• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 6
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 37
  • 37
  • 9
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Abordagem micromecânica da resistência de meios porosos / Micromechanics approach the resistance of porous media

Dantas, David Anderson Cardoso 28 March 2013 (has links)
This works presents a study about effective properties of porous solids with nonlinear elastic and elastoplastic matrix. For macroscopic mechanics properties evaluation, micromechanics models are used with effective strain concept relative to the modified second method. The porous are assumed as randomly distributed in the matrix, which presents a constitutive law with linear behavior in dilatation and nonlinear in shear. The results are compared with those provided by finite element methods program ABAQUS, assuming porous with spherical geometry for three dimensional solids. Numerical results from ABAQUS were obtained by an implementation of an external subroutine which incorporates at analysis the nonlinear constitutive law. / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / Este trabalho apresenta um estudo sobre as propriedades efetivas de sólidos porosos com matriz elástica não linear e elastoplástica. Na avaliação das propriedades mecânicas macroscópicas empregam-se modelos micromecânicos lineares em conjunto com o conceito de deformação efetiva correspondente ao método secante modificado. Os poros são admitidos como distribuídos randomicamente na matriz, a qual apresenta uma lei constitutiva caracterizada por um comportamento linear em dilatação e não linear em cisalhamento. Os resultados obtidos são confrontados com aqueles fornecidos pelo programa comercial de elementos finitos ABAQUS, admitindo-se que os poros exibem geometrias esféricas para sólidos tridimensionais. A geração dos resultados numéricos oriundos do programa ABAQUS foi viabilizada mediante a implementação de uma sub-rotina externa que incorpora a relação constitutiva não linear considerada nas análises.
22

Aplicação da teoria de representação de funções isotrópicas em sólidos hiperelásticos com duas direções de simetria material / Application of the theory of isotropic function representation in hyperelastic solids with two materials symmetry directions

Gabriel Lopes da Rocha 09 August 2017 (has links)
Aplicamos a teoria de representação de funções isotrópicas para determinar o número mínimo de invariantes independentes necessários para caracterizar completamente a densidade de energia de deformação de sólido hiperelástico com duas direções de simetria material. Expressamos a densidade de energia em termos de dezoito invariantes e extraímos um conjunto de dez invariantes para analisar dois casos de simetria material. No caso de direções ortogonais, recuperamos o resultado clássico de sete invariantes e oferecemos uma justificativa para a escolha dos invariantes encontrados na literatura. Se as direções não são ortogonais, descobrimos que o número mínimo também é sete e corrigimos um erro em fórmula encontrada na literatura. Uma densidade de energia deste tipo é usada para modelar, na escala macroscópica, materiais de engenharia, tais como compósitos reforçados com fibras, e tecidos biológicos, tais como ossos. / We determine the minimum number of independent invariants that are needed to characterize completely the strain energy density of a hyperelastic solid having two distinct material symmetry directions. We use a theory of representation of isotropic functions to express this energy density in terms of eighteen invariants and extract a set of ten invariants to analyze two cases of material symmetry. In the case of orthogonal directions, we recover the classical result of seven invariants and offer a justification for the choice of invariants found in the literature. If the directions are not orthogonal, we find that the minimum number is also seven and correct a mistake in a formula found in the literature. An energy density of this type is used to model, on the macroscopic scale, engineering materials, such as fiber-reinforced composites, and biological tissues, such as bones.
23

Kontaktprobleme in der nichtlinearen Elastizitätstheorie

Habeck, Daniel 15 April 2008 (has links)
Es werden Kontaktprobleme im Rahmen der nichtlinearen Elastizitätstheorie mit Mitteln der Variationsrechnung behandelt. Dabei liegt das Hauptaugenmerk auf der Untersuchung des Selbstkontakts eines nichtlinear elastischen Körpers. Unter Verwendung einer geeigneten Lagrangeschen Multiplikatorenregel wird eine notwendige Bedingung für Minimierer hergeleitet. Weiterhin werden Ergebnisse für den Kontakt zweier elastischer Körper formuliert.
24

Aproximace statických modulů hornin z dynamických modulů stanovených akustickou karotáží pomocí T-matrix modelu / Approximation of static moduli of rocks from dynamic moduli determined by sonic well logging using T-matrix model

