• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 148
  • 87
  • 32
  • 14
  • 7
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 325
  • 325
  • 105
  • 38
  • 35
  • 35
  • 33
  • 33
  • 33
  • 31
  • 30
  • 27
  • 27
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Contribution à la prévision de l'érosion de cavitation à partir de simulations numériques : proposition d'un modèle à deux échelles pour l'estimation du chargement imposé en paroi par le fluide / Contribution to the prediction of cavitation erosion from numerical simulations : proposition of a two scales model to estimate the charge imposed by the fluid

Krumenacker, Laurent 29 January 2015 (has links)
Lors du fonctionnement d'une installation hydraulique, l'apparition de zone de cavitation dans l'écoulement peut entraîner un endommagement important sur la surface des matériaux. La quantification de l'intensité de cavitation sur les composants hydrauliques serait utile à la fois pour mieux concevoir les nouveaux équipements en projet, mais aussi pour améliorer la conduite et optimiser la maintenance des matériels existants. Au vu du grand nombre de paramètres régissant les écoulements cavitants, l'élaboration de lois de similitudes universelles à partir d'expériences est délicate. Avec l'augmentation des moyens de calculs, la simulation numérique est un outil pour étudier ce phénomène sur des géométries variées. La principale difficulté de cette démarche réside dans la différence d'échelles existant entre les simulations numériques U-RANS servant à simuler l'écoulement cavitant et les mécanismes d'implosion de bulles jugés responsables de l'endommagement sur le solide. La méthode proposée dans ce manuscrit s'appuie sur un post-traitement des simulations U-RANS afin de caractériser une distribution de bulles et de simuler leurs comportements à de plus petites échelles spatiales et temporelles. Dans un premier temps, notre travail consiste à expliciter les équations locales de conservation de masse, de quantité de mouvement et d'énergie pour un écoulement liquide/gaz comprenant deux espèces eau/air. Ce travail mène à l'élaboration de grandeurs de mélange prenant notamment en compte la présence de gaz incondensables au sein du fluide. Des hypothèses permettent de rendre ce système équivalent à ceux, utilisant une approche homogène, implémentés dans les codes de simulations d'écoulements cavitants instationnaires développés précédemment au laboratoire. La caractérisation des populations de bulles effectuée par le post-traitement prend ainsi en considération à la fois la tension superficielle et la présence de gaz incondensables. Dans un deuxième temps, l'élaboration d'un code de calcul permettant la simulation de la dynamique d'un nuage de bulles est débutée. Ce dernier a pour ambition de tenir compte à la fois des interactions entre les bulles et des déformations non sphériques que celles-ci peuvent subir à l'aide d'une méthode potentielle. Des premiers résultats de simulations sont présentés dans ce manuscrit et permettent de tenir compte de faibles déformations des bulles. La dernière étape de ce travail consiste à proposer une méthode de chaînage entre ces deux échelles en initialisant le calcul de dynamique de bulles à l'aide des résultats du calcul U-RANS. L'énergie émise lors de l'implosion des bulles et impactant la surface solide est ainsi calculée, caractérisant de ce fait le chargement imposé par l'écoulement sur le matériau. Cette méthode est par la suite appliquée sur différentes géométries en comparant à chaque fois les résultats obtenus à des expériences. Nous comparons également nos résultats à des méthodes précédemment établies au sein du laboratoire afin d'évaluer la pertinence de cette approche. / During the life's cycle of a hydraulic installation, the occurrence of cavitation can cause significant damages on the material's surface. The quantification of the cavitation intensity in different geometry can be useful to get better designs for new installations, but also to improve the operating and to optimize maintenance of existing equipments. The development of universal laws of similarity from experiments is difficult due to the large number of parameters governing cavitating flows. With the increase of computational performance, numerical simulations offer the opportunity to study this phenomenon in various geometries. The main difficulty of this approach is the scale's difference existing between the numerical simulations U-RANS used to calculate the cavitating flow and mechanisms of bubble's collapse held responsible for damages on the solid. The proposed method in this thesis is based on a textbf{post-treatment} of the textbf{U-RANS} simulations to characterize a distribution of bubbles and to simulate their behavior at lower spatial and temporal scales. Our first objective is to make explicit a system of equations corresponding to phenomena occurring locally in the two-phase flow. This work leads to the development of mixture variables taking into account the presence of non-condensable gases in the fluid. Assumptions are taken to make the system, after using the Reynolds averaging procedure, equivalent to those, using a homogeneous approach, implemented in the unsteady cavitating flows solvers previously developed in the laboratory. The characterization of bubbles made by this post-treatment takes into account both the surface tension and the presence of non-condensable gases. The development of a solver for the simulation of the dynamic of a bubble cloud is started. It aims to take into account both the interactions between bubbles and non-spherical deformations with a potential method. First results of these simulations are presented and small non-spherical deformations occurring during the collapse can be observed. Finally, we propose a chained method between these two systems initializing the bubble dynamic solver with results of U-RANS simulations. The energy emitted during the implosion of bubbles impacting the solid surface is calculated. So the aggressiveness of the flow on the material can be characterized. We apply this method on different flows to compare numerical and experimental results.
62

