Spelling suggestions: "subject:"nonabelian"" "subject:"nonmendelian""
121 |
Surfaces abéliennes à multiplication quaternionique et points rationnels de quotients d'Atkin-Lehner de courbes de ShimuraGillibert, Florence 02 December 2011 (has links)
Dans cette thèse nous étudions deux problèmes. Le premier est la non-existence de pointsrationnels non spéciaux sur des quotients d’Atkin-Lehner de courbes de Shimura. Le se-cond est l’absence de surfaces abéliennes rationnelles à multiplication potentiellementquaternioniques munies d’une structure de niveau. Ces deux problèmes sont liés car unesurface abélienne rationnelle simple à multiplication potentiellement quaternionique cor-respond à un point rationnel non spécial sur un certain quotient d’Atkin-Lehner de courbede Shimura.Dans une première partie nous expliquons comment vérifier un critère de Parent etYafaev en grande généralité pour prouver que dans les conditions du cas non ramifié deOgg, et si p est assez grand par rapport à q, alors le quotient X^pq/w_q n’a pas de pointrationnel non spécial.Dans une seconde partie nous déterminons une borne effective pour les structures deniveaux possibles pour une surface abélienne rationnelle acquérant sur un corps quadra-tique imaginaire fixé multiplication par un ordre fixé dans une algèbre de quaternions. / In this thesis we study two problems. The first one is the non-existence of rational non-special points on Atkin-Lehner quotients of Shimura curves. The second one is the absence of rational abelian surfaces with potential quaternionique multiplication endowed with a level structure. These two problems are linked because a simple rational abelian surface with potential quaternionique multiplication is associated to a rational non-special point on an Atkin-Lehner quotients of Shimura curve. In a first part of our work we explain how to verify in wide generality a criterium of Parent and Yafaev in order to prove that in the conditions of Ogg's non ramified case, and if $p$ is big enough compared two $q$, then the quotient $X^{pq}/w_q$ has no non-special rational point. In a second part we determine an effective born for possible level structures on rational abelian surfaces having, over a fixed quadratic field, multiplication by a fixed order in a quaternion algebra
|
122 |
Studies of equivalent fuzzy subgroups of finite abelian p-Groups of rank two and their subgroup latticesNgcibi, Sakhile Leonard January 2006 (has links)
We determine the number and nature of distinct equivalence classes of fuzzy subgroups of finite Abelian p-group G of rank two under a natural equivalence relation on fuzzy subgroups. Our discussions embrace the necessary theory from groups with special emphasis on finite p-groups as a step towards the classification of crisp subgroups as well as maximal chains of subgroups. Unique naming of subgroup generators as discussed in this work facilitates counting of subgroups and chains of subgroups from subgroup lattices of the groups. We cover aspects of fuzzy theory including fuzzy (homo-) isomorphism together with operations on fuzzy subgroups. The equivalence characterization as discussed here is finer than isomorphism. We introduce the theory of keychains with a view towards the enumeration of maximal chains as well as fuzzy subgroups under the equivalence relation mentioned above. We discuss a strategy to develop subgroup lattices of the groups used in the discussion, and give examples for specific cases of prime p and positive integers n,m. We derive formulas for both the number of maximal chains as well as the number of distinct equivalence classes of fuzzy subgroups. The results are in the form of polynomials in p (known in the literature as Hall polynomials) with combinatorial coefficients. Finally we give a brief investigation of the results from a graph-theoretic point of view. We view the subgroup lattices of these groups as simple, connected, symmetric graphs.
|
123 |
A study of fuzzy sets and systems with applications to group theory and decision makingGideon, Frednard January 2006 (has links)
In this study we apply the knowledge of fuzzy sets to group structures and also to decision-making implications. We study fuzzy subgroups of finite abelian groups. We set G = Z[subscript p[superscript n]] + Z[subscript q[superscript m]]. The classification of fuzzy subgroups of G using equivalence classes is introduced. First, we present equivalence relations on fuzzy subsets of X, and then extend it to the study of equivalence relations of fuzzy subgroups of a group G. This is then followed by the notion of flags and keychains projected as tools for enumerating fuzzy subgroups of G. In addition to this, we use linear ordering of the lattice of subgroups to characterize the maximal chains of G. Then we narrow the gap between group theory and decision-making using relations. Finally, a theory of the decision-making process in a fuzzy environment leads to a fuzzy version of capital budgeting. We define the goal, constraints and decision and show how they conflict with each other using membership function implications. We establish sets of intervals for projecting decision boundaries in general. We use the knowledge of triangular fuzzy numbers which are restricted field of fuzzy logic to evaluate investment projections.