Chalupa, František January 2019 (has links)
(EN) Thesis deals with an approximation of static moduli in wells from dynamic moduli determined by acoustic well logging using T-matrix model. Proposed approach makes possible to determine moduli values, which are close to values of static moduli, which would be determined by loading tests. This approach is based on an idea, that an intact rock with sufficiently high compressional strength sc and sufficiently high value of static Young's modulus Es, manifests more or less linear elastic behaviour. In such case, the values of static and dynamic moduli are identical. This fact has been experimentally verified for rocks with values of sc and Es in order of higher tens of MPa and GPa respectively. In case of a rock damage presence in such rock, it's behaviour becomes nonlinearly elastic. The amount of nonlinearity is proportional to increasing amount of rock damage. This results in the difference between values of static and dynamic moduli. T-matrix model is used to quantify this difference. This model is based on an anisotropic rock matrix with ellipsoidal inclusions. These inclusions can affect each other. The result of this model calculation is a group of values of elastic constants, which we call effective moduli. These effective moduli include the effect of porosity in the rock as well and they...
25

Surveillance sismique des structures : caractérisation de la réponse des bâtiments en analysant l'élasticité non linéaire et la dynamique lente / Seismic monitoring of structures : characterization of building response by analyzing nonlinear elasticity and slow dynamics

Astorga Nino, Ariana 29 November 2019 (has links)
La surveillance de la réponse structurale est fondamentale pour estimer la performance des bâtiments et réduire les pertes lors de futurs séismes. Un moyen pratique de détecter les changements de comportement structural consiste à analyser les variations des propriétés élastiques lors d'excitations dynamiques. Dans ce travail, on montre que les variations de la fréquence fondamentale des bâtiments lors de tremblements de terre (faibles à forts) pourraient être expliquées par des processus élastiques non linéaires qui se produisent à l'intérieur du matériau, et qui finalement affectent le comportement macroscopique global des bâtiments. Ces processus élastiques non linéaires sont responsables de la diminution temporaire ou permanente de la rigidité structurale, pouvant expliquer les processus de récupération des propriétés élastiques observés à la suite d'événements sismiques. Cette étude comble le fossé entre des expériences de laboratoire à l'échelle microscopique et des observations sismologiques à l'échelle macroscopique, où l’élasticité non linéaire est également observée. Dans un premier temps, une base de données sismiques établie dans le cadre de cette thèse est présentée, incluant des réponses de bâtiments instrumentés de façon permanente dans le monde: des milliers d’enregistrements de mouvements sismiques et plusieurs bâtiments du Japon et des États-Unis ont été traités, apportant des connaissances utiles pour le domaine du génie parasismique, notamment pour la prédiction empirique de la réponse structurale en fonction de mesures d'intensité du mouvement au sol. Les incertitudes associées à la prédiction d’endommagement sont présentées, ainsi que l'évaluation de la vulnérabilité d'un bâtiment sous forme de courbes de fragilité. Ensuite, la base de données est utilisée pour analyser les signatures élastiques non linéaires dans les bâtiments, en particulier les effets de la dynamique lente (ou relaxation). Les variations des fréquences de résonance sont étudiées à court et à long terme, en estimant la contribution du sol à la réponse du système sol-structure. Différents états structuraux sont déduits en fonction des amplitudes de chargement et propriétés observées via les enregistrements. Des modèles de relaxation développés en laboratoire sont ensuite adaptés aux données des bâtiments afin de caractériser la densité de fissuration et les hétérogénéités, en effectuant des comparaisons entre les états structuraux avant et après de fortes excitations telles que le séisme de 2011 (Mw=9) de Tohoku (Japon). Les effets des chargements sont observés lors de la récupération des séquences de répliques. Les résultats sont étendus à différentes typologies de bâtiments, en analysant l'influence du matériau et des caractéristiques de chargement, notamment les taux de déformation. Enfin, quelques conclusions générales sont présentées, ainsi qu'une perspective de travail utilisant des outils de machine learning pour prédire la réponse de bâtiments en fonction de signatures élastiques non linéaires observées. / Monitoring structural response is fundamental for evaluating the performance of buildings and reducing losses during future earthquakes. One practical way to detect changes in structural behavior is analyzing variations of elastic properties during dynamic excitations. Here we show that variations in the fundamental frequency of buildings during (weak -to- strong) earthquakes might be explained by nonlinear elastic processes carried out within the structural material, which affect the global macroscopic structural behavior. These nonlinear elastic processes are responsible for both transitory and permanent structural softening, and might explain the intriguing recovery effects observed in the fundamental frequency of buildings following seismic events. This study bridges the gap between microscale laboratory experiments and macroscale seismological observations, where nonlinear elasticity is also observed. In the first part of this study, a new seismic database of building responses is presented: thousands strong motion recordings and several buildings from Japan and US were processed, providing useful tools for the earthquake engineering community, notably for the empirical prediction of structural response as a function of several ground motion intensity measures. Examples of uncertainties associated to damage prediction are presented, as well as the vulnerability assessment of a building throughout fragility curves. Next, the seismic database is used to analyze nonlinear elastic signatures in buildings, particularly the slow dynamics or relaxation effects. Variations of resonant frequencies are monitored at both short and long-term, estimating the contribution of soil in the response of the system soil-structure. Different levels of damage are inferred according to loading amplitudes and structural states. Some laboratory-based models of relaxation are adapted to the building data in order to infer crack-density and heterogeneities over time, making comparisons between structural states before and after large excitations such as the Mw 9 Tohoku earthquake. Conditioning effects are observed during the backbone recovery of aftershocks sequences. The results are extended to different building typologies, analyzing the influence of structural material and loading features, notably strain-rates. Finally, some general conclusions are presented, together with a perspective work using machine learning to predict building response based on nonlinear elastic signatures.
26