Dynamique à grande échelle des disques protoplanétaires / Large scale dynamics of protoplanetary disks

Bethune, William 03 July 2017 (has links)
Cette thèse est dédiée aux processus de transport de moment cinétique et de flux magnétique dans les disques faiblement magnétisés et faiblement ionisés ; l’influence des effets microphysiques sur la dynamique du disque à grande échelle y est centrale. Dans un premier temps, j’exclue les effets de stratification et j’examine l’impact des effets MHD non-idéaux sur la turbulence dans le plan du disque. Je montre que l’écoulement peut spontanément s’organiser si la fraction d’ionisation est assez faible ; dans ce cas, l’accrétion est stoppée, et le disque exhibe des anneaux axisymétriques susceptibles d’affecter la formation planétaire. Dans un second temps, je caractérise l’interaction du disque avec un vent magnétisé via un modèle global de disque stratifié. Ce modèle est le premier à décrire globalement les effets MHD non-idéaux d’après un réseau chimique simplifié. Il révèle que le disque est essentiellement non-turbulent, et que le champ magnétique peut adopter différentes configurations globales, affectant drastiquement les processus de transport. Un nouveau processus d’auto-organisation est identifié, produisant aussi des structures axisymétriques, tandis que le précédent est invalidé par l’action du vent. Les propriétés des vents magnéto-thermiques sont examinées pour différentes magnétisations, permettant de discriminer les vents magnétisés des vents photo-évaporés par leur efficacité d’éjection. / This thesis is devoted to the transport of angular momentum and magnetic flux through weakly ionized and weakly magnetized accretion disks ; the role of microphysical effects on the large- scale dynamics of the disk is of primary importance. As a first step, I exclude stratification effects and examine the impact of non-ideal MHD effects on the turbulent properties near the disk midplane. I show that the flow can spontaneously organize itself if the ionization fraction is low enough ; in this case, accretion is halted and the disk exhibits axisymmetric structures, with possible consequences on planetary formation. As a second step, I study the disk-wind interaction via a global model of stratified disk. This model is the first to compute non-ideal MHD effects from a simplified chemical network in a global geometry. It reveals that the flow is essentially laminar, and that the magnetic field can adopt different global configurations, drastically affecting the transport processes. A new self-organization process is identified, also leading to the formation of axisymmetric structures, whereas the previous mechanism is discarded by the action of the wind. The properties of magneto-thermal winds are examined for various magnetizations, allowing discrimination between magnetized and photo-evaporative winds based upon their ejection efficiency.
63

