• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • Tagged with
  • 8
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Stickelberger Ideal and the Cyclotomic Class Number

Bond, Jacob 06 August 2013 (has links)
No description available.
2

On the Galois module structure of the units and ray classes of a real abelian number field

All, Timothy James 23 July 2013 (has links)
No description available.
3

Classes de Steinitz, codes cycliques de Hamming et classes galoisiennes réalisables d'extensions non abéliennes de degré p³ / Steinitz classes, cyclic Hamming codes and realizable Galois module classes of nonabelian extensions of degree p³

Khalil, Maya 21 June 2016 (has links)
Le résumé n'est pas disponible. / Le résumé n'est pas disponible.
4

Etudes sur les équations de Ramanujan-Nagell et de Nagell-Ljunggren ou semblables

Dupuy, Benjamin 03 July 2009 (has links)
Dans cette thèse, on étudie deux types d’équations diophantiennes. Une première partie de notre étude porte sur la résolution des équations dites de Ramanujan-Nagell Cx2+ b2mD = yn. Une deuxième partie porte sur les équations dites de Ngell-Ljunggren xp+ypx+y = pezq incluant le cas diagonal p = q. Les nouveaux réesultats obtenus seront appliqués aux équations de la forme xp + yp = Bzq. L’équation de Catalan-Fermat (cas B = 1) fera l’objet d’un traitement à part. / In this thesis, we study two types of diophantine equations. A ?rst part of our study is about the resolution of the Ramanujan-Nagell equations Cx2 + b2mD = yn. A second part of our study is about the Nagell-Ljungren equations xp+yp x+y = pezq including the diagonal case p = q. Our new results will be applied to the diophantine equations of the form xp + yp = Bzq. The Fermat-Catalan equation (case B = 1) will be the subject of a special study.
5

Etudes sur les équations de Ramanujan-Nagell et de Nagell-Ljunggren ou semblables

Dupuy, Benjamin 03 July 2009 (has links) (PDF)
Dans cette thèse, on étudie deux types d'équations diophantiennes. Une première partie de notre étude porte sur la résolution des équations dites de Ramanujan-Nagell $Cx^2+b^{2m}D=y^n$. Une deuxième partie porte sur les équations dites de Ngell-Ljunggren\\ $\frac{x^p+y^p}{x+y}=p^ez^q$ incluant le cas diagonal $p=q$. Les nouveaux résultats obtenus seront appliqués aux équations de la forme $x^p+y^p=Bz^q$. L'équation de Catalan-Fermat (cas $B=1$) fera l'objet d'un traitement à part.
6

Contribution à l'étude $p$-adique des sommes de caractères

Régis, Blache 30 April 2009 (has links) (PDF)
Dans ce mémoire, on se propose de décrire certains résultats de l'auteur sur les propriétés $p$-adiques des fonctions $L$ associées à des caractères sur les corps finis, à la suite des travaux de Dwork, Robba, Adolphson et Sperber, Wan, entre autres. On parlera aussi de sommes de caractères (et de leurs fonctions $L$) définies sur certains anneaux locaux.
7

The Stickelberger ideal in the spirit of Kummer with application to the first case of Fermat's last theorem /

Jha, Vijay. January 1993 (has links)
Thesis (Ph. D.)--Punjab University, 1992. / Includes bibliographical references (p. 174-181).
8

Class invariants for tame Galois algebras / Invariants de classe pour algèbres galoisiennes modérément ramifiées