Interactive Modeling of Elastic Materials and Splashing Liquids

Yan, Guowei January 2020 (has links)
No description available.
27

A Homogenized Bending Theory for Prestrained Plates

Böhnlein, Klaus, Neukamm, Stefan, Padilla-Garza, David, Sander, Oliver 22 February 2024 (has links)
The presence of prestrain can have a tremendous effect on the mechanical behavior of slender structures. Prestrained elastic plates show spontaneous bending in equilibrium—a property that makes such objects relevant for the fabrication of active and functionalmaterials. In this paperwe studymicroheterogeneous, prestrained plates that feature non-flat equilibriumshapes. Our goal is to understand the relation between the properties of the prestrained microstructure and the global shape of the plate in mechanical equilibrium. To this end, we consider a three-dimensional, nonlinear elasticity model that describes a periodic material that occupies a domain with small thickness. We consider a spatially periodic prestrain described in the form of a multiplicative decomposition of the deformation gradient.By simultaneous homogenization and dimension reduction, we rigorously derive an effective plate model as a Γ-limit for vanishing thickness and period. That limit has the form of a nonlinear bending energy with an emergent spontaneous curvature term. The homogenized properties of the bending model (bending stiffness and spontaneous curvature) are characterized by corrector problems. For a model composite—a prestrained laminate composed of isotropic materials—we investigate the dependence of the homogenized properties on the parameters of the model composite. Secondly, we investigate the relation between the parameters of the model composite and the set of shapes with minimal bending energy. Our study reveals a rather complex dependence of these shapes on the composite parameters. For instance, the curvature and principal directions of these shapes depend on the parameters in a nonlinear and discontinuous way; for certain parameter regions we observe uniqueness and non-uniqueness of the shapes. We also observe size effects: The geometries of the shapes depend on the aspect ratio between the plate thickness and the composite period. As a second application of our theory, we study a problem of shape programming: We prove that any target shape (parametrized by a bending deformation) can be obtained (up to a small tolerance) as an energy minimizer of a composite plate, which is simple in the sense that the plate consists of only finitely many grains that are filled with a parametrized composite with a single degree of freedom.
28

Fourier Based Method for Simultaneous Segmentation and Nonlinear Registration

ATTA-FOSU, THOMAS 02 June 2017 (has links)
No description available.
29

Bending models of nematic liquid crystal elastomers: Gamma-convergence results in nonlinear elasticity