Multiscale analysis of cohesive fluidization

Umoh, Utibe Godwin January 2018 (has links)
Fluidization of a granular assembly of solid particles is a process where particles are suspended in a fluid by the upward flow of fluid through the bed. This process is important in industry as it has a wide range of applications due to the high mixing and mass transfer rates present as a result of the rapid movement of particles which occurs in the bed. The dynamics of fluidization is heavily dependent on the particle scale physics and the forces acting at a particle level. For particles with sizes and densities less than 100μm and 103 kg/m3, the importance of interparticle forces such as cohesion to the fluidization phenomena observed increases compared to larger particles where phenomena observed are more dependent on hydrodynamic forces. These smaller sized particles are increasingly in high demand in industrial processes due to the increasing surface area per unit volume obtained by decreasing the particle size. Decreasing particle however leads to an increase in the impact of cohesive interparticle forces present between particles thus altering fluidization phenomena. It is thus necessary to get a greater understanding of how these cohesive forces alter fluidization behaviour both at the particle and also at the bulk scale. This work begins with an experimental study of a fluidized bed using high speed imaging. The applicability of particle image velocimetry for a dense bed is examined with verification and validation studies showing that particle image velocimetry is able to accurately capture averaged velocity profiles for particles at the front wall. A digital image analysis algorithm which is capable of accurately extracting particle solid fraction data for a dense bed at non-optimum lighting conditions was also developed. Together both experimental techniques were used to extract averaged particle mass flux data capable of accurately capturing and probing fluidization phenomena for a dense fluidized bed. This simulation studies carried out for this work looks to examine the impact of cohesive forces introduced using a van der waal cohesion model on phenomena observed at different length scales using DEM-CFD simulations. Numerical simulations were run for Geldart A sized particles at different cohesion levels represented by the bond number and at different inlet gas velocities encompassing the different regimes fluidization regimes present. A stress analysis was used to examine the mechanical state of the expanded bed at different cohesion levels with the vertical component of the total stress showing negative tensile stresses observed at the center of the bed. Further analysis of the contact and cohesive components of the stress together with a kcore and microstructural analysis focusing on the solid fraction and coordination number profiles indicated that this negative total stress was caused by a decrease in the contact stress due to breakage of mechanical contacts as cohesive forces are introduced and increased. A pressure overshoot analysis was also conducted with the magnitude of the overshoot in pressure seen during the pressure drop analysis of a cohesive bed shown to be of equivalent magnitude to the gradient of the total negative stress profile. The in-homogeneous nature of the bed was probed with the focus on how introducing cohesion levels increase the degree of inhomogeneity present in the expanded bed and how local mesoscopic structures change with cohesion and gas velocity. It was shown that increasing cohesion increases the degree of inhomogeneity in the bed as well as increasing the degree of clustering between particles. A majority of particles were shown to be present in a single macroscopic cluster in the mechanical network with distinct local mesoscopic structures forming within the macroscopic cluster. The cohesive bed also expanded as distinct dense regions with low mechanical contact zones in between these regions. A macroscopic cluster analysis showed that the majority of particles are in strong enduring mechanical and cohesive contact. Increasing cohesive forces were also shown to not only create a cohesive support network around the mechanical network but also strengthen the mechanical contact network as well. The significance of the strong and weak mechanical and cohesive forces on fluidization phenomena was also examined with analysis showing that the weak mechanical forces act to support the weak mechanical forces. The cohesive force network however was non coherent with strong forces significantly greater than weak forces. Fluidization phenomena was shown to be driven by the magnitude of the strong cohesive forces set by the minimum particle cutoff distance. This also called into question the significance of the cohesive coordination number which is dependent on the maximum cohesive cutoff. The value of the maximum cutoff was shown to be less significant as no significant changes were observed in the stress and microstructure data as the maximum cutoff was altered. Simulations with different ratios of cohesive and non cohesive particles were also undertaken and showed that a disruption in the cohesive force network leads to changes in the stress state and microstructure of the bed thus changing the fluidization phenomena observed at all length scales. The nature of the strong cohesive force network thus drives fluidization phenomena seen in the bed.
64

Numerical models of volcanic flows for an estimation and delimitation of volcanic hazards, the case of Reventador volcano (Ecuador) / Modèles numériques de coulées de lave pour une estimation et une délimitation du risque volcanique, le cas du volcan El Reventador (Equateur)

