• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 24
  • 7
  • 3
  • 1
  • 1
  • Tagged with
  • 85
  • 64
  • 34
  • 24
  • 22
  • 20
  • 18
  • 17
  • 17
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Arthropod 7SK RNA

Gruber, Andreas R., Kilgus, Carsten, Mosig, Axel, Hofacker, Ivo L., Hennig, Wolfgang, Stadler, Peter F. 25 January 2019 (has links)
The 7SK small nuclear RNA (snRNA) is a key player in the regulation of polymerase (pol) II transcription. The 7SK RNA was long believed to be specific to vertebrates where it is highly conserved. Homologs in basal deuterostomes and a few lophotrochozoan species were only recently reported. On longer timescales, 7SK evolves rapidly with only few conserved sequence and structure motifs. Previous attempts to identify the Drosophila homolog thus have remained unsuccessful despite considerable efforts. Here we report on the discovery of arthropod 7SK RNAs using a novel search strategy based on pol III promoters, as well as the subsequent verification of its expression. Our results demonstrate that a 7SK snRNA featuring 2 highly structured conserved domains was present already in the bilaterian ancestor.
32

Invertebrate 7SK snRNAs

Gruber, Andreas R., Koper-Emde, Dorota, Marz, Manja, Tafer, Hakim, Bernhart, Stephan, Obernosterer, Gregor, Mosig, Axel, Hofacker, Ivo L., Stadler, Peter F., Benecke, Bernd-Joachim 25 January 2019 (has links)
7SK RNA is a highly abundant noncoding RNA in mammalian cells whose function in transcriptional regulation has only recently been elucidated. Despite its highly conserved sequence throughout vertebrates, all attempts to discover 7SK RNA homologues in invertebrate species have failed so far. Here we report on a combined experimental and computational survey that succeeded in discovering 7SK RNAs in most of the major deuterostome clades and in two protostome phyla: mollusks and annelids. Despite major efforts, no candidates were found in any of the many available ecdysozoan genomes, however. The additional sequence data confirm the evolutionary conservation and hence functional importance of the previously described 3´ and 5´ stemloop motifs, and provide evidence for a third, structurally well-conserved domain.
33

Long Noncoding RNA Runxor Promotes Myeloid-Derived Suppressor Cell Expansion and Functions via Enhancing Immunosuppressive Molecule Expressions During Latent HIV Infection

Zhang, Jinyu, Thakuri, Bal K. C., Zhao, Juan, Nguyen, Lam N., Nguyen, Lam N., Khanal, Sushant, Cao, Dechao, Dang, Xindi, Schank, Madison, Lu, Zeyuan, Wu, Xiao Y., Morrison, Zheng D., El Gazzar, Mohamed, Jiang, Yong, Ning, Shunbin, Wang, Ling, Moorman, Jonathan P., Yao, Zhi Q. 01 May 2021 (has links)
RUNX1 overlapping RNA (RUNXOR) is a long noncoding RNA and a key regulator of myeloid-derived suppressor cells (MDSCs) via targeting runt-related transcription factor 1 (RUNX1). We and others have previously reported MDSC expansion and inhibition of host immune responses during viral infections; however, the mechanisms regulating MDSC differentiation and suppressive functions, especially the role of RUNXOR-RUNX1 in the regulation of MDSCs in people living with HIV (PLHIV), remain unknown. In this study, we demonstrate that RUNXOR and RUNX1 expressions are upregulated in MDSCs that expand and accumulate in human PBMCs derived from PLHIV. We found that the upregulation of RUNXOR and RUNX1 is associated with the expressions of several key immunosuppressive molecules, including arginase 1, inducible NO synthase, STAT3, IL-6, and reactive oxygen species. RUNXOR and RUNX1 could positively regulate each other's expression and control the expressions of these suppressive mediators. Specifically, silencing RUNXOR or RUNX1 expression in MDSCs from PLHIV attenuated MDSC expansion and immunosuppressive mediator expressions, whereas overexpressing RUNXOR in CD33+ myeloid precursors from healthy subjects promoted their differentiation into MDSCs and enhanced the expression of these mediators. Moreover, loss of RUNXOR-RUNX1 function in MDSCs improved IFN-γ production from cocultured autologous CD4 T cells derived from PLHIV. These results suggest that the RUNXOR-RUNX1 axis promotes the differentiation and suppressive functions of MDSCs via regulating multiple immunosuppressive signaling molecules and may represent a potential target for immunotherapy in conjunction with antiviral therapy in PLHIV.
34

