• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 15
  • 14
  • 12
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 201
  • 79
  • 46
  • 40
  • 29
  • 24
  • 23
  • 21
  • 20
  • 15
  • 15
  • 15
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Síntese de monômeros luminescentes com norborneno e suas polimerizações via metátese / Synthesis of luminescent norbornene monomers and their metathesis polymerization

Vinicius Kalil Tomazett 16 December 2016 (has links)
As reações de metatese assim como o desenvolvimento de complexos metal-carbeno (W, Mo, Ru) se tornaram amplamente conhecidos na química graças aos avanços que trouxeram. Na química orgânica, possibilitou a síntese de macrocíclos por meio da RCM e na química de polímeros a ROMP permitiu um alto grau de controle da polimerização além da alta reatividade dos catalisadores. Isso fez desta reação uma poderosa ferramenta no desenvolvimento de novos materias. A tentativa de combinar a processabilidade dos polímeros com as propriedades luminescentes de determinandos compostos tem sido tema de muitas pesquisas.O objetivo deste trabalho é derivatizar compostos luminescentes , como o complexo metálico [Ru(bpy)3] (PF6)2e a porfirina tetrakis-(pentafluorfenil)porfirina (TPPF20), com o monômero norborneno (NBE) para obtenção de monômeros lumiscentes passíveis de serem polimerizados via ROMP. Aqui será apresentado e discutido a síntese e a caracterização desses compostos partindo-se dos reagentes: ácido-5-norborneno-2carboxílico; etilenodiamina e o ácido-2,2\'-bipiridina-4,4\'-dicarboxílico, cis-[RuCl2(bpy)2] e a porfirina TPPF20. Os compostos foram sintetizados com rendimentos superiores a 60%, com exceção da obtenção da porfirina, e caracterizados por RMN - 1H e 13C; FTIR; UV-vis. Os estudos de copolimerização entre NEN (norborneno-etilenodiamina-norborneno), NBE-TPPF e [Ru(bpy)2(NBbpy)](PF6)2 foram feitos usando o catalisador de Grubbs segunda gereação. Os polímeros gerados foram caracterizados usando TG-FTIR e RMN-1H, as massas moleculares não puderam ser calculadas por GPC porém os estudos indicam obtenção de baixo peso molelcular. O material obtido foi testado como sensibilizador em vidro condutor ITO, porém não houve adsorção do composto necessitam algumas modificações no metalomonômero. / The metathesis reactions as well as the development of metal-carbene complexes (W, Mo, Ru) became widely known in chemistry thanks to advancements brought. In organic chemistry, it enabled the synthesis of macrocycle by RCM. Useful for the synthesis of natural products. In polymer chemistry, ROMP, allow a high degree of polymerization control. This made the ROMP reaction a powerful tool in the development of new materials. In attempt to combine the processability of polymers with luminescent properties of such compounds has been the subject of several researchs. The aim of this work is to synthesize luminescent compounds based on [Ru(bpy)3] (PF6)2 metal complex and on the porphyrin tetrakis-(pentafluorphenyl)porphyrin (TPPF20), funcionalized with pendant norbornene monomer (NBE) to obtain lumiscentes monomers which can undergo ROMP polymerization. Here will be discussed the synthesis and characterization of these compounds using as starting materials: 5-norbornene-2-carboxylic acid; ethylenediamine; 2,2\'-bipyridine-4,4\'dicarboxylic acid, cis-[RuCl2(bpy)2] and the porphyrin TPPF20. The compounds were synthesized with yields higher than 60%, with the exception of the porphyrin, and characterized by 1H and 13C-NMR; FTIR; UV-vis. Copolymerization reaction between NEN (Norbornene-Ethylenediamine-Norbornene), NBE-TPPFe [Ru(bpy)2(NBbpy)] (PF6)2 were performed using Grubbs second generation catalyst. Resultinf polymers were characterized by TG-FTIR and 1H-NMR, molecular weight could not be measured by GPC, since polymers were insoluble, but studies indicate low molelcular weight. The material obtained was tested as sensitizer in conductive glass ITO. The polymer didn\'t adsorb in to the ITO surface. Some changes in the compound molecular structure are required to improve adsorption.
152

Síntese de monômeros luminescentes com norborneno e suas polimerizações via metátese / Synthesis of luminescent norbornene monomers and their metathesis polymerization

