Spelling suggestions: "subject:"nonmonotone"" "subject:"nonmonotony""
71 |
Assessment of a shallow water model using a linear turbulence model for obstruction-induced discontinuous flowsPu, Jaan H., Bakenov, Z., Adair, D. January 2012 (has links)
No / Nazarbayev University Seed Grant, entitled “Environmental assessment of sediment pollution impact on hydropower plants”.
|
72 |
Utilisation de splines monotones afin de condenser des tables de mortalité dans un contexte bayésienPatenaude, Valérie 04 1900 (has links)
Dans ce mémoire, nous cherchons à modéliser des tables à deux entrées monotones
en lignes et/ou en colonnes, pour une éventuelle application sur les tables
de mortalité. Nous adoptons une approche bayésienne non paramétrique et représentons
la forme fonctionnelle des données par splines bidimensionnelles. L’objectif
consiste à condenser une table de mortalité, c’est-à-dire de réduire l’espace
d’entreposage de la table en minimisant la perte d’information. De même, nous
désirons étudier le temps nécessaire pour reconstituer la table.
L’approximation doit conserver les mêmes propriétés que la table de référence,
en particulier la monotonie des données. Nous travaillons avec une base
de fonctions splines monotones afin d’imposer plus facilement la monotonie au
modèle. En effet, la structure flexible des splines et leurs dérivées faciles à manipuler
favorisent l’imposition de contraintes sur le modèle désiré. Après un rappel
sur la modélisation unidimensionnelle de fonctions monotones, nous généralisons
l’approche au cas bidimensionnel. Nous décrivons l’intégration des contraintes de
monotonie dans le modèle a priori sous l’approche hiérarchique bayésienne. Ensuite,
nous indiquons comment obtenir un estimateur a posteriori à l’aide des
méthodes de Monte Carlo par chaînes de Markov. Finalement, nous étudions le
comportement de notre estimateur en modélisant une table de la loi normale ainsi
qu’une table t de distribution de Student. L’estimation de nos données d’intérêt,
soit la table de mortalité, s’ensuit afin d’évaluer l’amélioration de leur accessibilité. / This master’s thesis is about the estimation of bivariate tables which are
monotone within the rows and/or the columns, with a special interest in the
approximation of life tables. This problem is approached through a nonparametric
Bayesian regression model, in particular linear combinations of regression splines.
By condensing a life table, our goal is to reduce its storage space without losing
the entries’ accuracy. We will also study the reconstruction time of the table with
our estimators.
The properties of the reference table, specifically its monotonicity, must be
preserved in the estimation. We are working with a monotone spline basis since
splines are flexible and their derivatives can easily be manipulated. Those properties
enable the imposition of constraints of monotonicity on our model. A
brief review on univariate approximations of monotone functions is then extended
to bivariate estimations. We use hierarchical Bayesian modeling to include
the constraints in the prior distributions. We then explain the Markov chain
Monte Carlo algorithm to obtain a posterior estimator. Finally, we study the
estimator’s behaviour by applying our model on the Standard Normal table and
the Student’s t table. We estimate our data of interest, the life table, to establish
the improvement in data accessibility.
|
73 |
Abelianization and Floer homology of Lagrangians in clean intersectionSchmäschke, Felix 10 April 2017 (has links) (PDF)
This thesis is split up into two parts each revolving around Floer
homology and quantum cohomology of closed monotone symplectic
manifolds. In the first part we consider symplectic manifolds obtained
by symplectic reduction. Our main result is that a quantum version of
an abelianization formula of Martin holds, which relates
the quantum cohomologies of symplectic quotients by a group and by its
maximal torus. Also we show a quantum version of the Leray-Hirsch
theorem for Floer homology of Lagrangian intersections in the
quotient.
The second part is devoted to Floer homology of a pair of monotone
Lagrangian submanifolds in clean intersection. Under these assumptions
the symplectic action functional is degenerated. Nevertheless
Frauenfelder defines a version of Floer
homology, which is in a certain sense an infinite dimensional analogon
of Morse-Bott homology. Via natural filtrations on the chain level we
were able to define two spectral sequences which serve as a tool to
compute Floer homology. We show how these are used to obtain new
intersection results for simply connected Lagrangians in the product
of two complex projective spaces.
