51 |
EFFECTS OF INTRANASALLY ADMINISTERED DNSP-11 ON THE CENTRAL DOPAMINE SYSTEM OF NORMAL AND PARKINSONIAN FISCHER 344 RATSSonne, James H. 01 January 2013 (has links)
Due to the blood-brain barrier, delivery of many drugs to the brain has required intracranial surgery which is prone to complication. Here we show that Dopamine Neuron Stimulating Peptide 11 (DNSP-11), following non-invasive intranasal administration, protects dopaminergic neurons from a lesion model of Parkinson’s disease in the rat. A significant and dose-dependent increase in an index of dopamine turnover (the ratio of DOPAC to dopamine) was observed in the striatum of normal young adult Fischer 344 rats by whole-tissue neurochemistry compared to vehicle administered controls.
Among animals challenged with a moderate, unilateral 6-hydroxy-dopamine (6-OHDA) lesion of the substantia nigra, those treated repeatedly with intranasally administered DNSP-11 exhibited greater numbers of tyrosine hydroxylase (TH) positive dopaminergic neuronal cell bodies in the substantia nigra and greater TH+ fiber density in the striatum when compared to animals treated intranasally with vehicle only or a scrambled version of the DNSP-11 sequence. Lesioned animals that received intranasal DNSP-11 treatment did not exhibit abnormal, apomorphine-induced rotation behavior, contrasted with animals that received only vehicle or scrambled peptide that did exhibit significantly greater rotation behavior.
In addition, the endogenous expression of DNSP-11 from the pro-region of GDNF was investigated by immunohistochemistry with a custom, polyclonal antibody. Signal from the DNSP-11 antibody was found to be differentially localized from the mature GDNF protein both spatially and temporally. While DNSP-11-like immunoreactivity extensively colocalizes with GDNF immunoreactivity at post-natal day 10, the day of maximal GDNF expression, DNSP-11-like signal was found to be present in the 3 month old rat brain with signal in the substantia nigra, ventral thalamic nucleus, dentate gyrus of the hippocampus, with the strongest signal observed in the locus ceruleus where GDNF is not expressed. Results from immunoprecipitation of brain homogenate were not consistent with the synthetic, amidated 11 amino-acid rat DNSP-11 sequence. However, binding patterns in the literature of NPY, the only homologous sequence present in the CNS, do not recapitulate the immunoreactive patterns observed for the DNSP-11 signal.
This study provides evidence for a potential easy-to-administer intranasal therapeutic using the DNSP-11 peptide for protection from a 6-OHDA lesion rat model of Parkinson’s disease.
|
52 |
Modifications neurochimiques au sein des ganglions de la base et comportements moteurs associés lors d'une stimulation électrique du noyau subthalamique chez le rat hémiparkinsonien ou de la mise en place de la dénervation dopaminergique chez le singeBoulet, Sabrina 23 October 2006 (has links) (PDF)
La stimulation à haute fréquence (SHF) du noyau subthalamique (NST) permet de traiter l'ensemble des symptômes moteurs de la maladie de Parkinson (MP), qui n'apparaissent que lorsque 70 % des neurones dopaminergiques de la SNc ont dégénéré. En outre, les mécanismes in fine qui permettent de retarder l'apparition des symptômes moteurs ou qui sous-tendent l'efficacité thérapeutique de la SHF du NST chez l'homme ne sont pas encore élucidés. Notre travail a porté principalement sur l'animal éveillé libre de ses mouvements. <br />Dans une première partie, nous avons analysé les effets de la SHF du NST sur le comportement moteur de rats sains et 6-OHDA et nous avons établi une corrélation entre ces effets et les taux de glutamate et de GABA extracellulaire mesurés par microdialyse intracérébrale au sein de la SNr. Ces données comportementales et neurochimiques couplées à des injections pharmacologiques intranigrales suggèrent que les dyskinésies de la patte avant induites par la SHF du NST sont médiées par le glutamate et fournissent de nouveaux arguments quant aux mécanismes de la SHF du NST dans la MP.<br />Dans une seconde partie nous avons réalisé des microdialyses intracérébrales chez des singes normaux, puis exprimant pleinement les symptômes moteurs induits par le MPTP et enfin après récupération de ces symptômes moteurs dans le but de corréler les déficits et la récupération motrice à des changements de concentration de neurotransmetteurs présents dans deux territoires striataux : le sensori-moteur et le limbique. Notre étude s'est focalisée sur la dopamine et ses métabolites, le glutamate, le GABA et la sérotonine. Nos résultats montrent que les variations de dopamine pourraient jouer un rôle important dans les mécanismes de compensation permettant la récupération de fonctions motrices normales.