Tomazett, Vinicius Kalil 16 December 2016 (has links)
As reações de metatese assim como o desenvolvimento de complexos metal-carbeno (W, Mo, Ru) se tornaram amplamente conhecidos na química graças aos avanços que trouxeram. Na química orgânica, possibilitou a síntese de macrocíclos por meio da RCM e na química de polímeros a ROMP permitiu um alto grau de controle da polimerização além da alta reatividade dos catalisadores. Isso fez desta reação uma poderosa ferramenta no desenvolvimento de novos materias. A tentativa de combinar a processabilidade dos polímeros com as propriedades luminescentes de determinandos compostos tem sido tema de muitas pesquisas.O objetivo deste trabalho é derivatizar compostos luminescentes , como o complexo metálico [Ru(bpy)3] (PF6)2e a porfirina tetrakis-(pentafluorfenil)porfirina (TPPF20), com o monômero norborneno (NBE) para obtenção de monômeros lumiscentes passíveis de serem polimerizados via ROMP. Aqui será apresentado e discutido a síntese e a caracterização desses compostos partindo-se dos reagentes: ácido-5-norborneno-2carboxílico; etilenodiamina e o ácido-2,2\'-bipiridina-4,4\'-dicarboxílico, cis-[RuCl2(bpy)2] e a porfirina TPPF20. Os compostos foram sintetizados com rendimentos superiores a 60%, com exceção da obtenção da porfirina, e caracterizados por RMN - 1H e 13C; FTIR; UV-vis. Os estudos de copolimerização entre NEN (norborneno-etilenodiamina-norborneno), NBE-TPPF e [Ru(bpy)2(NBbpy)](PF6)2 foram feitos usando o catalisador de Grubbs segunda gereação. Os polímeros gerados foram caracterizados usando TG-FTIR e RMN-1H, as massas moleculares não puderam ser calculadas por GPC porém os estudos indicam obtenção de baixo peso molelcular. O material obtido foi testado como sensibilizador em vidro condutor ITO, porém não houve adsorção do composto necessitam algumas modificações no metalomonômero. / The metathesis reactions as well as the development of metal-carbene complexes (W, Mo, Ru) became widely known in chemistry thanks to advancements brought. In organic chemistry, it enabled the synthesis of macrocycle by RCM. Useful for the synthesis of natural products. In polymer chemistry, ROMP, allow a high degree of polymerization control. This made the ROMP reaction a powerful tool in the development of new materials. In attempt to combine the processability of polymers with luminescent properties of such compounds has been the subject of several researchs. The aim of this work is to synthesize luminescent compounds based on [Ru(bpy)3] (PF6)2 metal complex and on the porphyrin tetrakis-(pentafluorphenyl)porphyrin (TPPF20), funcionalized with pendant norbornene monomer (NBE) to obtain lumiscentes monomers which can undergo ROMP polymerization. Here will be discussed the synthesis and characterization of these compounds using as starting materials: 5-norbornene-2-carboxylic acid; ethylenediamine; 2,2\'-bipyridine-4,4\'dicarboxylic acid, cis-[RuCl2(bpy)2] and the porphyrin TPPF20. The compounds were synthesized with yields higher than 60%, with the exception of the porphyrin, and characterized by 1H and 13C-NMR; FTIR; UV-vis. Copolymerization reaction between NEN (Norbornene-Ethylenediamine-Norbornene), NBE-TPPFe [Ru(bpy)2(NBbpy)] (PF6)2 were performed using Grubbs second generation catalyst. Resultinf polymers were characterized by TG-FTIR and 1H-NMR, molecular weight could not be measured by GPC, since polymers were insoluble, but studies indicate low molelcular weight. The material obtained was tested as sensitizer in conductive glass ITO. The polymer didn\'t adsorb in to the ITO surface. Some changes in the compound molecular structure are required to improve adsorption.
153

Synthesis of Novel Chiral Bicyclic Ligands and their Application in Iridium-Catalyzed Reactions