The link between both parts is that in the background the same
technical methods are applied; namely the theory of holomorphic strips
with boundary on Lagrangians in clean intersection. Since all our
constructions rely heavily on these methods we also give a detailed
account of this theory although in principle many results are not new
or require only straight forward generalizations.
|
74 |
Utilisation de splines monotones afin de condenser des tables de mortalité dans un contexte bayésienPatenaude, Valérie 04 1900 (has links)
Dans ce mémoire, nous cherchons à modéliser des tables à deux entrées monotones
en lignes et/ou en colonnes, pour une éventuelle application sur les tables
de mortalité. Nous adoptons une approche bayésienne non paramétrique et représentons
la forme fonctionnelle des données par splines bidimensionnelles. L’objectif
consiste à condenser une table de mortalité, c’est-à-dire de réduire l’espace
d’entreposage de la table en minimisant la perte d’information. De même, nous
désirons étudier le temps nécessaire pour reconstituer la table.
L’approximation doit conserver les mêmes propriétés que la table de référence,
en particulier la monotonie des données. Nous travaillons avec une base
de fonctions splines monotones afin d’imposer plus facilement la monotonie au
modèle. En effet, la structure flexible des splines et leurs dérivées faciles à manipuler
favorisent l’imposition de contraintes sur le modèle désiré. Après un rappel
sur la modélisation unidimensionnelle de fonctions monotones, nous généralisons
l’approche au cas bidimensionnel. Nous décrivons l’intégration des contraintes de
monotonie dans le modèle a priori sous l’approche hiérarchique bayésienne. Ensuite,
nous indiquons comment obtenir un estimateur a posteriori à l’aide des
méthodes de Monte Carlo par chaînes de Markov. Finalement, nous étudions le
comportement de notre estimateur en modélisant une table de la loi normale ainsi
qu’une table t de distribution de Student. L’estimation de nos données d’intérêt,
soit la table de mortalité, s’ensuit afin d’évaluer l’amélioration de leur accessibilité. / This master’s thesis is about the estimation of bivariate tables which are
monotone within the rows and/or the columns, with a special interest in the
approximation of life tables. This problem is approached through a nonparametric
Bayesian regression model, in particular linear combinations of regression splines.
By condensing a life table, our goal is to reduce its storage space without losing
the entries’ accuracy. We will also study the reconstruction time of the table with
our estimators.
The properties of the reference table, specifically its monotonicity, must be
preserved in the estimation. We are working with a monotone spline basis since
splines are flexible and their derivatives can easily be manipulated. Those properties
enable the imposition of constraints of monotonicity on our model. A
brief review on univariate approximations of monotone functions is then extended
to bivariate estimations. We use hierarchical Bayesian modeling to include
the constraints in the prior distributions. We then explain the Markov chain
Monte Carlo algorithm to obtain a posterior estimator. Finally, we study the
estimator’s behaviour by applying our model on the Standard Normal table and
the Student’s t table. We estimate our data of interest, the life table, to establish
the improvement in data accessibility.
|
75 |
Abelianization and Floer homology of Lagrangians in clean intersectionSchmäschke, Felix 14 December 2016 (has links)
This thesis is split up into two parts each revolving around Floer
homology and quantum cohomology of closed monotone symplectic
manifolds. In the first part we consider symplectic manifolds obtained
by symplectic reduction. Our main result is that a quantum version of
an abelianization formula of Martin holds, which relates
the quantum cohomologies of symplectic quotients by a group and by its
maximal torus. Also we show a quantum version of the Leray-Hirsch
theorem for Floer homology of Lagrangian intersections in the
quotient.
The second part is devoted to Floer homology of a pair of monotone
Lagrangian submanifolds in clean intersection. Under these assumptions
the symplectic action functional is degenerated. Nevertheless
Frauenfelder defines a version of Floer
homology, which is in a certain sense an infinite dimensional analogon
of Morse-Bott homology. Via natural filtrations on the chain level we
were able to define two spectral sequences which serve as a tool to
compute Floer homology. We show how these are used to obtain new
intersection results for simply connected Lagrangians in the product
of two complex projective spaces.