Siviero, Andrea 26 June 2013 (has links)
Soient K un corps de nombres d'anneau des entiers O_K et G un groupe fini. Grâce à un résultat de E. Noether, l'anneau des entiers d'une extension galoisienne de K modérément ramifiée, de groupe de Galois G, est un O_K[G]-module localement libre de rang 1. Donc, à chaque extension galoisienne L/K modérément ramifiée, de groupe de Galois G, on peut associer une classe [O_L] dans le groupe des classes des modules localement libres Cl(O_K[G]). L'ensemble des classes de Cl(O_K[G]) qui peuvent être obtenues de cette façon est appelé ensemble des classes réalisables et on le note R(O_K[G]).Dans cette thèse, on étudie différents problèmes liés à R(O_K[G]). Dans la première partie, nous nous focalisons sur la question suivante: R(O_K[G]) est-il un sous-groupe de Cl(O_K[G])? Si G est abélien, L. McCulloh a prouvé que R(O_K[G]) coïncide avec le soi-disant sous-groupe de Stickelberger St(O_K[G]) dans Cl(O_K[G]). Dans le Chapitre 2, nous donnons une présentation détaillée d'un travail non publié de L. McCulloh qui étend la définition de St(O_K[G]) au cas non-abélien et montre que R(O_K[G]) est inclus dans St(O_K[G]) (l'inclusion opposée n'est pas encore connue dans le cas non-abélien). Puis, en utilisant sa définition et le Théorème de Stickelberger classique, nous montrons dans le Chapitre 3 que St(O_K[G]) est trivial si K=Q et G est soit un groupe cyclique d'ordre p soit un groupe diédral d'ordre 2p, avec p premier impair. Ceci, lié aux résultats de McCulloh, nous donne une nouvelle preuve de la trivialité de R(O_K[G]) dans les cas considérés.Les résultats originaux les plus importants sont contenus dans la deuxième partie de cette thèse. Dans le Chapitre 4 nous montrons la fonctorialité de St(O_K[G]) par rapport au changement du corps de base. Ceci implique que si N/L est une extension galoisienne modérément ramifiée, de groupe de Galois G, et St(O_K[G]) est connu être trivial pour un certain sous-corps K de L, alors O_N est un O_K[G]-module stablement libre.Dans le dernier chapitre, nous montrons un résultat concernant la distribution des classes réalisables parmi les extensions galoisiennes de K modérément ramifiées, de groupe de Galois G, dans lesquelles un idéal premier de K donné est totalement décomposé. / Let K be a number field with ring of integers O_K and let G be a finite group.By a result of E. Noether, the ring of integers of a tame Galois extension of K with Galois group G is a locally free O_K[G]-module of rank 1.Thus, to any tame Galois extension L/K with Galois group G we can associate a class [O_L] in the locally free class group Cl(O_K[G]). The set of all classes in Cl(O_K[G]) which can be obtained in this way is called the set of realizable classes and is denoted by R(O_K[G]).In this dissertation we study different problems related to R(O_K[G]).The first part focuses on the following question: is R(O_K[G]) a subgroup of Cl(O_K[G])? When the group G is abelian, L. McCulloh proved that R(O_K[G]) coincides with the so-called Stickelberger subgroup St(O_K[G]) of Cl(O_K[G]). In Chapter 2, we give a detailed presentation of unpublished work by L. McCulloh that extends the definition of St(O_K[G]) to the non-abelian case and shows that R(O_K[G]) is contained in St(O_K[G]) (the opposite inclusion is still not known in the non-abelian case).Then, just using its definition and Stickelberger's classical theorem, we prove in Chapter 3 that St(O_K[G]) is trivial if K=Q and G is either cyclic of order p or dihedral of order 2p, where p is an odd prime number. This, together with McCulloh's results, allows us to have a new proof of the triviality of R(O_K[G]) in the cases just considered.The main original results are contained in the second part of this thesis. In Chapter 4, we prove that St(O_K[G]) has good functorial behavior under restriction of the base field. This has the interesting consequence that, if N/L is a tame Galois extension with Galois group G, and St(O_K[G]) is known to be trivial for some subfield K of L, then O_N is stably free as an O_K[G]-module.In the last chapter, we prove an equidistribution result for Galois module classes amongst tame Galois extensions of K with Galois group G in which a given prime p of K is totally split.

Page generated in 0.0368 seconds