Trifonova, Anna January 2005 (has links)
<p>The synthesis of 2-aza-norborane derivatives is presented. The use of these compounds in preparation of Ir catalysts for asymmetric hydrogenations is described. The evaluation and optimization of the catalysts as well as the mechanistic aspects of the catalytic process are discussed.</p><p>The use of non-activated iminodieniphiles in stereoselective aza-Diels-Alder reaction has expanded the scope of the reaction and provided a convenient root for preparation of 2-aza-norboranes, analogues of which were developed into novel bicyclic 2-aza-norbornyl-oxazoline ligands for Ir-catalyzed asymmetric transfer hydrogenations. Using ths Ir complexes acetophenone was hydrogenated in 79% ee.</p><p>2-Aza-norbornyl-oxazolines were also developed into novel N,P-ligands. Resulting phosphine-oxazolines were evaluated in Ir-catalyzed asymmetric hydrogenation of structurally diverse imines and olefins.</p><p>Optimization of ligands was performed through: 1) Alteration of the stereoconfiguration at the 5’-position as well as variation of the size and geometry of the substituents at this position; 2) Screening through various phosphine substituents of the ligand. Both directions of optimization reflect on the influence of the ligands’ sterik bulk on stereoselectivity of catalytic process. High performance catalysts were developed for both transformations allowing asymmetric hydrogenation of imines with 92% ee and asymmetric hydrogenation of olefins with 99% ee.</p><p>Possible mechanisms for these transformations were suggested based on computational studies. Selectivity model for rationalization of results of Ir-catalyzed olefin hydrogenation also was designed.</p>
154

Synthesis of Novel Chiral Bicyclic Ligands and their Application in Iridium-Catalyzed Reactions

Trifonova, Anna January 2005 (has links)
The synthesis of 2-aza-norborane derivatives is presented. The use of these compounds in preparation of Ir catalysts for asymmetric hydrogenations is described. The evaluation and optimization of the catalysts as well as the mechanistic aspects of the catalytic process are discussed. The use of non-activated iminodieniphiles in stereoselective aza-Diels-Alder reaction has expanded the scope of the reaction and provided a convenient root for preparation of 2-aza-norboranes, analogues of which were developed into novel bicyclic 2-aza-norbornyl-oxazoline ligands for Ir-catalyzed asymmetric transfer hydrogenations. Using ths Ir complexes acetophenone was hydrogenated in 79% ee. 2-Aza-norbornyl-oxazolines were also developed into novel N,P-ligands. Resulting phosphine-oxazolines were evaluated in Ir-catalyzed asymmetric hydrogenation of structurally diverse imines and olefins. Optimization of ligands was performed through: 1) Alteration of the stereoconfiguration at the 5’-position as well as variation of the size and geometry of the substituents at this position; 2) Screening through various phosphine substituents of the ligand. Both directions of optimization reflect on the influence of the ligands’ sterik bulk on stereoselectivity of catalytic process. High performance catalysts were developed for both transformations allowing asymmetric hydrogenation of imines with 92% ee and asymmetric hydrogenation of olefins with 99% ee. Possible mechanisms for these transformations were suggested based on computational studies. Selectivity model for rationalization of results of Ir-catalyzed olefin hydrogenation also was designed.
155

Synthetic Approaches To Herbertenoid And Cuparenoid Sesquiterpenes

Ravikumar, P C 08 1900 (has links)
Among Nature's creation, terpenoids are more versatile and exciting natural products. In a remarkable display of synthetic ingenuity and creativity, nature has endowed terpenes with a bewildering array of carbocyclic frameworks with unusual assemblage of rings and functionalities. This phenomenal structural diversity of terpenes makes them ideal targets for developing and testing new synthetic strategies for efficient articulation of carbocyclic frameworks. The thesis entitled “Synthetic Approaches to Herbertenoid and Cuperenoid Sesquiterpenes" describes the application of ring-closing metathesis and Claisen rearrangement based approach to some herbertenoid and cuparenoid natural products. The results are described in five different sections, viz., a) First Total Synthesis of (±)-γ-Herbertenol; b) First Total Synthesis of (±)-HM-2; c) First Total Synthesis of (±)-HM-4 and HM-3; d) First Total Synthesis of Herbertenones A and B; and e) Total Synthesis of Lagopodin A. Complete details of the experimental procedures and the spectroscopic data were provided in a different section. A brief introduction is provided wherever appropriate to keep the present work in proper perspective. The compounds are sequentially numbered (bold), references are marked sequentially as superscripts and listed in the last section of the thesis. All the spectra included in the thesis were obtained by xeroxing the original NMR spectra. To begin with, the first total synthesis of γ-herbertenol, an herbertene isolated from a non-herbertus source, has been accomplished starting from 3,5-dimethylphenol. Claisen rearrangement of 3-(3-methoxy-5-methylphenyl)but-2-en-1-ol, obtained in eight steps from 3,5-dimethylphenol, furnished a γ,δ-unsaturated ester, which was transformed into 4-aryl-4,5,5-trimethylcyclopent-2-enone employing RCM reaction as the key step, which was further transformed into (±)-γ-herbertenol, which exhibited spectral data identical to that of the natural product. An alternative RCM reaction based methodology was also developed for the synthesis of γ-herbertenol methyl ether starting from ethyl 3-aryl-3-methylpent-4-enoate, an intermediate in the first sequence. The methodology has been extended for the synthesis of the putative structure of HM-2 starting from 2,4-dimethoxy-5-methylacetophenone via the corresponding ethyl 3-aryl-3-methylpent-4-enoate. However, the spectral data of the synthetic compound was found to be different from that reported for the natural product. A new cuperenoid structure for HM-2 was proposed. Total synthesis of cuparene-1,4-diol starting from toluhydroquinone, followed by its conversion to mono methyl ether and mono acetyl derivative confirmed the structures of HM-1 and the revised structure of HM-2. In a similar manner, total synthesis of the putative structure of HM-3 starting from 4-methylresorcinol dimethyl ether proved it to be wrong. A cupereniod structure, HM-4 monoacetate was proposed for HM-3. Synthesis of HM-4, and its conversion to mono acetate confirmed the structures of HM-4 and the revised structure of HM-3. The methodology has been further extended to the first total synthesis of herbertenones A and B starting from 2,5-dimethoxybenzaldehyde. By readily identifying the similarity between lagopodin A and HM-1 and HM-2, an intermediate in the synthesis of HM-1 and HM-2 has been further transformed in to (±)lagopodin A.
156