The link between both parts is that in the background the same
technical methods are applied; namely the theory of holomorphic strips
with boundary on Lagrangians in clean intersection. Since all our
constructions rely heavily on these methods we also give a detailed
account of this theory although in principle many results are not new
or require only straight forward generalizations.:1. Introduction
2. Overview of the main results
2.1. Abelianization .
2.2. Quantum Leray-Hirsch theorem
2.3. Floer homology of Lagrangians in clean intersection
3. Background
3.1. Symplectic geometry .
3.2. Hamiltonian action functional
3.3. Morse homology .
3.4. Floer homology
4. Asymptotic analysis
4.1. Main statement .
4.2. Mean-value inequality .
4.3. Isoperimetric inequality
4.4. Linear theory
4.5. Proofs
5. Compactness
5.1. Cauchy-Riemann-Floer equation .
5.2. Local convergence .
5.3. Convergence on the ends
5.4. Minimal energy .
5.5. Action, energy and index estimates
6. Fredholm Theory
6.1. Banach manifold .
6.2. Linear theory
7. Transversality
7.1. Setup
7.2. R-dependent structures
7.3. R-invariant structures .
7.4. Regular points .
7.5. Floer’s ε-norm .
8. Gluing
8.1. Setup and main statement
8.2. Pregluing .
8.3. A uniform bounded right inverse
8.4. Quadratic estimate
8.5. Continuity of the gluing map
8.6. Surjectivity of the gluing map
8.7. Degree of the gluing map
8.8. Morse gluing .
9. Orientations
9.1. Preliminaries and notation
9.2. Spin structures and relative spin structures
9.3. Orientation of caps
9.4. Linear theory .
10.Pearl homology
10.1. Overview .
10.2. Pearl trajectories .
10.3. Invariance .
10.4. Spectral sequences
11.Proofs of the main results
11.1. Abelianization Theorem
11.2. Quantum Leray-Hirsch Theorem .
12.Applications
12.1. Quantum cohomology of the complex Grassmannian
12.2. Lagrangian spheres in symplectic quotients
A. Estimates
A.1. Derivative of the exponential map
A.2. Parallel Transport
A.3. Estimates for strips
B. Operators on Hilbert spaces
B.1. Spectral gap
B.2. Flow operator
C. Viterbo index
D. Quotients of principal bundles by maximal tori
D.1. Compact Lie groups
D.2. The cohomology of the quotient of principle bundles by maximal tori
|
76 |
Attrition in Studies of Cognitive Aging / Bortfall i studier av kognitivt åldrandeJosefsson, Maria January 2013 (has links)
Longitudinal studies of cognition are preferred to cross-sectional stud- ies, since they offer a direct assessment of age-related cognitive change (within-person change). Statistical methods for analyzing age-related change are widely available. There are, however, a number of challenges accompanying such analyzes, including cohort differences, ceiling- and floor effects, and attrition. These difficulties challenge the analyst and puts stringent requirements on the statistical method being used. The objective of Paper I is to develop a classifying method to study discrepancies in age-related cognitive change. The method needs to take into account the complex issues accompanying studies of cognitive aging, and specifically work out issues related to attrition. In a second step, we aim to identify predictors explaining stability or decline in cognitive performance in relation to demographic, life-style, health-related, and genetic factors. In the second paper, which is a continuation of Paper I, we investigate brain characteristics, structural and functional, that differ between suc- cessful aging elderly and elderly with an average cognitive performance over 15-20 years. In Paper III we develop a Bayesian model to estimate the causal effect of living arrangement (living alone versus living with someone) on cog- nitive decline. The model must balance confounding variables between the two living arrangement groups as well as account for non-ignorable attrition. This is achieved by combining propensity score matching with a pattern mixture model for longitudinal data. In paper IV, the objective is to adapt and implement available impu- tation methods to longitudinal fMRI data, where some subjects are lost to follow-up. We apply these missing data methods to a real dataset, and evaluate these methods in a simulation study.
