• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 692
  • 81
  • 77
  • 68
  • 41
  • 25
  • 14
  • 14
  • 6
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 1199
  • 406
  • 269
  • 190
  • 159
  • 152
  • 130
  • 126
  • 119
  • 100
  • 96
  • 95
  • 93
  • 91
  • 89
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
471

Structure determination by low energy electron diffraction of GaN films on 6H-SiC(0001) substrate by molecular beam epitaxy

Ma, King-man, Simon., 馬勁民. January 2005 (has links)
published_or_final_version / abstract / Physics / Doctoral / Doctor of Philosophy
472

Spark Plasma Sintering of Si<sub>3</sub>N<sub>4</sub>-based Ceramics : Sintering mechanism-Tailoring microstructure-Evaluationg properties

Peng, Hong January 2004 (has links)
<p>Spark Plasma Sintering (SPS) is a promising rapid consolidation technique that allows a better understanding and manipulating of sintering kinetics and therefore makes it possible to obtain Si<sub>3</sub>N<sub>4</sub>-based ceramics with tailored microstructures, consisting of grains with either equiaxed or elongated morphology.</p><p> The presence of an extra liquid phase is necessary for forming tough interlocking microstructures in Yb/Y-stabilised α-sialon by HP. The liquid is introduced by a new method, namely by increasing the O/N ratio in the general formula RE<sub>x</sub>Si<sub>12-(3x+n)</sub>Al<sub>3x+n</sub>O<sub>n</sub>N<sub>16-n</sub> while keeping the cation ratios of RE, Si and Al constant. </p><p>Monophasic α-sialon ceramics with tailored microstructures, consisting of either fine equiaxed or elongated grains, have been obtained by using SPS, whether or not such an extra liquid phase is involved. The three processes, namely densification, phase transformation and grain growth, which usually occur simultaneously during conventional HP consolidation of Si<sub>3</sub>N<sub>4</sub>-based ceramics, have been precisely followed and separately investigated in the SPS process.</p><p>The enhanced densification is attributed to the non-equilibrium nature of the liquid phase formed during heating. The dominating mechanism during densification is the enhanced grain boundary sliding accompanied by diffusion- and/or reaction-controlled processes. The rapid grain growth is ascribed to a <i>dynamic ripening</i> mechanism based on the formation of a liquid phase that is grossly out of equilibrium, which in turn generates an extra chemical driving force for mass transfer. Monophasic α-sialon ceramics with interlocking microstructures exhibit improved damage tolerance. Y/Yb- stabilised monophasic α-sialon ceramics containing approximately 3 vol% liquid with refined interlocking microstructures have excellent thermal-shock resistance, comparable to the best β-sialon ceramics with 20 vol% additional liquid phase prepared by HP. </p><p>The obtained sialon ceramics with fine-grained microstructure show formidably improved <i>superplasticity</i> in the presence of an electric field. The compressive strain rate reaches the order of 10<sup>-2</sup> s<sup>-1</sup> at temperatures above 1500oC, that is, two orders of magnitude higher than that has been realised so far by any other conventional approaches. The high deformation rate recorded in this work opens up possibilities for making ceramic components with complex shapes through super-plastic forming. </p>
473

Embedded active and passive methods to reduce the junction temperature of power and RF electronics

Chen, Xiuping 22 May 2014 (has links)
AlGaN/GaN high electron mobility transistors (HEMTs) have been widely used for high power and high frequency RF communications due to their fast switching and large current handling capabilities. The reliability of such devices is strongly affected by the junction temperature where the highest magnitude occurs in a local region on the drain side edge of the gate called the hotspot. Thus, thermal management of these devices remains a major concern in the design and reliability of systems employing AlGaN/GaN HEMTs. Due to the large power densities induced in these devices locally near the drain side edge of the gate, it is clear that moving thermal management solutions closer to the heat generation region is critical in order to reduce the overall junction temperature of the device. In this work, we explore the use of embedded microchannel cooling in the substrate of AlGaN/GaN HEMTs made on Si and SiC substrates and compare them to passive cooling techniques using Si, SiC, and diamond substrates. In addition, the impact of cooling fluids and harsh environmental conditions were considered. The study was performed using a combination of CFD and finite volume analysis on packaged AlGaN/GaN HEMTs. Active cooling using embedded microchannels were shown to have a significant impact on the heat dissipation over the passive cooling methods, approaching or exceeding that of diamond cooled devices. For vertical power devices (IGBT), embedded microchannels in the power electronics substrates were explored. In both the power devices and lateral AlGaN/GaN HEMTs, the use of embedded microchannels with nonlinear channel geometries was shown to be the most effective in terms of reducing the device junction temperature while minimizing the pumping power required.
474