A Computational Study Of Nucleophilic Attacks In Organometallic Complexes

Dinda, Shrabani 12 1900 (has links) (PDF)
A wide variety of computational methods are available for exploring molecular structures and reactivity in chemistry. These range from molecular mechanics calculations allowing determination of the geometry of a molecule to ab initio calculations for the electronic structure of compounds. Electronic structure calculations can be carried out with sufficient rigor so that the results are now comparable with experimental results in many cases. Density Functional Theory (DFT) with hybrid functional like B3LYP, for example, is very popular especially for studies on organometallic molecules and their reactions. Traditional ab initio approaches including Hartree-Fock (HF) and post-HF methods that include configuration interaction, such as MP2 and MP4 continue to be used, often for comparison with DFT based methods. Semi-empirical methods now appear to have only limited use except in large systems, in combination with molecular mechanics (MM) calculations. A relatively new use of MM for large systems is in hybrid calculations where the reactive center of the system is treated at a higher level leaving the remainder to be treated at the MM level. These hybrid QM/MM (quantum mechanics/molecular mechanics) calculations, such as ONIOM (our own n-layered integrated molecular orbital and molecular mechanics developed by Morokuma and co-workers) enable one to treat the steric bulk of the big system effectively and computationally efficiently. They appear to be very standard methods particularly in studies relating to reactions of organometallic systems and structures of large biomolecules. A short description of these methods is given below. • ab initio: a wide variety of programs that calculate the electronic structure of molecules using the Schrödinger equation, the values of the fundamental constants and the atomic numbers of the atoms present (Atkins, 1991). Molecular structures, optimized as a function of the electronic structure, are valuable starting points for many studies. • Density Functional Theory (DFT): a theoretical model in which the energy of an N-electron system is described as a functional of the density. • Semi-empirical techniques use approximations to evaluate the overlap, repulsion and exchange integrals in solving the Schrodinger equation. Often, these integrals are not evaluated but estimated to reproduce experimental data. • Molecular mechanics uses classical physics to explain and interpret the behavior of atoms and molecules. • Molecular dynamics (MD): Newton’s laws of motion are used to examine the time-dependent behavior of systems, including vibrations and Brownian motion, using a classical mechanical description. When combined with DFT, it leads to the Car-Parrinello method. • QM/MM method: It is a molecular simulation method that combines the strength of both QM (accuracy) and MM (speed) calculations, thus resulting in an extremely powerful tool for the study of bigger systems like chemical process in solution, interaction of drugs with biomolecules etc. Several commercial and educational packages in computational chemistry include a suite of programs that enable study of organic and organometallic molecules in an integrated fashion. While no list can be comprehensive, those that are more popular and useful are listed in several websites URL (http://www.ccl.net/chemistry/links/software/index.shtml). In the early days of computational chemistry up to 1980's, detailed studies were only carried out on small organic compounds or empirical studies were carried out on transition metal containing organometallics. However, in recent times, significant advancements in theoretical methods and computer capability (hardware and software), have led to the acceleration of theoretical and computational studies of complex systems including compounds containing transition metal elements. Computational and theoretical studies of organometallic complexes and their reactions have gained immense popularity and the numbers of papers including theoretical studies are dramatically increasing. One reason for this popularity is that organometallic complexes exhibit unusual geometries, bonding, and reactivity which often do not fall into the domain of inorganic or organic chemistry making them difficult to understand. Catalysis is one of the most extensively studied areas in organometallic chemistry where computational studies already make a real and valuable contribution to the analysis and interpretation of experimental data. However, what might be called ‘in silico’ catalyst screening and design, has rarely been achieved. One might say that successful prediction of catalyst performance is still a dream. A recent review summarizes the current state of the art in computational chemistry as applied to organometallic catalysis, covering both calculated ligand property descriptors and mechanistic studies of catalytic cycles.1 Some of the widely studied catalytic reactions of current interest, that provide huge scope for computational and theoretical analysis, are allylic alkylation (Pd),2 hydrogenation (Rh),3 hydroformylation (Rh),4 alkene metathesis (Ru),5 cross-coupling (Pd),6 C–H activation (Pd)7 and amination (Pd).8 There are many more examples where computational studies appear to be very useful for analysis of crystal structures and NMR structures or prediction of structures where no experimental data are available for complicated organometallic systems. There are a number of studies on drug-DNA/nucleobases interactions using QM/MM-MD simulations where people have investigated the interactions of