|
77 |
Nonparametric Inference for BioassayLin, Lizhen January 2012 (has links)
This thesis proposes some new model independent or nonparametric methods for estimating the dose-response curve and the effective dosage curve in the context of bioassay. The research problem is also of importance in environmental risk assessment and other areas of health sciences. It is shown in the thesis that our new nonparametric methods while bearing optimal asymptotic properties also exhibit strong finite sample performance. Although our specific emphasis is on bioassay and environmental risk assessment, the methodology developed in this dissertation applies broadly to general order restricted inference.
|
78 |
Linear programming algorithms for detecting separated data in binary logistic regression modelsKonis, Kjell Peter January 2007 (has links)
This thesis is a study of the detection of separation among the sample points in binary logistic regression models. We propose a new algorithm for detecting separation and demonstrate empirically that it can be computed fast enough to be used routinely as part of the fitting process for logistic regression models. The parameter estimates of a binary logistic regression model fit using the method of maximum likelihood sometimes do not converge to finite values. This phenomenon (also known as monotone likelihood or infinite parameters) occurs because of a condition among the sample points known as separation. There are two classes of separation. When complete separation is present among the sample points, iterative procedures for maximizing the likelihood tend to break down, when it would be clear that there is a problem with the model. However, when quasicomplete separation is present among the sample points, the iterative procedures for maximizing the likelihood tend to satisfy their convergence criterion before revealing any indication of separation. The new algorithm is based on a linear program with a nonnegative objective function that has a positive optimal value when separation is present among the sample points. We compare several approaches for solving this linear program and find that a method based on determining the feasibility of the dual to this linear program provides a numerically reliable test for separation among the sample points. A simulation study shows that this test can be computed in a similar amount of time as fitting the binary logistic regression model using the method of iteratively reweighted least squares: hence the test is fast enough to be used routinely as part of the fitting procedure. An implementation of our algorithm (as well as the other methods described in this thesis) is available in the R package safeBinaryRegression.
|
79 |
G-Convergence and Homogenization of some Sequences of Monotone Differential OperatorsFlodén, Liselott January 2009 (has links)
This thesis mainly deals with questions concerning the convergence of some sequences of elliptic and parabolic linear and non-linear operators by means of G-convergence and homogenization. In particular, we study operators with oscillations in several spatial and temporal scales. Our main tools are multiscale techniques, developed from the method of two-scale convergence and adapted to the problems studied. For certain classes of parabolic equations we distinguish different cases of homogenization for different relations between the frequencies of oscillations in space and time by means of different sets of local problems. The features and fundamental character of two-scale convergence are discussed and some of its key properties are investigated. Moreover, results are presented concerning cases when the G-limit can be identified for some linear elliptic and parabolic problems where no periodicity assumptions are made.
|
80 |
Le théorème de lebesgue sur la dérivabilité des fonctions à variation bornéeMombo Mingandza, Patrick Landry 01 1900 (has links)
Dans ce mémoire, nous traiterons du théorème de Lebesgue, un des plus frappants
et des plus importants de l'analyse mathématique ; à savoir qu'une fonction
à variation bornée est dérivable presque partout. Le but de ce travail est de fournir,
à part la démonstration souvent proposée dans les cours de la théorie de la
mesure, d'autres démonstrations élaborées avec des outils mathématiques plus
simples. Ma contribution a consisté essentiellement à détailler et à compléter ces
démonstrations, puis à inclure la plupart des figures pour une meilleure lisibilité.
Nous allons maintenant, pour ce théorème qui se présente sous d'autres variantes,
en proposer l'historique et trois démonstrations différentes. / In this dissertation, we will be handling a theorem of Lebesgue, one of the
most stricking and ultimate of mathematical analysis ; namely a function with
bounded variation has a derivative almost everywhere. The aim of our research is
to provide, apart from the proof usually offered in measure theory courses, other
demontrations achieved with more simple mathematical tools. My contribution
was primarily to simplify and to complete these demonstrations, to include the
most of the drawings in order to visualize what is being said. For this theorem,
which has other presentations, we will give now the history and three different
demonstrations.
|
Page generated in 0.1542 seconds