Vallejo Vargas, Silvia Ximena 24 November 2017 (has links)
Les coulées de laves sont les produits volcaniques les plus représentatifs des éruptions effusives. Elles sont formées quand le magma est extrudé et se répand à la surface de la Terre. Quand la lave arrive en surface, elle perd de la chaleur et refroidit. Le refroidissement affecte directement les propriétés rhéologiques de la lave, jusqu’à arrêter son écoulement. Les paramètres rhéologiques qui contrôlent la dynamique des coulées de laves sont la viscosité et le seuil de plasticité, qui dépendent eux-mêmes de la composition chimique, de la cristallinité et de la teneur en bulles. Il existe de nombreux modèles d’estimation de la rhéologie, la plupart développés pour les coulées de lave basaltiques et quelque uns pour les coulées de lave andésitiques. Les coulées de laves peuvent grandement affecter les régions peuplées, les infrastructures et l’environnement. Un moyen de prévoir les futurs dégâts est de développer des modèles numériques pour prévoir la propagation des coulées de laves sur des topographies volcaniques réelles. Cette méthode difficile combine la topographie, la rhéologie, la perte de chaleur et la dynamique de l’écoulement pour simuler l’emplacement d’une coulée de lave précise. Le code numérique VolcFlow, qui est basé sur une approche moyennée verticale, est capable de reproduire les caractéristiques principales des dépôts comme la morphologie, la longueur et l’épaisseur. Dans cette étude sont proposés trois modèles implémentés dans VolcFlow et ayant pour but de simuler des coulées de laves. Le premier est isotherme, le deuxième inclut le refroidissement et les variations rhéologiques associées, et le troisième prend en considération la déformation de la croûte à la surface de la coulée et son effet sur l’emplacement de la coulée. Afin de vérifier la validité des différentes approches, les modèles sont testés sur quatre cas d’étude : deux coulées de lave de composition basaltique (expérience de basalte fondu de Syracuse lava Project et la coulée de lave d’août novembre 2015 du Piton de la Fournaise, France) et deux de compositions andésitique (la coulée de lave du 4-5 décembre 2015 du Tungurahua et trois coulées de lave du Reventador, Equateur). Les résultats des simulations montrent que le modèle isotherme peut reproduire les coulées même s’il ne prend pas en compte les variations de rhéologie et le refroidissement. Le modèle incluant la cristallisation, induite par le refroidissement de la lave au cours de son écoulement, et les variations rhéologiques associées donne de très bons résultats mais est très sensible aux paramètres d’entrée, en particulier à la viscosité, elle-même très dépendante de la composition chimique et de la température. Enfin, le modèle prenant en compte le refroidissement et les variations de rhéologie par une loi synthétique sigmoïde montre une bonne cohérence dans tous les cas simulés, sauf pour le Piton de la Fournaise. Le modèle visant à simuler la formation d’une croûte à la surface de la lave et sa percée par l’écoulement sous-jacent amène uniquement à l’épaississement de la croûte. Le mécanisme de percée n’est pas reproduit avec VolcFlow. / Lava flows are the most representative volcanic products of effusive eruptions and are formed whenthe magma is extruded and flows on the surface. When lava flows reach the surface they lose heat and cool.Cooling affects directly the rheology of the lava up to a point where it cannot flow anymore. Rheologicalparameters that control the dynamics of lava flows are the viscosity and the yield strength which in turndepends on the chemical composition, crystallinity and bubble content. There exist numerous models forthe rheology estimation, mostly developed for basaltic lava flows and few for andesitic ones.Lava flows can highly affect populated areas, infrastructures and environment. A way to forecastthe future damages is to developed numerical codes of the lava propagation on real volcanic topography.This challenging method combines the topography, the rheology, the heat loss, and flow dynamics tosimulate the emplacement of a particular lava flow. The numerical code VolcFlow which is based on thedepth-averaged approach is able to reproduce the main physical characteristics of the deposits likemorphology, length and thickness. Here 3 models are proposed for their implementation in VolcFlow withthe aim to simulate lava flows. One model is isothermal, the second includes cooling and the associatedrheological variations, and the third takes into account the crust formation and its effect on the flowemplacement. To check the validity of the different approaches, the models were tested with four studycases, two with basaltic compositions (molten basalt experiment of the Syracuse lava Project and the August-November, 2015 lava flow from Piton de la Fournaise, France) and two with andesitic compositions (theDecember 4th-5th lava flow from Tungurahua, Ecuador, and three lava flows from El Reventador,Ecuador). Results of the simulations shows that the isothermal model can reproduce the flows even if itdoes not consider the cooling and rheology variation. The model that includes rheological laws as functionof crystallization induced by cooling down flow can give very good results but is very sensitive to the inputdata, in particular to the fluid viscosity that is very dependent on chemical composition and temperature.Finally, the model that includes cooling and synthetic sigmoid rheological law shows good coherence for allthe cases except at Piton de la Fournaise. The model that aims to simulate the formation of a crust on thelava flow surface, lava flowing underneath and break-out mechanisms leads to the thickening of the crust.Hence, break-out mechanism is not reproduced with VolcFlow.
65

