• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel Pharmacometric Methods for Design and Analysis of Disease Progression Studies

Ueckert, Sebastian January 2014 (has links)
With societies aging all around the world, the global burden of degenerative diseases is expected to increase exponentially. From the perspective drug development, degenerative diseases represent an especially challenging class. Clinical trials, in this context often termed disease progression studies, are long, costly, require many individuals, and have low success rates. Therefore, it is crucial to use informative study designs and to analyze efficiently the obtained trial data. The development of novel approaches intended towards facilitating both the design and the analysis of disease progression studies was the aim of this thesis. This aim was pursued in three stages (i) the characterization and extension of pharmacometric software, (ii) the development of new methodology around statistical power, and (iii) the demonstration of application benefits. The optimal design software PopED was extended to simplify the application of optimal design methodology when planning a disease progression study. The performance of non-linear mixed effect estimation algorithms for trial data analysis was evaluated in terms of bias, precision, robustness with respect to initial estimates, and runtime. A novel statistic allowing for explicit optimization of study design for statistical power was derived and found to perform superior to existing methods. Monte-Carlo power studies were accelerated through application of parametric power estimation, delivering full power versus sample size curves from a few hundred Monte-Carlo samples. Optimal design and an explicit optimization for statistical power were applied to the planning of a study in Alzheimer's disease, resulting in a 30% smaller study size when targeting 80% power. The analysis of ADAS-cog score data was improved through application of item response theory, yielding a more exact description of the assessment score, an increased statistical power and an enhanced insight in the assessment properties. In conclusion, this thesis presents novel pharmacometric methods that can help addressing the challenges of designing and planning disease progression studies.
2

Study Design and Dose Regimen Evaluation of Antibiotics based on Pharmacokinetic and Pharmacodynamic Modelling

Kristoffersson, Anders January 2015 (has links)
Current excessive use and abuse of antibiotics has resulted in increasing bacterial resistance to common treatment options which is threatening to deprive us of a pillar of modern medicine. In this work methods to optimize the use of existing antibiotics and to help development of new antibiotics were developed and applied. Semi-mechanistic pharmacokinetic-pharmacodynamic (PKPD) models were developed to describe the time course of the dynamic effect and interaction of combinations of antibiotics. The models were applied to illustrate that colistin combined with a high dose of meropenem may overcome meropenem-resistant P. aeruginosa infections. The results from an in vivo dose finding study of meropenem was successfully predicted by the meropenem PKPD model in combination with a murine PK model, which supports model based dosage selection. However, the traditional PK/PD index based dose selection was predicted to have poor extrapolation properties from pre-clinical to clinical settings, and across patient populations. The precision of the model parameters, and hence the model predictions, is dependent on the experimental design. A limited study design is dictated by cost and, for in vivo studies, ethical reasons. In this work optimal design (OD) was demonstrated to be able to reduce the experimental effort in time-kill curve experiments and was utilized to suggest the experimental design for identification and estimation of an interaction between antibiotics. OD methods to handle inter occasion variability (IOV) in optimization of individual PK parameter estimates were proposed. The strategy was applied in the design of a sparse sampling schedule that aim to estimate individual exposures of colistin in a multi-centre clinical study. Plasma concentration samples from the first 100 patients have been analysed and indicate that the performance of the design is close to the predicted. The methods described in this thesis holds promise to facilitate the development of new antibiotics and to improve the use of existing antibiotics.
3

Bayesian inference on quantile regression-based mixed-effects joint models for longitudinal-survival data from AIDS studies

Zhang, Hanze 17 November 2017 (has links)
In HIV/AIDS studies, viral load (the number of copies of HIV-1 RNA) and CD4 cell counts are important biomarkers of the severity of viral infection, disease progression, and treatment evaluation. Recently, joint models, which have the capability on the bias reduction and estimates' efficiency improvement, have been developed to assess the longitudinal process, survival process, and the relationship between them simultaneously. However, the majority of the joint models are based on mean regression, which concentrates only on the mean effect of outcome variable conditional on certain covariates. In fact, in HIV/AIDS research, the mean effect may not always be of interest. Additionally, if obvious outliers or heavy tails exist, mean regression model may lead to non-robust results. Moreover, due to some data features, like left-censoring caused by the limit of detection (LOD), covariates with measurement errors and skewness, analysis of such complicated longitudinal and survival data still poses many challenges. Ignoring these data features may result in biased inference. Compared to the mean regression model, quantile regression (QR) model belongs to a robust model family, which can give a full scan of covariate effect at different quantiles of the response, and may be more robust to extreme values. Also, QR is more flexible, since the distribution of the outcome does not need to be strictly specified as certain parametric assumptions. These advantages make QR be receiving increasing attention in diverse areas. To the best of our knowledge, few study focuses on the QR-based joint models and applies to longitudinal-survival data with multiple features. Thus, in this dissertation research, we firstly developed three QR-based joint models via Bayesian inferential approach, including: (i) QR-based nonlinear mixed-effects joint models for longitudinal-survival data with multiple features; (ii) QR-based partially linear mixed-effects joint models for longitudinal data with multiple features; (iii) QR-based partially linear mixed-effects joint models for longitudinal-survival data with multiple features. The proposed joint models are applied to analyze the Multicenter AIDS Cohort Study (MACS) data. Simulation studies are also implemented to assess the performance of the proposed methods under different scenarios. Although this is a biostatistical methodology study, some interesting clinical findings are also discovered.
4

Spatial analysis of factors influencing long-term stress and health of grizzly bears (Ursus arctos) in Alberta, Canada

