furthermore the dependence of the phonon feature parameters was investigated depending on the incident laser light power. A maximum power of 5­10mW for the micro­Raman spectroscopy setup was found to avoid any laser light induced heating of the investigated material. Two­dimensional mappings of the deposited boron nitride films were performed to improve the information about the material system. In the case of carbon nitride for the first time distinct phonon features were measured in a wide spectral range contrarily to most of the other investigations, which usually show only broad bands.
447

Metal-Nitrogen Multiple Bonds with Square-Planar Group 9 Transition Metal PNP Pincer Complexes

Scheibel, Markus 14 November 2014 (has links)
No description available.
448

Synthesis of Thin Piezoelectric AlN Films in View of Sensors and Telecom Applications

Moreira, Milena De Albuquerque January 2014 (has links)
The requirements of the consumer market on high frequency devices have been more and more demanding over the last decades. Thus, a continuing enhancement of the devices’ performance is required in order to meet these demands. In a macro view, changing the design of the device can result in an improvement of its performance. In a micro view, the physical properties of the device materials have a strong influence on its final performance. In the case of high frequency devices based on piezoelectric materials, a natural way to improve their performance is through the improvement of the properties of the piezoelectric layer. The piezoelectric material studied in this work is AlN, which is an outstanding material among other piezoelectric materials due to its unique combination of material properties. This thesis presents results from experimental studies on the synthesis of AlN thin films in view of telecom, microelectronic and sensor applications. The main objective of the thesis is to custom design the functional properties of AlN to best suit these for the specific application in mind. This is achieved through careful control of the crystallographic structure and texture as well as film composition. The piezoelectric properties of AlN films were enhanced by doping with Sc. Films with different Sc concentrations were fabricated and analyzed, and the coupling coefficient (kt2) was enhanced a factor of two by adding 15% of Sc to the AlN films. The enhancement of kt2 is of interest since it can contribute to a more relaxed design of high frequency devices. Further, in order to obtain better deposition control of c-axis tilted AlN films, a new experimental setup were proposed. When this novel setup was used, films with well-defined thicknesses and tilt uniformity were achieved. Films with such characteristics are very favorable to use in sensors based on electroacoustic devices operating in viscous media. Studies were also performed in order to obtain c-axis oriented AlN films deposited directly on Si substrates at reduced temperatures. The deposition technique used was HiPIMS, and the results indicated significant improvements in the film texture when comparing to the conventional Pulsed DC deposition process.
449

Analysis of thermal conductivity models with an extension to complex crystalline materials

Greenstein, Abraham 08 July 2008 (has links)
The calculation of the thermal conductivity of condensed matter has posed a significant challenge to engineers and scientists for almost a century. Thermal conductivity models have been successfully applied to many materials however many challenges still remain. One serious challenge is the inability of current thermal conductivity models to calculate the thermal conductivity of highly complex materials. Another challenge is managing error introduced by using an effective interatomic potential, for many materials this problem is exacerbated because their effective potentials have not been extensively used or characterized. Recent interest in nanostructures has initiated a new set of challenges and unanswered questions. This work addresses different aspects of the aforementioned challenges by using zeolite MFI and gallium nitride as case studies.
450

Fabrication, strength and oxidation of molybdenum-silicon-boron alloys from reaction synthesis

Middlemas, Michael Robert 06 April 2009 (has links)
Mo-Si-B alloys are a leading candidate for the next generation of jet turbine engine blades and have the potential to raise operating temperatures by 300-400°C. The alloys of interest are a three-phase mixture of the molybdenum solid solution (Moss) and two intermetallic phases, Mo3Si (A15) and Mo5SiB2 (T2). A novel powder metallurgical method was developed which uses the reaction of molybdenum, silicon nitride (Si3N4) and boron nitride (BN) powders to synthesize a fine dispersion of intermetallics in a Moss matrix. The covalent nitrides are stable in oxidizing environments up to 1000ºC, allowing for fine particle processing. The process developed uses standard powder processing techniques to create Mo-Si-B alloys in a less complex and expensive manner than previously demonstrated. This powder metallurgy approach yields a fine dispersion of intermetallics in the Moss matrix with average grain sizes of 2-4μm. Densities up to 95% of theoretical were attained from pressureless sintering at 1600°C and full theoretical density was achieved by hot-isostatic pressing (HIP). Sintering and HIPing at 1300°C reduced the grain sizes of all three phases by over a factor of two. Microstructure examination by electron back-scatter diffraction imaging was used to precisely define the location of the phases and to measure the volume fractions and grain size distributions. Microstructural quantification techniques including two-point correlation functions were used to quantify microstructural features and correlate the BN reactant powder size and morphology to the distribution of the intermetallic phases. High-temperature tensile tests were conducted and yield strengths of 580MPa at 1100°C and 480MPa at 1200°C were measured for the Mo-2Si-1Bwt.% alloy. The yield strength of the Mo-3Si-1Bwt.% alloy was 680MPa at 1100°C and 420MPa at 1300°C. A review of the pertinent literature reveals that these are among the highest yield strengths measured for these compositions. The oxidation resistance in air at 1000 and 1100°C was examined. The protective borosilicate surface layer formed quickly due to the close spacing of intermetallic particles and pre-oxidation treatment was developed to further limit the transient oxidation behavior. An oxidation model was developed which factors in the different stages of oxidation to predict compositions that minimize oxidation.

Page generated in 0.0427 seconds