metal complexes with double stranded (ds) DNA/nucleobases and the effects of their binding on the local and the global structure of DNA. QM/MM methods are also very helpful for studying catalytic reactions, interpretation of structure of large systems (proteins) and understanding reactions in biological systems. Scope of the Thesis In this thesis an attempt is made to use computational chemistry to understand organometallic reactions that are of significance from biological and synthetic view points, such as the action of organometallic complexes on DNA and the mechanism of some catalytic reactions. In many of these cases, the key step involved a nucleophillic attack. Specifically four such problems have been addressed where experimental results are not sufficient to provide a complete mechanistic picture of the reaction. Hence, the thesis contains four chapters with each having an independent brief introduction. The first chapter deals with the substitution reaction where water replaces chloride ion in the piano stool type ruthenium (II)-arene complexes and subsequently coordination of Ru to guanine/adenine occurs in these complexes. These steps have been studied using density functional theory at the B3LYP level. The complexes have promising anticancer activity. These nucleophilic substitution reactions are very important for activating these complexes so that they can interact with DNA, because DNA is thought to be primary target for their anticancer activity. In this chapter, both associative and dissociative pathways have been explored in the gas phase, as well as in the presence of other solvents for substitution reactions. Among the associative paths, a variety of possibilities can exist for the hydrolysis based on the direction of the nucleophilic attack by a water molecule. The proposed theoretical model for hydrolysis provides new insight into the hydrolysis process in half sandwich ruthenium complexes. The second chapter deals with the QM/MM calculations to investigate the structural and electronic properties of drug-DNA interactions, where DNA acts as nucleophile towards the metal complex. A series of piano-stool type ruthenium (II)-arene complexes were selected for the present study. These interactions were analyzed using the two layer ONIOM method. The importance of this study lies in the detailed understanding of factors that govern DNA binding and reactivity which is clearly of great pharmacological interest, as it may provide the basis for designing better anticancer agents. Experimental results that explore the structural feature of DNA-metal complexes at a molecular level are very limited. Thus theoretical calculations of molecular and electronic structure represent a valuable complement to experiments. They provide an alternative way to explore structure-activity relationships, and the drug binding mechanism, in detail. The third chapter reports the use of QM/MM methods in understanding the reaction mechanism and enantioselectivity in an organic transformation. In this section, a computational investigation of the enantioselectivity observed in the allylation of cinnamaldehyde, catalyzed by chiral platinum phosphinite complexes, have been carried out. The catalysts are ascorbic acid based phosphinite complexes where enantioselectivity depends on the substitution of benzyl groups on the chiral phosphinite ligands. From the experiment, it is not clear how the effect of an ancillary ligand can make such a big impact on enantioselectivity. To find out the origin of stereoselectivity, a computational study was taken up. A reaction mechanism was established where the nucleophilic attack determines the rate of the reaction and the corresponding enantioselectivity. A screening process has been utilized to select relevant reactant adducts and corresponding transition states from approximately 200 theoretically possible conformers using MM calculations. Finally with the help of QM/MM calculations, the numbers of contributions of these conformers were estimated. This approach correctly predicts the enantioselectivity in these reactions catalyzed by these complexes especially when the experimental enantioselectivity is very high. The fourth chapter of the thesis discusses the use of computational techniques to study the nucleophilic attack of an imine on a Ti-olefin complex. The reaction of Grignard reagents with imines mediated by stoichiometric amounts of titanium isopropoxide has been reported recently. On the basis of deuterium labeling experiments, nucleophilic attack of an imine on a Ti-olefin complex was believed to be a key step. Effect of deuterium labeling on the ratio of products formed is not easy to understand from experiments. Hence a computational study was performed using the DFT method to establish the mechanism of substitution and to understand the role of deuterium labeling. The thesis also includes a study of Cu-Cu interactions using Atoms in Molecules (AIM) theory in copper complexes with reasonably short Cu-Cu distances. The concept of bond critical points (BCP) from AIM analysis is employed to investigate the CuI-CuI bonding interactions in ligand unsupported copper complexes where the CuI-CuI contacts are shorter than the sum of their van der Waals radii. There is extensive debate about the nature of interactions between d10 "closed shell" systems in copper (CuI) complexes, which is known as cuprophilicity. In this study, an attempt has been made to compute the electron density between the two CuI centers and examine the nature of this “interaction”. As this falls outside the main theme of nucleophilic interactions in metal complexes, it has been relegated to an appendix.
157