Comparative Analysis of the Transcriptomes of M1 and M2 Macrophages

Atolagbe, Oluwatomisin Toluwanimi January 2017 (has links)
No description available.
35

New insights into cancer genes: haploinsufficiency and noncoding RNA in human cancer

Yoon, Heejei 14 September 2006 (has links)
No description available.
36

Isoform-Specific Expression During Embryo Development in Arabidopsis and Soybean

Aghamirzaie, Delasa 19 June 2016 (has links)
Almost every precursor mRNA (pre-mRNA) in a eukaryotic organism undergoes splicing, in some cases resulting in the formation of more than one splice variant, a process called alternative splicing. RNA-Seq provides a major opportunity to capture the state of the transcriptome, which includes the detection of alternative spicing events. Alternative splicing is a highly regulated process occurring in a complex machinery called the spliceosome. In this dissertation, I focus on identification of different splice variants and splicing factors that are produced during Arabidopsis and soybean embryo development. I developed several data analysis pipelines for the detection and the functional characterization of active splice variants and splicing factors that arise during embryo development. The main goal of this dissertation was to identify transcriptional changes associated with specific stages of embryo development and infer possible associations between known regulatory genes and their targets. We identified several instances of exon skipping and intron retention as products of alternative splicing. The coding potential of the splice variants were evaluated using CodeWise. I developed CodeWise, a weighted support vector machine classifier to assess the coding potential of novel transcripts with respect to RNA secondary structure free energy, conserved domains, and sequence properties. We also examined the effect of alternative splicing on the domain composition of resulting protein isoforms. The majority of splice variants pairs encode proteins with identical domains or similar domains with truncation and in less than 10% of the cases alternative splicing results in gain or loss of a conserved domain. I constructed several possible regulatory networks that occur at specific stages of embryo development. In addition, in order to gain a better understanding of splicing regulation, we developed the concept of co-splicing networks, as a group of transcripts containing common RNA-binding motifs, which are co-expressed with a specific splicing factor. For this purpose, I developed a multi-stage analysis pipeline to integrate the co-expression networks with de novo RNA binding motif discovery at inferred splice sites, resulting in the identification of specific splicing factors and the corresponding cis-regulatory sequences that cause the production of splice variants. This approach resulted in the development of several novel hypotheses about the regulation of minor and major splicing in developing Arabidopsis embryos. In summary, this dissertation provides a comprehensive view of splicing regulation in Arabidopsis and soybean embryo development using computational analysis. / Ph. D.
37

Optimization of adeno-associated virus production for misexpression of Dlk1-Dio3 noncoding RNAs in cardiac and skeletal muscle analysis in vivo

Sutton, Hannah Marie 25 September 2024 (has links)
Efficient targeting of genes to either inhibit or increase their expression in specific tissues in vivo remains a challenge. Adeno-Associated Virus (AAV) has emerged as an efficacious delivery method in both humans and murine model systems. AAV is a non-enveloped, single-stranded DNA virus that is non-integrating with long-term expression. Due to its low immunogenicity and various serotypes with specific tissue tropisms, AAV is a preferred choice for organ specific-gene delivery in many experimental settings. This project focused on protocol optimization for high-volume production of AAV plasmids, improved transfection efficiency, and increased viral yield and purity to specifically target noncoding RNAs (ncRNAs) expressed from the imprinted Dlk1-Dio3 locus. Five AAV9 viruses were produced, each containing one of the following transgenes: 1) human Meg3 cDNA for overexpression of this long noncoding RNA, 2) Meg3-specific short hairpin RNA for knockdown analysis, 3) eGFP cDNA to demonstrate AAV9 tissue tropism, 4) Cas9 cDNA, and 5) gene-specific guide RNAs to target the Meg3 proximal promoter. The AAV9 virus production protocol optimized in this project expands the tools available for in vivo study of the Dlk1-Dio3 ncRNA locus.
38