Modelagem matemática e comportamento dinâmico da suspensão passiva de um pulverizador agrícola autopropelido

Ferreira, André Luiz [UNESP] 20 June 2008 (has links) (PDF)
Made available in DSpace on 2016-04-01T17:54:45Z (GMT). No. of bitstreams: 0 Previous issue date: 2008-06-20. Added 1 bitstream(s) on 2016-04-01T18:00:27Z : No. of bitstreams: 1 000556918.pdf: 1923814 bytes, checksum: 4705205551ed1cbedcc59e194357522a (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O trabalho é baseado na elaboração de modelos matemáticos de suspensão que permitem avaliar parâmetros de desempenho de um veículo agrícola em função da excitação provocada pelas irregularidades do solo. Neste trabalho, estas irregularidades são representadas por entrada degrau, entrada seno e obstáculos de uma pista normalizada segundo a norma ISO 5008. As equações do movimento são obtidas a partir dos modelos matemáticos de um quarto de veículo e meio veículo. As simulações numéricas são executadas nos softwares Matlab®, Simulink® e Visual Nastran®. A partir da entrada conhecida, podem-se determinar as características dos elementos da suspensão para obter níveis desejáveis de conforto e segurança. Foram analisadas diferentes configurações do sistema, variando-se a relação de rigidez e a constante de amortecimento equivalente a partir de um modelo considerado padrão. Os resultados foram tratados estatisticamente e comparados entre si, verificando-se que o aumento da relação de rigidez resulta na redução da aceleração vertical e no aumento do curso da suspensão, melhorando o conforto e diminuindo a segurança. Por outro lado, a redução do amortecimento provoca a redução da aceleração vertical até um determinado ponto e, a partir deste, a aceleração volta a crescer. Já o curso da suspensão diminui à medida que o amortecimento é reduzido. / This paper is based on the elaboration of mathematical suspension models which can evaluate performance parameters of an agricultural vehicle based on the vibration caused by irregularities on the soil surface. In this paper, these irregularities are represented by step input, sine input and obstacles of leveled road according to ISO 5008 specifications. The motion equations are obtained from the mathematical models of a quarter car and half car. Numerical simulations are performed on Matlab®, Simulink® and Visual Nastran®. Based on known input, characteristics of suspension elements can be determined in order to obtain desired levels of comfort and safety. Different system configurations were analyzed changing the stiffness ratio and the damping coefficient based on a standard model. Results were treated statistically and compared among themselves. It was verified that the increase in stiffness ratio results in the reduction of the vertical acceleration and in the increase of the suspension travel, improving comfort but reducing safety. On the other hand, the reduction of damping coefficient causes the reduction of vertical acceleration up to a certain point, and from this point on the acceleration increases again. The suspension travel, however, reduces as damping coefficient is reduced.
66