|
53 |
Modulation of the ROCK pathway in models of Parkinson´s diseaseSaal, Kim Ann 16 January 2015 (has links)
No description available.
|
54 |
Efeitos do exercício físico sobre a expressão da proteína glial fibrilar ácida (GFAP) e comportamento motor de ratos submetidos ao modelo de doença de Parkinson induzida por 6-OHDA / Exercise improves motor behavioral deficits and induces GFAP expression in 6-OHDA model of Parkinson’s diseaseDutra, Márcio Ferreira January 2009 (has links)
The aim of this study was to investigate whether exercise could improve motor behavioral deficits and alter expression of glial fibrillary acidic protein (GFAP) in dorsal striatum in a 6-hydroxydopamine (6-OHDA) rat model of Parkinson’s disease (PD). To this end, animals were randomly divided into 4 groups: sham sedentary (SS, n = 7); sham trained (ST, n=8); lesioned sedentary (LS, n=8) and lesioned trained (LT, n = 8). Rats were unilaterally lesioned with 6-OHDA (10 μg/3 μg) injected into the left medial forebrain bundle and sham groups were only injected with vehicle solution. The treadmill training protocol consisted of running with progressive increase in velocity, 5 days/week, during 4 weeks. Behavioral tasks were applied to asses the motor abilities of all animals prior to 6-OHDA injection and at 8th and 29th days post-injection. The tyrosine hydroxylase (TH - in substantia nigra pars compacta) and GFAP (in dorsal striatum) immunostaining was evaluated by semiquantitative analysis of the intensity (optical density - OD). The 6-OHDA lesion decreased the OD of TH and increased the OD of GFAP. In addition, the 6-OHDA lesion increased the number of ipsilateral rotations induced by methylphenidate (40 mg/kg, i.p., 30 min) and caused motor behavioral deficits. On the other hand, the treadmill training resulted in an increase in maximal exercise capacity in both trained groups (ST and LT). The training was able to reduce the number of ipsilateral rotations and ameliorated the motor behavioral deficits on 8th and 29th days postlesion. Interestingly, the exercise led to a significant increase in OD of GFAP in the LT group while there was no such effect in ST group. Our results indicate that treadmill training can improve motor behavioral deficits and suggest that the effects of exercise may be directly or, indirectly, mediated by astrocytes, as an increase in GFAP was observed in the dorsal striatum. Nevertheless, these are the first data showing an increase in GFAP expression post-exercise in this model and further research is needed to determine the precise action of exercise on astrocytes in Parkinson’s disease.