O gene Aire pode controlar mRNAs bem como os lncRNAs em células tímicas epiteliais medulares como evidenciado pela edição do genoma por CRISPR-Cas9 / Aire gene can control mRNAs as well as lncRNAs in medullary thymic epitelial cells as evidentiated by genome editing by CRISPR-Cas9

Duarte, Max Jordan de Souza 26 November 2018 (has links)
O timo é um órgão linfoide primário essencial para a manutenção da tolerância central através da seleção e eliminação de células T autoreativas. Precursores de células T, oriundas da medula óssea, chegam ao timo e migram do córtex para região da medula. As células epiteliais medulares tímicas (mTECs) expressam em sua superfície antígenos de tecidos periféricos (em inglês tissue-restricted antigens ou TRAs) que representam autoantígenos de todos os tecidos do corpo. Atuando como um fator de transcrição não clássico em células mTEC, o gene Autoimmune Regulator (Aire) desempenha um papel na expressão dos TRAs, cuja proteína codificada libera a RNA polimerase II (RNA Pol II) ancorada na cromatina e regula a expressão de mRNAs na glândula timo. A função biológica deste gene está ligada à indução de tolerância imunológica central impedindo o aparecimento de doenças autoimunes. Isso é resultado da seleção negativa de timócitos (precursores de células T) autoreativos que interagem fisicamente com as mTECs. Os timócitos autoreativos que reconhecem os TRAs como elementos estranhos são eliminados por apoptose. O co-cultivo de mTECs com timócitos representa um sistema-modelo in vitro adequado para se aproximar da interação celular que ocorre dentro do timo. Os resultados anteriores do nosso laboratório demonstraram que além do controle de mRNA de TRAs, o gene Aire também participa da modulação de miRNAs em mTECs uma vez que estas espécies de RNA são transcritas pela RNA Pol II. Continuando com essa linha de estudos, neste trabalho nós demonstramos pela primeira vez que Aire também modula a expressão de long noncoding RNAs (lncRNAs) em mTECs. Para isto fizemos uso da estratégia da perda de função analisando a expressão dessa espécie de RNA, assim como de mRNAs, em células mTEC Aire +/+ e mTEC Aire nocautes (KO Aire -/-) obtidas pela edição gênica por Crispr-Cas9. O transcriptoma dessas células que passaram ou não por adesão com timócitos, foi então analisado por hibridizações com microarrays. Isso evidenciou que Aire e adesão celular influenciam a expressão tanto de mRNAs como de lncRNAs. A reconstrução de redes de interação lncRNAs-mRNAs possibilitou evidenciar uma nova via de regulação pós-transcricional em células mTEC. / The thymus is a primary lymphoid organ essential for the maintenance of central tolerance through the selection and elimination of autoreactive T cells. Precursors of T cells, originating from the bone marrow, reach the thymus and migrate from the thymic cortex to the medullary region. Thymic medullary epithelial cells (mTECs) express on their surface tissue-restricted antigens (TRAs) that represent autoantigens of all tissues in the body. Acting as a non-classical transcription factor in mTEC cells, the Autoimmune regulator (Aire) gene plays a role in the expression of TRAs, whose encoded protein releases the RNA polymerase II (RNA Pol II) anchored in the chromatin and regulates the expression of mRNAs in the thymus gland. The biological function of this gene is associated to the induction of central immune tolerance preventing the onset of autoimmune diseases. This is a result of negative selection of autoreactive thymocytes (T cell precursors) that interact physically with mTECs. Self-reactive thymocytes that recognize TRAs as foreign elements are eliminated by apoptosis. The co-culture of mTECs with thymocytes represents an appropriate in vitro model system to approximate the cellular interaction that occurs within the thymus. Previous results from our laboratory demonstrated that in addition to the control of TRA mRNAs, Aire also participates in the modulation of miRNAs in mTECs since these RNA species are transcribed by RNA Pol II. Continuing with this line of studies, in this study we demonstrate for the first time that Aire also modulates the expression of long non-coding RNAs (lncRNAs) in mTECs. For this, we used the loss-of-function strategy to analyze the expression of this RNA species, as well as mRNAs in mTEC Aire + / + or Aire knockout mTEC cells (KO Aire - / -) obtained by the gene editing by Crispr-Cas9. The transcriptome of these cells, whether or not adhered to thymocytes, was then analyzed by microarray hybridizations. This demonstrated that Aire and cell adhesion influence the expression of both mRNAs and lncRNAs. The reconstruction of lncRNAs-mRNAs interaction networks made possible to evidence a new post-transcriptional regulation pathway in mTEC cells.
39