|
124 |
Three viewpoints on semi-abelian homologyGoedecke, Julia January 2009 (has links)
The main theme of the thesis is to present and compare three different viewpoints on semi-abelian homology, resulting in three ways of defining and calculating homology objects. Any two of these three homology theories coincide whenever they are both defined, but having these different approaches available makes it possible to choose the most appropriate one in any given situation, and their respective strengths complement each other to give powerful homological tools. The oldest viewpoint, which is borrowed from the abelian context where it was introduced by Barr and Beck, is comonadic homology, generating projective simplicial resolutions in a functorial way. This concept only works in monadic semi-abelian categories, such as semi-abelian varieties, including the categories of groups and Lie algebras. Comonadic homology can be viewed not only as a functor in the first entry, giving homology of objects for a particular choice of coefficients, but also as a functor in the second variable, varying the coefficients themselves. As such it has certain universality properties which single it out amongst theories of a similar kind. This is well-known in the setting of abelian categories, but here we extend this result to our semi-abelian context. Fixing the choice of coefficients again, the question naturally arises of how the homology theory depends on the chosen comonad. Again it is well-known in the abelian case that the theory only depends on the projective class which the comonad generates. We extend this to the semi-abelian setting by proving a comparison theorem for simplicial resolutions. This leads to the result that any two projective simplicial resolutions, the definition of which requires slightly more care in the semi-abelian setting, give rise to the same homology. Thus again the homology theory only depends on the projective class. The second viewpoint uses Hopf formulae to define homology, and works in a non-monadic setting; it only requires a semi-abelian category with enough projectives. Even this slightly weaker setting leads to strong results such as a long exact homology sequence, the Everaert sequence, which is a generalised and extended version of the Stallings-Stammbach sequence known for groups. Hopf formulae use projective presentations of objects, and this is closer to the abelian philosophy of using any projective resolution, rather than a special functorial one generated by a comonad. To define higher Hopf formulae for the higher homology objects the use of categorical Galois theory is crucial. This theory allows a choice of Birkhoff subcategory to generate a class of central extensions, which play a big role not only in the definition via Hopf formulae but also in our third viewpoint. This final and new viewpoint we consider is homology via satellites or pointwise Kan extensions. This makes the universal properties of the homology objects apparent, giving a useful new tool in dealing with statements about homology. The driving motivation behind this point of view is the Everaert sequence mentioned above. Janelidze's theory of generalised satellites enables us to use the universal properties of the Everaert sequence to interpret homology as a pointwise Kan extension, or limit. In the first instance, this allows us to calculate homology step by step, and it removes the need for projective objects from the definition. Furthermore, we show that homology is the limit of the diagram consisting of the kernels of all central extensions of a given object, which forges a strong connection between homology and cohomology. When enough projectives are available, we can interpret homology as calculating fixed points of endomorphisms of a given projective presentation.
|
125 |
Tropical Theta Functions and Riemann-Roch Inequality for Tropical Abelian Surfaces / トロピカルテータ関数とトロピカルAbel曲面に対するRiemann-Roch不等式Sumi, Ken 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第22971号 / 理博第4648号 / 新制||理||1668(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 入谷 寛, 教授 吉川 謙一, 教授 加藤 毅 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
126 |
On the Galois module structure of the units and ray classes of a real abelian number fieldAll, Timothy James 23 July 2013 (has links)
No description available.
|
127 |
Confinement Mechanisms in Quantum ChromodynamicsTsegaye, Takele Dessie 02 May 2003 (has links)
No description available.
|
128 |
Group laws and complex multiplication in local fields.Urda, Michael January 1972 (has links)
No description available.
|
129 |
Quintic Abelian FieldsTaylor, Frank Seaton 22 December 1997 (has links)
Quintic abelian fields are characterized in terms of their conductor and a certain Galois group. From these, a generating polynomial and its roots and an integral basis are computed. A method for finding the fundamental units, regulators and class numbers is then developed. Tables listing the coefficients of a generating polynomial, the regulator, the class number, and a coefficients of a fundamental unit are given for 1527 quintic abelian fields. Of the seven cases where the class group structure is not immediate from the class number, six have their structure computed. / Ph. D.
|
130 |
Equilibrium states of ferromagnetic abelian lattice systemsMiekisz, Jacek January 1984 (has links)
Ferromagnetic abelian lattice systems are the topic of this paper. Namely, at each site of ZV-invariant lattice is placed a finite abelian group. The interaction is given by any real, negative definite, and translation invariant function on the space of configurations.Algebraic structure of the system is investigated. This allows a complete · description of the family of equilibrium states for given. interaction at low temperatures. At the same time it is proven that the low temperature expansion for Gibbs free energy is analytic. It is also shown that it is not necessary to consider gauge models in the case of Zm on ZV lattice. / Ph. D.
|
Page generated in 0.075 seconds