|
55 |
Efeitos do exercício físico sobre a expressão da proteína glial fibrilar ácida (GFAP) e comportamento motor de ratos submetidos ao modelo de doença de Parkinson induzida por 6-OHDA / Exercise improves motor behavioral deficits and induces GFAP expression in 6-OHDA model of Parkinson’s diseaseDutra, Márcio Ferreira January 2009 (has links)
The aim of this study was to investigate whether exercise could improve motor behavioral deficits and alter expression of glial fibrillary acidic protein (GFAP) in dorsal striatum in a 6-hydroxydopamine (6-OHDA) rat model of Parkinson’s disease (PD). To this end, animals were randomly divided into 4 groups: sham sedentary (SS, n = 7); sham trained (ST, n=8); lesioned sedentary (LS, n=8) and lesioned trained (LT, n = 8). Rats were unilaterally lesioned with 6-OHDA (10 μg/3 μg) injected into the left medial forebrain bundle and sham groups were only injected with vehicle solution. The treadmill training protocol consisted of running with progressive increase in velocity, 5 days/week, during 4 weeks. Behavioral tasks were applied to asses the motor abilities of all animals prior to 6-OHDA injection and at 8th and 29th days post-injection. The tyrosine hydroxylase (TH - in substantia nigra pars compacta) and GFAP (in dorsal striatum) immunostaining was evaluated by semiquantitative analysis of the intensity (optical density - OD). The 6-OHDA lesion decreased the OD of TH and increased the OD of GFAP. In addition, the 6-OHDA lesion increased the number of ipsilateral rotations induced by methylphenidate (40 mg/kg, i.p., 30 min) and caused motor behavioral deficits. On the other hand, the treadmill training resulted in an increase in maximal exercise capacity in both trained groups (ST and LT). The training was able to reduce the number of ipsilateral rotations and ameliorated the motor behavioral deficits on 8th and 29th days postlesion. Interestingly, the exercise led to a significant increase in OD of GFAP in the LT group while there was no such effect in ST group. Our results indicate that treadmill training can improve motor behavioral deficits and suggest that the effects of exercise may be directly or, indirectly, mediated by astrocytes, as an increase in GFAP was observed in the dorsal striatum. Nevertheless, these are the first data showing an increase in GFAP expression post-exercise in this model and further research is needed to determine the precise action of exercise on astrocytes in Parkinson’s disease.
|
56 |
Efeitos do exercício físico sobre a expressão da proteína glial fibrilar ácida (GFAP) e comportamento motor de ratos submetidos ao modelo de doença de Parkinson induzida por 6-OHDA / Exercise improves motor behavioral deficits and induces GFAP expression in 6-OHDA model of Parkinson’s diseaseDutra, Márcio Ferreira January 2009 (has links)
The aim of this study was to investigate whether exercise could improve motor behavioral deficits and alter expression of glial fibrillary acidic protein (GFAP) in dorsal striatum in a 6-hydroxydopamine (6-OHDA) rat model of Parkinson’s disease (PD). To this end, animals were randomly divided into 4 groups: sham sedentary (SS, n = 7); sham trained (ST, n=8); lesioned sedentary (LS, n=8) and lesioned trained (LT, n = 8). Rats were unilaterally lesioned with 6-OHDA (10 μg/3 μg) injected into the left medial forebrain bundle and sham groups were only injected with vehicle solution. The treadmill training protocol consisted of running with progressive increase in velocity, 5 days/week, during 4 weeks. Behavioral tasks were applied to asses the motor abilities of all animals prior to 6-OHDA injection and at 8th and 29th days post-injection. The tyrosine hydroxylase (TH - in substantia nigra pars compacta) and GFAP (in dorsal striatum) immunostaining was evaluated by semiquantitative analysis of the intensity (optical density - OD). The 6-OHDA lesion decreased the OD of TH and increased the OD of GFAP. In addition, the 6-OHDA lesion increased the number of ipsilateral rotations induced by methylphenidate (40 mg/kg, i.p., 30 min) and caused motor behavioral deficits. On the other hand, the treadmill training resulted in an increase in maximal exercise capacity in both trained groups (ST and LT). The training was able to reduce the number of ipsilateral rotations and ameliorated the motor behavioral deficits on 8th and 29th days postlesion. Interestingly, the exercise led to a significant increase in OD of GFAP in the LT group while there was no such effect in ST group. Our results indicate that treadmill training can improve motor behavioral deficits and suggest that the effects of exercise may be directly or, indirectly, mediated by astrocytes, as an increase in GFAP was observed in the dorsal striatum. Nevertheless, these are the first data showing an increase in GFAP expression post-exercise in this model and further research is needed to determine the precise action of exercise on astrocytes in Parkinson’s disease.
|
57 |
Modulation of the 5-HT3 Receptor as a Novel Anti-Dyskinetic Target in Parkinson’s DiseaseKwan, Cynthia 12 1900 (has links)
No description available.