Constraining competing models of dark energy with cosmological observations

Pavlov, Anatoly January 1900 (has links)
Doctor of Philosophy / Department of Physics / Bharat Ratra / The last decade of the 20th century was marked by the discovery of the accelerated expansion of the universe. This discovery puzzles physicists and has yet to be fully understood. It contradicts the conventional theory of gravity, i.e. Einstein’s General Relativity (GR). According to GR, a universe filled with dark matter and ordinary matter, i.e. baryons, leptons, and photons, can only expand with deceleration. Two approaches have been developed to study this phenomenon. One attempt is to assume that GR might not be the correct description of gravity, hence a modified theory of gravity has to be developed to account for the observed acceleration of the universe’s expansion. This approach is known as the ”Modified Gravity Theory”. The other way is to assume that the energy budget of the universe has one more component which causes expansion of space with acceleration on large scales. Dark Energy (DE) was introduced as a hypothetical type of energy homogeneously filling the entire universe and very weakly or not at all interacting with ordinary and dark matter. Observational data suggest that if DE is assumed then its contribution to the energy budget of the universe at the current epoch should be about 70% of the total energy density of the universe. In the standard cosmological model a DE term is introduced into the Einstein GR equations through the cosmological constant, a constant in time and space, and proportional to the metric tensor g[subscript]mu[subscript]nu. While this model so far fits most available observational data, it has some significant conceptual shortcomings. Hence there are a number of alternative cosmological models of DE in which the dark energy density is allowed to vary in time and space.
67

Investigation of Transition and Vortex Systems of a Dynamically Pitching Airfoil Under the Free-stream Turbulence Conditions

January 2017 (has links)
abstract: The effect of reduced frequency on dynamic stall behavior of a pitching NACA0012 airfoil in a turbulent wake using Direct Numerical Simulations is presented in the current study. Upstream turbulence with dynamically oscillating blades and airfoils is associated with ambient flow unsteadiness and is encountered in many operating conditions. Wake turbulence, a more realistic scenario for airfoils in operation, is generated using a small solid cylinder placed upstream, the vortices shed from which interact with the pitching airfoil affecting dynamic stall behavior. A recently developed moving overlapping grid approach is used using a high-order Spectral Element Method (SEM) for spatial discretization combined with a dynamic time-stepping procedure allowing for up to third order temporal discretization. Two cases of reduced frequency (k = 0:16 and 0:25) for airfoil oscillation are investigated and the change in dynamic stall behavior with change in reduced frequency is studied and documented using flow-fields and aerodynamic coefficients (Drag, Lift and Pitching Moment) with a focus on understanding vortex system dynamics (including formation of secondary vortices) for different reduced frequencies and it’s affect on airfoil aerodynamic characteristics and fatigue life. Transition of the flow over the surface of an airfoil for both undisturbed and disturbed flow cases will also be discussed using Pressure coefficient and Skin Friction coefficient data for a given cycle combined with a wavelet analysis using Morse wavelets in MATLAB. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2017
68

Evolution dynamique des amas stellaires jeunes / Dynamical evolution of young stellar clusters