Lattice Engineering of III-Nitride Heterostructures and Their Applications

Kong, Wei January 2016 (has links)
<p>III-Nitride materials have recently become a promising candidate for superior applications over the current technologies. However, certain issues such as lack of native substrates, and high defect density have to be overcome for further development of III-Nitride technology. This work presents research on lattice engineering of III-Nitride materials, and the structural, optical, and electrical properties of its alloys, in order to approach the ideal material for various applications. We demonstrated the non-destructive and quantitative characterization of composition modulated nanostructure in InAlN thin films with X-ray diffraction. We found the development of the nanostructure depends on growth temperature, and the composition modulation has impacts on carrier recombination dynamics. We also showed that the controlled relaxation of a very thin AlN buffer (20 ~ 30 nm) or a graded composition InGaN buffer can significantly reduce the defect density of a subsequent epitaxial layer. Finally, we synthesized an InAlGaN thin films and a multi-quantum-well structure. Significant emission enhancement in the UVB range (280 – 320 nm) was observed compared to AlGaN thin films. The nature of the enhancement was investigated experimentally and numerically, suggesting carrier confinement in the In localization centers.</p> / Dissertation
475

Development of AlGaN/GaN High Electron Mobility Transistors (HEMTs) on diamond substrates

Newham, Wesley Scott. 06 1900 (has links)
Silicon based semiconductor devices are rapidly approaching the theoretical limit of operation and are becoming unsuitable for future military requirements. The scope of semiconductor devices has been expanded by wide bandgap devices such as gallium nitride (GaN) to include the possibility for high power and high frequency operation. A new generation of high speed â high frequency devices is required to meet current and future military needs. The Gallium Nitride High Electron Mobility Transistor (HEMT) is showing great promise as the enabling technology in the development of military radar systems, electronic surveillance systems, communications systems and high voltage power systems. Typically, sapphire or silicon carbide is utilized as the substrate material in most HEMT designs. This thesis explores the possibility of utilizing a diamond substrate to increase the power handling capability of the AlGaN/GaN HEMT. Diamond offers increased thermal property parameters that can be simulated in the commercially available Silvaco software package. A complete electrical and thermal analysis of the model was conducted and compared to actual device characteristics. The results of the software simulation and measurements on the test devices indicate diamond substrates will enable the HEMT to be operated at a higher power than traditional sapphire substrate HEMTS.
476

Nitridomanganates of alkaline-earth metals

Ovchinnikov, Alexander 13 December 2016 (has links) (PDF)
The main goal of the present work was the synthesis of alkaline-earth nitridomanganates (AExMnyNz) with extended anionic structures and the characterization of their electronic and magnetic properties. Up to now, only compounds with isolated nitridomanganate anions have been reported in the discussed ternary systems. A systematic exploratory synthesis, employing high-temperature treatment of AE nitrides and Mn under controlled N2 pressure, yielded more than ten new nitridomanganates. Their crystal structures contain anionic building blocks of different dimensionalities, ranging from isolated species to three-dimensional frameworks. In general, the formation of Mn-rich compositions was found to be driven by the emergence of Mn-Mn interactions, which creates a link between nitridometalates and transition-metal-rich binary nitrides. The obtained nitridomanganates display a plethora of interesting phenomena, such as large spin-orbit coupling, magnetic frustration, quenching of magnetism due to Mn-Mn interactions, and metal-insulator transition.
477

INVESTIGATION OF BAND BENDING IN n- AND p-TYPE GaN

Foussekis, Michael 27 April 2012 (has links)
This dissertation details the study of band bending in n- and p-type GaN samples with a Kelvin probe utilizing different illumination geometries, ambients (air, oxygen, vacuum 10-6 mbar), and sample temperatures (77 – 650 K). The Kelvin probe, which is mounted inside an optical cryostat, is used to measure the surface potential. Illumination of the GaN surface with band-to-band light generates electron-hole pairs, which quickly separate in the depletion region due to a strong electric field caused by the near-surface band bending. The charge that is swept to the surface reduces the band bending and generates a surface photovoltage (SPV). Information about the band bending can be obtained by fitting the SPV measurements with a thermionic model based on the emission of charge carriers from bulk to surface and vice versa. The band bending in freestanding n-type GaN templates has been evaluated. The Ga-polar and N-polar surfaces exhibit upward band bending of about 0.74 and 0.57 eV, respectively. The surface treatment also plays a major role in the SPV behavior, where the SPV for mechanical polished surfaces restores faster than predicted by a thermionic model in dark. When measuring the photoluminescence (PL) signal, the PL from mechanically polished surfaces was about 4 orders of magnitude smaller than the PL from chemically mechanically polished surfaces. The PL and SPV behaviors were explained by the presence of a large density of defects near the surface, which quench PL and aid in the restoration of the SPV via electron hopping between defects. Temperature-dependent SPV studies have also been performed on doped n- and p-type GaN samples. In Si-doped n-type GaN, the estimated upward band bending was about 1 eV at temperatures between 295 and 500 K. However, in p-type GaN, the downward band bending appeared to increase with increasing temperature, where the magnitude of band bending increased from 0.8 eV to 2.1 eV as the temperature increased from 295 to 650 K. It appears that heating the p-type GaN samples allows for band bending values larger than 1 eV to fully restore. Pre-heating of samples was of paramount importance to measure the correct value of band bending in p-type GaN. The slope of the dependence of the SPV on excitation intensity at low temperatures was larger than expected; however, once the temperature exceeded 500 K, the slope began to reach values that are in agreement with a thermionic model.
478