Bourbonnais, Mathieu Louis 04 September 2013 (has links)
A primary focus of wildlife research is to understand how habitat conditions and human activities impact the health of wild animals. External factors, both natural and anthropogenic that impact the ability of an animal to acquire food and build energy reserves have important implications for reproductive success, avoidance of predators, and the ability to withstand disease, and periods of food scarcity. In the analyses presented here, I quantify the impacts of habitat quality and anthropogenic disturbance on indicators of health for individuals in a threatened grizzly bear population in Alberta, Canada. The first analysis relates spatial patterns of hair cortisol concentrations, a promising indicator of long-term stress in mammals, measured from 304 grizzly bears to a variety of continuous environmental variables representative of habitat quality (e.g., crown closure, landcover, and vegetation productivity), topographic conditions (e.g., elevation and terrain ruggedness), and anthropogenic disturbances (e.g., roads, forest harvest blocks, and oil and gas well-sites). Hair cortisol concentration point data were integrated with continuous variables by creating a stress surface for male and female bears using kernel density estimation validated through bootstrapping. The relationships between hair cortisol concentrations for males and females and environmental variables were quantified using random forests, and landscape scale stress levels for both genders was predicted based on observed relationships. Low female stress levels were found to correspond with regions with high levels of anthropogenic disturbance and activity. High female stress levels were associated primarily with high-elevation parks and protected areas. Conversely, low male stress levels were found to correspond with parks and protected areas and spatially limited moderate to high stress levels were found in regions with greater anthropogenic disturbance. Of particular concern for conservation is the observed relationship between low female stress and sink habitats which have high mortality rates and high energetic costs. Extending the first analysis, the second portion of this research examined the impacts of scale-specific habitat selection and relationships between biology, habitat quality, and anthropogenic disturbance on body condition in 85 grizzly bears represented using a body condition index. Habitat quality and anthropogenic variables were represented at multiple scales using isopleths of a utilization distribution calculated using kernel density estimation for each bear. Several hypotheses regarding the influence of biology, habitat quality, and anthropogenic disturbance on body condition quantified using linear mixed-effects models were evaluated at each habitat selection scale using the small sample Aikake Information Criterion. Biological factors were influential at all scales as males had higher body condition than females, and body condition increased with age for both genders. At the scale of most concentrated habitat selection, the biology and habitat quality hypothesis had the greatest support and had a positive effect on body condition. A component of biology, the influence of long-term stress, which had a negative impact on body condition, was most pronounced within the biology and habitat quality hypothesis at this scale. As the scale of habitat selection was represented more broadly, support for the biology and anthropogenic disturbance hypothesis increased. Anthropogenic variables of particular importance were distance decay to roads, density of secondary linear features, and density of forest harvest areas which had a negative relationship with body condition. Management efforts aimed to promote landscape conditions beneficial to grizzly bear health should focus on promoting habitat quality in core habitat and limiting anthropogenic disturbance within larger grizzly bear home ranges. / Graduate / 0768 / 0463 / 0478 / mathieub@uvic.ca
5

Sélection de modèles statistiques par méthodes de vraisemblance pénalisée pour l'étude de données complexes / Statistical Model Selection by penalized likelihood method for the study of complex data

Ollier, Edouard 12 December 2017 (has links)
Cette thèse est principalement consacrée au développement de méthodes de sélection de modèles par maximum de vraisemblance pénalisée dans le cadre de données complexes. Un premier travail porte sur la sélection des modèles linéaires généralisés dans le cadre de données stratifiées, caractérisées par la mesure d’observations ainsi que de covariables au sein de différents groupes (ou strates). Le but de l’analyse est alors de déterminer quelles covariables influencent de façon globale (quelque soit la strate) les observations mais aussi d’évaluer l’hétérogénéité de cet effet à travers les strates.Nous nous intéressons par la suite à la sélection des modèles non linéaires à effets mixtes utilisés dans l’analyse de données longitudinales comme celles rencontrées en pharmacocinétique de population. Dans un premier travail, nous décrivons un algorithme de type SAEM au sein duquel la pénalité est prise en compte lors de l’étape M en résolvant un problème de régression pénalisé à chaque itération. Dans un second travail, en s’inspirant des algorithmes de type gradient proximaux, nous simplifions l’étape M de l’algorithme SAEM pénalisé précédemment décrit en ne réalisant qu’une itération gradient proximale à chaque itération. Cet algorithme, baptisé Stochastic Approximation Proximal Gradient algorithm (SAPG), correspond à un algorithme gradient proximal dans lequel le gradient de la vraisemblance est approché par une technique d’approximation stochastique.Pour finir, nous présentons deux travaux de modélisation statistique, réalisés au cours de cette thèse. / This thesis is mainly devoted to the development of penalized maximum likelihood methods for the study of complex data.A first work deals with the selection of generalized linear models in the framework of stratified data, characterized by the measurement of observations as well as covariates within different groups (or strata). The purpose of the analysis is then to determine which covariates influence in a global way (whatever the stratum) the observations but also to evaluate the heterogeneity of this effect across the strata.Secondly, we are interested in the selection of nonlinear mixed effects models used in the analysis of longitudinal data. In a first work, we describe a SAEM-type algorithm in which the penalty is taken into account during step M by solving a penalized regression problem at each iteration. In a second work, inspired by proximal gradient algorithms, we simplify the M step of the penalized SAEM algorithm previously described by performing only one proximal gradient iteration at each iteration. This algorithm, called Stochastic Approximation Proximal Gradient Algorithm (SAPG), corresponds to a proximal gradient algorithm in which the gradient of the likelihood is approximated by a stochastic approximation technique.Finally, we present two statistical modeling works realized during this thesis.
6

Birds, bats and arthropods in tropical agroforestry landscapes: Functional diversity, multitrophic interactions and crop yield

Maas, Bea 20 November 2013 (has links)
No description available.

Page generated in 0.1002 seconds