Becker, Christophe 18 December 2013 (has links)
Comprendre le processus de formation stellaire est un objectif majeur en astronomie. Sur ce sujet les observations ne donnent que très peu d'information, et les modèles numériques sont donc naturellement privilégiés. De tels modèles s'attachent à suivre la dynamique du gaz, sous l'effet de processus physique variés, ce qui nécessite un temps de calcul très important et ne permet pas de modéliser l'évolution au delà de 0.2 Myr environ. Or les résultats observationnels sont essentiellement issus du champ galactique proche, des amas évolués, voire des regions jeunes ou associations d'étoiles, dont l'âge peut varier de 1 Myr à quelques Gyr. Par conséquent, il est nécessaire pour comparer les résultats des modèles aux observations de comprendre ce qu'il se passe durant cet intervalle de temps. La formation stellaire tend à produire des étoiles en groupes, à partir de l'effondrement gravitationnel d'un nuage moléculaire turbulent. A mesure que les étoiles se forment, le gaz est éjecté et l'évolution est dominée par les interactions gravitationnelles. Suivre l'évolution sous l'effet de ces interactions est couramment utilisé afin de contraindre les modèles et de mieux comprendre l'origine des populations stellaires observées. Les étoiles se forment en sous-groupes ou structures hiérarchisées, qui peuvent ensuite fusionner pour donner des amas stellaires proche des amas ouverts, ou au contraire finir en associations distinctes. Dans ma thèse, je me suis intéressé à l'évolution dynamique de petits groupes d'étoiles, jusqu'alors peu étudiés par rapport aux groupes à 1000 ou 10^4 étoiles. J'ai simulé l'évolution de groupes à N < 100, dans le but d'en étudier la dynamique d'un point de vue statistique, grâce notamment au grand nombre de simulations effectuées, et afin d'identifier les signatures observationnelles propres à une situation initiale donnée. A partir d'un grand nombre de configurations initiales (avec N=20, 50, 100, un rayon typique de 0.025 pc à 1 pc) et 500 simulations par configurations, j'ai étudié l'évolution dynamique de groupes composés d'étoiles de même masse ou comprenant un spectre de masse, et sans population de binaire initiale. L'évolution de tels groupes s'est révélée similaire à celle de groupes plus grands, mais avec une phase d'effondrement plus rapide et surtout moins prononcée. Je décris le comportement moyen menant à une lente expansion de l'amas, ainsi qu'une voie d'évolution très différente, apparaissant dans 17% des cas étudiés, où l'amas est complètement dispersé suite à l'éjection d'une binaire centrale serrée. J'ai également recherché dans quelle mesure les données en densité et en vitesse 3D pouvaient permettre d'identifier l'état dynamique initial d'un groupe. L'utilisation de ces seules données suffisait dans certain cas à déterminer la densité initiale, mais elles devraient être complétées par des données concernant la population de binaire. Ce travail pourra être mis en application pour étudier l'origine dynamique d'association ou de groupes stellaires connus. Enfin, j'ai effectué un grand nombre de simulations numériques dans le but de reproduire l'état observé de l'amas eta Chamaeleontis par pure évolution dynamique à partir de conditions initiales standards. Cette association présente des caractéristiques d'amas évolué, telle que son spectre de masse pauvre en objets de faible masse et l'absence de binaires larges. Je montre que ces propriétés ne peuvent pas être reproduites uniquement par la dynamique, et sont donc les traces d'un processus de formation non standard. / Understanding the star formation process is a key issue in astronomy. Since direct observation provide only very limited information, this issue is investigated by models. Such models need to take into account complex physical processes while following the gas dynamics, so that simulations need a lot of time to run and do not follow the star formation process for longer than 0.2 Myr. The best known observational results concerns the field population, evolved open clusters or younger clusters or associations, which are between 1 Myr and a few Gyr old. Therefore in order to compare the results from models to known observations, we need to bridge the gap between the two. Star formation appears to produce groups of stars from the collapse of turbulent molecular clouds. As stars form, the gas is progressively ejected from the cluster, and the evolution is dominated by gravitational interactions. Following the dynamical evolution of a group of star using N-Body codes is a standard way used to constraint the models and understand the origin of the different populations. Star formation may produce sub-structure or small groups that merge to form bigger entities, or end up as loose association. In my thesis I focused on the dynamics of small groups, that have not been investigated as thoroughly as 1000 or 10^4 star groups. I performed N-Body simulations of small stellar groups, with N<100, in order to study their dynamics using a statistical approach, made possible by running a large number of simulations, and to find some observational signatures of given initial conditions. This approach enable to take full account of stochastic effects due to dynamical interactions. Using a large number of initial configurations (with N=20, 50, 100, a typical radius from 0.025 pc to 1 pc) and a sample of 500 simulations per configuration, I looked at equal mass groups as well as groups having a mass spectrum, without any binary initially. Such small groups show similar evolution to bigger groups, but with faster and less pronounced collapse phase. I described the average behaviour of slow expansion of the cluster, and an alternative evolution, occurring with 17% probability, that ended in the complete dissolution of the group due to ejection of a central binary. Searching for a way to identify the initial configuration from observational measure, I looked at the complementarity of density and 3D velocity and was able to show that it could be sufficient in some cases to determine the initial density. Further investigations are needed to take into account the information on the binary population and will be used to investigate the formation of known associations or young regions. Finally, I ran a large number of simulations, aiming at reproducing the observed state of the eta Chamaeleontis from standard initial conditions and pure dynamical evolution. This association properties are consistent with a dynamical evolved cluster, namely low-mass object poor and having only tight binaries. I showed that these properties cannot be reproduced with pure dynamical evolution from standard initial mass function and binary population, meaning that its particular features must have been pristine.
69