Intergenic long noncoding RNAs provide a novel layer of post-transcriptional regulation in development and disease

Tan, Jennifer Yihong January 2014 (has links)
Recent genome-wide sequencing projects revealed the pervasive transcription of intergenic long noncoding RNAs (lincRNAs) in eukaryotic genomes (reviewed in Ponting et al. 2009). For the vast majority of lincRNAs, their mechanisms of function remain largely unrecognized. However, the genome-wide signatures of functionality associated with many lincRNAs, including apparent evolutionary sequence conservation, spatial and temporal-restricted expression patterns, strong associations with epigenetic marks, and reported molecular and cellular functions, reinforce their biological relevance. My work investigates lincRNAs that post-transcriptionally regulate gene abundance by competing for the binding of common microRNAs (miRNAs) with protein-coding transcripts, termed competitive endogenous RNAs (ceRNAs) acting lincRNAs (lnceRNAs). First, I examine the biological relevance of this post-transcriptional regulation of gene abundance by ceRNAs. Next, I estimate the genome-wide prevalence of lnceRNAs in mouse embryonic stem cells (mESCs) and characterize their properties. Finally, using two specific examples of lnceRNAs, I show the contributions of lnceRNAs to human monogenic and complex trait diseases. Collectively, these results illustrate that lnceRNAs provide a novel layer of post-transcriptional regulation via a miRNA-mediated mechanism that contributes to organismal and cellular biology.
40

Role of a Mitochondrial Micropeptide in Regulating Innate Immune Responses

Bhatta, Ankit 29 September 2020 (has links)
Short ORF-encoded peptides (SEPs) are increasingly being identified as functional elements in various cellular processes. The current computational methods and experimental molecular biochemistry allow us to discover putative SEPs or micropeptides from proteogenomic datasets and experimentally validate them. Here, we identified a micropeptide produced from a putative long noncoding RNA (lncRNA) 1810058I24Rik which is downregulated in both human and murine myeloid cells exposed to lipopolysaccharide (LPS), as well as other TLR ligands and inflammatory cytokines. Analysis of lncRNA 1810058I24Rik subcellular localization revealed this transcript is localized in the cytosol, prompting us to evaluate its coding potential. In vitro translation with 35S-labeled methionine resulted in translation of a 47 amino acid micropeptide. Microscopy and subcellular fractionation studies in macrophages demonstrated endogenous expression of this peptide on the mitochondrion. We thus named this gene ‘Mitochondrial micropeptide-47 (Mm47)’. Functional studies using siRNA and Cripsr-cas9-mediated deletion in primary cells, showed that the transcriptional response downstream of TLR4 was not affected by Mm47 loss of function. In contrast, both the Crispr-cas9- and siRNA-targeted BMDM cells were compromised for Nlrp3 inflammasome responses. However, the primary macrophages derived from the Mm47 knockout mice do not require Mm47 for Nlrp3 activation, likely due to basal downregulation of a negative regulator microRNA of Nlrp3 called Mir-223. Notably, the Mm47-deficient mice are susceptible to influenza virus infection and succumb despite comparable antiviral and inflammatory response to wildtype mice. We hypothesize that the Mm47 deficiency may affect the antiviral resilience of mice due to secondary mitochondria dependent immunometabolic defect or failure of recovery from immune pathology, which warrants further investigation. This study therefore identifies a novel mitochondrial micropeptide Mm47 that is required for activation of the Nlrp3 inflammasome in cells and resistance to influenza virus infection. Broadly, this work highlights the presence of translatable ORFs is annotated noncoding RNA transcripts and underscores their importance in innate immunity and virus infection.

Page generated in 0.051 seconds