DC, MICROWAVE, AND NOISE PROPERTIES OF GAN BASED HETEROJUNCTION FIELD EFFECT TRANSISTORS AND THEIR RELIABILITY ISSUES

Zhu, Congyong 13 September 2013 (has links)
AlGaN/GaN and InAlN/GaN-based heterojunction field effect transistors (HFETs) have demonstrated great high power and high frequency performance. Although AlGaN/GaN HFETs are commercially available, there still remain issues regarding long-term reliability, particularly degradation and ultimately device failure due to the gate-drain region where the electric field peaks. One of the proposed degradation mechanisms is the inverse-piezoelectric effect that results from the vertical electric field and increases the tensile strain. Other proposed mechanisms include hot-electron-induced trap generation, impurity diffusion, surface oxidation, and hot-electron/phonon effects. To investigate the degradation mechanism and its impact on DC, microwave, and noise performance, comprehensive stress experiments were conducted in both un-passivated and passivated AlGaN/GaN HFETs. It was found that degradation of AlGaN/GaN HFETs under reverse-gate-bias stress is dominated by inverse-piezoelectric effect and/or hot-electron injection due to gate leakage. Degradation under on-state-high-field stress is dominated by hot-electron/phonon effects, especially at high drain bias. Both effects are induced by the high electric field present during stress, where the inverse-piezoelectric effect only relates to the vertical electric field and the hot-electron effect relates to the total electric field. InAlN/GaN-based HFETs are expected to have even better performance as power amplifiers due to the large 2DEG density at the InAlN/GaN interface and better lattice-matching. Electrical stress experiments were therefore conducted on InAlN/GaN HFETs with indium compositions ranging from 15.7% to 20.0%. Devices with indium composition of 18.5% were found to give the best compromise between reliability and device performance. For indium compositions of 15.7% and 17.5%, the HFET devices degraded very fast (25 h) under on-state-high-field stress, while the HFET devices with 20.0% indium composition showed very small drain. It was also demonstrated that hot-electron/phonon effects are the major degradation mechanism for InAlN/GaN HFETs due to a large 2DEG density under on-state operations, whereas the inverse-piezoelectric effect is very small due to the small strain for the near lattice-matched InAlN barrier. Compared to lattice-matched InAlN/GaN HFETs, AlGaN/GaN HFETs have much larger strain in the barrier and about half of the drain current level; however, the hot electron/hot phonon effects are still important, especially at high drain bias.
479

Raman Scattering in GaN and ZnO

Nagata, Shinobu 01 January 2007 (has links)
The Micro-Raman scattering technique has been used for the study of GaN and ZnO. Capabilities of the Raman technique and existing literature on Raman spectroscopy in GaN and ZnO are reviewed. About 50 GaN and ZnO samples with a wide range of properties are studied. From the analysis of positions of the E2H and A1(LO) phonon modes, biaxial stress and plasmon coupling of the Al(LO) mode are observed and compared to a bulk GaN sample. The stress-related shift rate for the AI(LO) mode in hexagonal GaN is established to be 2.7 ± 0.4 cm-1/GPa through series of GaN with low free carrier concentration. Bulk ZnO and ZnO layers grown on sapphire have been studied, and no biaxial stress is found in ZnO layers. Doping and impurity modes resulted in disorder-activated scattering in ZnO. The choice of the laser for study of GaN and ZnO layers on sapphire substrate is discussed.
480

CAFM Studies of Epitaxial Lateral Overgrowth GaN Films

Kasliwal, Vishal P. 01 January 2007 (has links)
This thesis uses the techniques of atomic force microscopy (AFM) and conductiveAFM (CAFM) to study defect sites on GaN films. In particular, these defect sites demonstrate current leakage under reverse-bias conditions that are detrimental to device fabrication. Two growth techniques that were used to improve this leakage behavior for samples in this study included: epitaxial lateral overgrowth (ELO) and nano-ELO using a Si3N4 film. Both techniques decrease defects such as threading dislocations by controlling the nucleation and growth behavior of the GaN films. The EL0 technique uses a patterned dielectric film to laterally grow micron-wide regions (referred to as 'wings') that minimize dislocation defects. Our CAFM studies indicate that ELO films have no detectable leakage sites in these wing regions; however, between these regions the films have typical leakage site densities seen for standard films on the order of 107cm-3. The nano-ELO technique utilizes a porous Si3N4 film to reduce defects over the entire film, and CAFM data indicate nearly a factor of ten reduction in leakage site densities. The nano-ELO technique is therefore optimal for an overall improvement in film quality, whereas the ELO technique is suitable for device fabrication in patterned regions with optimized film quality.

Page generated in 0.039 seconds