Modelagem matemática e comportamento dinâmico da suspensão passiva de um pulverizador agrícola autopropelido /

Ferreira, André Luiz. January 2008 (has links)
Orientador: José Manoel Balthazar / Banca: Bento Rodrigues de Pontes Junior / Banca: Mário Francisco Mucheroni / Resumo: O trabalho é baseado na elaboração de modelos matemáticos de suspensão que permitem avaliar parâmetros de desempenho de um veículo agrícola em função da excitação provocada pelas irregularidades do solo. Neste trabalho, estas irregularidades são representadas por entrada degrau, entrada seno e obstáculos de uma pista normalizada segundo a norma ISO 5008. As equações do movimento são obtidas a partir dos modelos matemáticos de um quarto de veículo e meio veículo. As simulações numéricas são executadas nos softwares Matlab®, Simulink® e Visual Nastran®. A partir da entrada conhecida, podem-se determinar as características dos elementos da suspensão para obter níveis desejáveis de conforto e segurança. Foram analisadas diferentes configurações do sistema, variando-se a relação de rigidez e a constante de amortecimento equivalente a partir de um modelo considerado padrão. Os resultados foram tratados estatisticamente e comparados entre si, verificando-se que o aumento da relação de rigidez resulta na redução da aceleração vertical e no aumento do curso da suspensão, melhorando o conforto e diminuindo a segurança. Por outro lado, a redução do amortecimento provoca a redução da aceleração vertical até um determinado ponto e, a partir deste, a aceleração volta a crescer. Já o curso da suspensão diminui à medida que o amortecimento é reduzido. / Abstract: This paper is based on the elaboration of mathematical suspension models which can evaluate performance parameters of an agricultural vehicle based on the vibration caused by irregularities on the soil surface. In this paper, these irregularities are represented by step input, sine input and obstacles of leveled road according to ISO 5008 specifications. The motion equations are obtained from the mathematical models of a quarter car and half car. Numerical simulations are performed on Matlab®, Simulink® and Visual Nastran®. Based on known input, characteristics of suspension elements can be determined in order to obtain desired levels of comfort and safety. Different system configurations were analyzed changing the stiffness ratio and the damping coefficient based on a standard model. Results were treated statistically and compared among themselves. It was verified that the increase in stiffness ratio results in the reduction of the vertical acceleration and in the increase of the suspension travel, improving comfort but reducing safety. On the other hand, the reduction of damping coefficient causes the reduction of vertical acceleration up to a certain point, and from this point on the acceleration increases again. The suspension travel, however, reduces as damping coefficient is reduced. / Mestre
70

Detailed Numerical Simulation of Liquid Jet In Crossflow Atomization with High Density Ratios

January 2013 (has links)
abstract: The atomization of a liquid jet by a high speed cross-flowing gas has many applications such as gas turbines and augmentors. The mechanisms by which the liquid jet initially breaks up, however, are not well understood. Experimental studies suggest the dependence of spray properties on operating conditions and nozzle geom- etry. Detailed numerical simulations can offer better understanding of the underlying physical mechanisms that lead to the breakup of the injected liquid jet. In this work, detailed numerical simulation results of turbulent liquid jets injected into turbulent gaseous cross flows for different density ratios is presented. A finite volume, balanced force fractional step flow solver to solve the Navier-Stokes equations is employed and coupled to a Refined Level Set Grid method to follow the phase interface. To enable the simulation of atomization of high density ratio fluids, we ensure discrete consistency between the solution of the conservative momentum equation and the level set based continuity equation by employing the Consistent Rescaled Momentum Transport (CRMT) method. The impact of different inflow jet boundary conditions on different jet properties including jet penetration is analyzed and results are compared to those obtained experimentally by Brown & McDonell(2006). In addition, instability analysis is performed to find the most dominant insta- bility mechanism that causes the liquid jet to breakup. Linear instability analysis is achieved using linear theories for Rayleigh-Taylor and Kelvin- Helmholtz instabilities and non-linear analysis is performed using our flow solver with different inflow jet boundary conditions. / Dissertation/Thesis / Ph.D. Mechanical Engineering 2013

Page generated in 0.121 seconds