|
58 |
Lifelong Rodent Model of Tardive Dyskinesia-Persistence After Antipsychotic Drug WithdrawalKostrzewa, Richard M., Brus, Ryszard 16 October 2015 (has links)
Tardive dyskinesia (TD), first appearing in humans after introduction of the phenothiazine class of antipsychotics in the 1950s, is now recognized as an abnormality resulting predominately by long-term block of dopamine (DA) D2 receptors (R). TD is thus reproduced in primates and rodents by chronic administration of D2-R antagonists. Through a series of studies predominately since the 1980s, it has been shown in rodent modeling of TD that when haloperidol or other D2-R antagonist is added to drinking water, rats develop spontaneous oral dyskinesias, vacuous chewing movements (VCMs), after ~3 months, and this TD is associated with an increase in the number of striatal D2-R. This TD persists for the duration of haloperidol administration and another ~2 months after haloperidol withdrawal. By neonatally lesioning dopaminergic nerves in brain in neonatal rats with 6-hydroxydopamine (6-OHDA), it has been found that TD develops sooner, at ~2 months, and also is accompanied by a much higher number of VCMs in these haloperidol-treated lesioned rats, and the TD persists lifelong after haloperidol withdrawal, but is not associated with an increased D2-R number in the haloperidol-withdrawn phase. TD apparently is related in part to supersensitization of both D1-R and serotoninergic 5-HT2-R, which is also a typical outcome of neonatal 6-OHDA (n6-OHDA) lesioning. Testing during the haloperidol-withdrawn phase in n6-OHDA rats displaying TD reveals that receptor agonists and antagonists of a host of neuronal phenotypic classes have virtually no effect on spontaneous VCM number, except for 5-HT2-R antagonists which acutely abate the incidence of VCMs in part. Extrapolating to human TD, it appears that (1)5-HT2-R supersensitization is the crucial alteration accounting for persistence of TD, (2) dopaminergic-perhaps age-related partial denervation-is a risk factor for the development of TD, and (3) 5-HT2-R antagonists have the therapeutic potential to alleviate TD, particularly if/when an antipsychotic D2-R blocker is withdrawn.
|
59 |
H<sub>3</sub> Receptor Agonist- and Antagonist-Evoked Vacuous Chewing Movements in 6-OHDA-Lesioned Rats Occurs in an Absence of Change in Microdialysate Dopamine LevelsNowak, Przemysław, Dabrowska, Joanna, Bortel, Aleksandra, Biedka, Izabela, Szczerbak, Grazyna, Słomian, Grzegorz, Kostrzewa, Richard M., Brus, Ryszard 15 December 2006 (has links)
In rats lesioned neonatally with 6-hydroxydopamine (6-OHDA), repeated treatment with SKF 38393 (1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol), a dopamine D1/D5 receptor agonist, produces robust stereotyped and locomotor activities. The gradual induction of dopamine D1 receptor supersensitivity is known as a priming phenomenon, and this process is thought to underlie not only the appearance of vacuous chewing movements in humans with tardive dyskinesia, but also the onset of motor dyskinesias in l-dihydroxyphenylalanine (l-DOPA)-treated Parkinson's disease patients. The object of the present study was to determine the possible influence of the histaminergic system on dopamine D1 agonist-induced activities. We found that neither imetit (5.0 mg/kg i.p.), a histamine H3 receptor agonist, nor thioperamide (5.0 mg/kg i.p.), a histamine H3 receptor antagonist/inverse agonist, altered the numbers of vacuous chewing movements in non-primed-lesioned rats. However, in dopamine D1 agonist-primed rats, thioperamide alone produced a vacuous chewing movements response (i.e., P < 0.05 vs SKF 38393, 1.0 mg/kg i.p.), but did not modify the SKF 38393 effect. Notably, both imetit and thioperamide-induced catalepsy in both non-primed and primed 6-OHDA-lesioned rats, comparable in magnitude to the effect of the dopamine D1/D5 receptor antagonist SCH 23390 (7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine; 0.5 mg/kg i.p.). Furthermore, in primed animals both imetit and thioperamide intensified SCH 23390-evoked catalepsy. In vivo microdialysis established that neither imetit nor thioperamide altered extraneuronal levels of dopamine and its metabolites in the striatum of 6-OHDA-lesioned rats. On the basis of the present study, we believe that histaminergic systems may augment dyskinesias induced by dopamine receptor agonists, independent of direct actions on dopaminergic neurons.