Griehl, Max 22 May 2024 (has links)
We consider thin bodies made from elastomers and nematic liquid crystal elastomers. Starting from a nonlinear 3d hyperelastic model, and using the Gamma-convergence method, we derive lower dimensional models for 2d and 1d. The limit models describe the interplay between free liquid crystal orientations and bending deformations.:1 Introduction 1.1 Main results and structure of the text 1.2 Survey of the literature 1.2.1 Dimension reduction in nonlinear elasticity 1.2.2 Relation to other bending regime results in detail 1.2.3 Relation to other Gamma-convergence results of LCEs 2 Liquid crystal elastomers 2.1 Properties 2.2 Modeling 3 Rods 3.1 Setup and statement of analytical main results 3.1.1 The 3d-model and assumptions 3.1.2 The effective 1d-model 3.1.3 The Gamma-convergence result without boundary conditions 3.1.4 Boundary conditions for y 3.1.5 Weak and strong anchoring of n 3.1.6 Definition and properties of the effective coefficients 3.2 Numerical 1d-model exploration 3.3 Dimensional analysis and scalings 3.3.1 Non-dimensionalization and rescaling 3.3.2 Scaling assumptions 3.3.3 Dimensional analysis and applicability of the 1d-model 3.4 Smooth approximation of framed curves 3.5 Proofs 3.5.1 Compactness: proofs of Theorem 3.1.3 (a) and Proposition 3.1.4 (a) 3.5.2 Lower bound: proof of Theorem 3.1.3 (b) . . . . . . . . . . . . 68 3.5.3 Upper bound: proofs of Theorem 3.1.3 (c) and Proposition 3.1.4 (b) 3.5.4 Anchoring: proof of Proposition 3.1.5 3.5.5 Properties of the effective coefficients 4 Plates 4.1 Setup and statement of analytical main results 4.1.1 The 3d-model and assumptions 4.1.2 The effective 2d-model 4.1.3 The Gamma-convergence result without boundary conditions 4.1.4 Definition and properties of the effective coefficients 4.1.5 Boundary conditions for y 4.1.6 Weak and strong anchoring of n 4.2 Analytical and numerical 2d-model exploration 4.2.1 Analytical 2d-model exploration 4.2.2 Numerical 2d-model exploration 4.3 Dimensional analysis and scalings 4.3.1 Non-dimensionalization and rescaling 4.3.2 Scaling assumptions 4.3.3 Dimensional analysis and applicability 4.4 Geometry and approximation of bending deformations 4.4.1 Proofs of the geometric properties in the smooth case 4.4.2 Proof for the smooth approximations 4.5 Proofs 4.5.1 Compactness: proofs of Theorems 4.1.1 (a) and 4.1.8 (a) 4.5.2 Lower bound: proof of Theorem 4.1.1 (b) 4.5.3 Upper bound: proofs of Theorem 4.1.1 (c) and Theorem 4.1.8 (b) 4.5.4 Properties of the effective coefficients 4.5.5 Anchorings 4.5.6 Approximation of nonlinear strains: proof of Proposition 4.5.4 5 Conclusions and outlooks Bibliography
30

Variational modelling of cavitation and fracture in nonlinear elasticity

Henao Manrique, Duvan Alberto January 2009 (has links)
Motivated by experiments on titanium alloys of Petrinic et al. (2006), which show the formation of cracks through the growth and coalescence of voids in ductile fracture, we consider the problem of formulating a variational model in nonlinear elasticity compatible both with cavitation and the appearance of discontinuities across two-dimensional surfaces. As in the model for cavitation of Müller and Spector (1995) we address this problem, which is connected to the sequential weak continuity of the determinant of the deformation gradient in spaces of functions having low regularity, by means of adding an appropriate surface energy term to the elastic energy. Based upon considerations of invertibility, we derive an expression for the surface energy that admits a physical and a geometrical interpretation, and that allows for the formulation of a model with better analytical properties. We obtain, in particular, important regularity results for the inverses of deformations, as well as the weak continuity of the determinants and the existence of minimizers. We show, further, that the creation of surface can be modeled by carefully analyzing the jump set of the inverses, and we point out some connections between the analysis of cavitation and fracture, the theory of SBV functions, and the theory of Cartesian currents of Giaquinta, Modica, and Soucek. In addition to the above, we extend previous work of Sivaloganathan, Spector and Tilakraj (2006) on the approximation of minimizers for the problem of cavitation with a constraint in the number of flaw points, and present some numerical results for this problem.

Page generated in 0.068 seconds