|
60 |
Investigation of coherence between limbic structures in a rodent model of Parkinson's DiseaseZachrisson, Love January 2021 (has links)
Parkinson’s Disease affects 10 million people worldwide, with 40% of patients developing an associated psychosis which has been identified by studies as the number one source of caretaker distress and is related to increased mortality. This is further complicated by the fact that typical antipsychotic drugs worsen many of the motor symptoms implicated in Parkinson’s Disease, with only one commercially available drug able to ameliorate both symptoms. This problem ushers the development of novel drugs to treat these symptoms, as first tested on research animals. Complicating matters, drug effectiveness on the degree of psychosis is hard to obtain in animals without a reliable biomarker. However, a hallmark of psychotic states is thought to be the reduced coordination between brain structures, through neuronal synchronization, as demonstrated by steady-state responses and is suggested to be a potential biomarker of psychosis. By building a MATLAB software we were able to analyze the degree of neural synchronization between structures, during an auditory steady-state response, in rats that had been unilaterally lesioned by the 6-Hydroxydopamine model of Parkinson’s Disease, before and after administration of the psychotomimetic drug MK801. These rats had been chronically implanted with 128-channel multi electrode array, enabling us to measure the strength of coherence between several limbic structures, associated with auditory processing, from the sampled local field potential, identifying the degree of synchronization in the animal brain. As our data demonstrate that coherence levels dropped in the psychotic drug state, for structures in both the healthy and the Parkinsonian hemisphere, we are able to further demonstrate the validity of coherence measures as a biomarker for psychosis. These results demonstrate that our software can be used as a tool to assess the therapeutic response of drugs developed, aimed at treating Parkinson’s associated psychosis. / Parkinsons sjukdom drabbar 10 miljoner världen över, där 40% av patienterna utvecklar en associerad psykos vilket har visats vara en av de största stressfaktorerna för deras vårdgivare och är även förknippat med en högre dödlighetsgrad. Denna situation förvärras av det faktum att de vanliga antipsykotiska drogerna kan förvärra många av de motoriska symptom som utgörs av Parkinsons sjukdom och det finns i dagsläget enbart en enda kommersiell drog som kan dämpa bägge symptom samtidigt. Detta problem frammanar vidare utveckling av nya läkemedel som kan behandla dessa symptom, som innebär att de först måste testas på försöksdjur. En komplikation som uppstår i relation till detta är svårigheten att utvärdera om läkemedel har någon terapeutisk effekt på de psykotiska tillstånden, enbart genom att observera försöksdjurens beteenden, och en pålitlig biomarkör krävs istället. En lösning kan dock finnas i det faktum att psykotiska tillstånd karaktäriseras av en reducerad förmåga för olika hjärnområden att koordinera genom neural synkronisering vilket demonstreras av ‘steady- state’ responser. Detta föreslår att ett mått på graden av koordineringsförmåga kan agera som en möjlig biomarkör för psykotiska tillstånd. Genom att konstruera ett MATLAB-program kunde vi analysera graden av synkronicitet mellan hjärnstrukturer, under den auditiva steady- state responsen i råttor som hade blivit ensidigt lesionerade genom 6-Hydroxiddopamin modellen av Parkinsons sjukdom, före och efter administration av den psykotomimetiska drogen MK801. Dessa råttor hade blivit kroniskt implanterade med 128 elektroder vilket möjliggjorde att vi kunde mäta styrkan i koherens i den lokala fält potentialen mellan limbiska strukturer, som är associerade med auditiv processering, vilket möjliggjorde identifiering av3dessa strukturers synkronicitet. Vår data demonstrerar att koherensen minskade under det psykotiska drogtillståndet för limbiska strukturer både i den intakta och den lesionerade hjärnhalvan. Detta är en vidare demonstration av att koherensnivåer kan agera som en biomarkör för det psykotiska tillståndet, liksom att vår mjukvara kan nyttjas som ett verktyg för att utvärdera nya läkemedels behandlingsförmåga på Parkinsons psykos.
|
Page generated in 0.046 seconds