Ireland-Claisen Rearrangement Based Strategy To Sesquiterpenes Containing Vicinal Quaternary Carbon Atoms

Vasanthalakshmi, B 03 1900 (has links)
Among Nature's creation, terpenoids are more versatile and exciting natural products. In a remarkable display of synthetic ingenuity and creativity, nature has endowed terpenes with a bewildering array of carbocyclic frameworks with unusual assemblage of rings and functionalities. This phenomenal structural diversity of terpenes makes them ideal targets for developing and testing new synthetic strategies for efficient articulation of carbocyclic frameworks. The thesis entitled “Ireland-Claisen Rearrangement Based Strategy to Sesquiterpenes Containing Vicinal Quaternary Carbon Atoms” demonstrates the utility of the Ireland ester Claisen rearrangement and RCM reactions for the synthesis of a variety of sesquiterpenes containing vicinal quaternary carbon atoms. The results are described in five different sections, viz., (a) Synthesis of herbertene-1,13-diol and α-herbertenol; (b) Total syntheses of herbertenolide, herberteneacetal, herbertene-1,14-diol and herbertene-1,15-diol; (c) First total synthesis of the spirobenzofuran isolated from Acremonium sp. HKI 0230; (d) Total synthesis of lagopodin A; and (e) Synthesis of Laurencenone C, α- and β-chamigrenes. Complete details of the experimental procedures and the spectroscopic data were provided in a different section. A brief introduction is provided wherever appropriate to keep the present work in proper perspective. The compounds are sequentially numbered (bold), references are marked sequentially as superscripts and listed in the last section of the thesis. All the spectra included in the thesis were obtained by xeroxing the original NMR spectra. To begin with a short and efficient synthesis of herbertene-1,13-diol and α-herbertenol has been achieved starting from 2-allyl-4-methylanisole. Ireland ester Claisen rearrangement of the dimethylallyl 2-arylpent-4-enoate, obtained from p-cresol in seven steps, followed by RCM reaction of the resultant diene generated 1-aryl-1,2,2-trimethylcyclopent-3-enecarbo-xylate, which on functional group transformations provided (±)-herbertene-1,13-diol and (±)-α-herbertenol. Ireland ester Claisen rearrangement of E-3-(2-methoxy-5-methylphenyl)but-2-en-1-yl 2-methylpent-4-enoate furnished a stereoisomeric mixture of the dieneesters, which on RCM reaction generated an epimeric mixture of 2-aryl-1,2-dimethylcyclopent-3-enecarboxylates. These esters were further elaborated into (±)-herbertene-1,14-diol, (±)-herbertene-1,15-diol and (±)-herberteneacetal via epi-herbertenolide and (±)-herbertenolide. First total synthesis of a spirobenzofuran isolated from Acremonium sp. HKI 0230 has been accomplished starting from 2,5-dimethoxy-4-methylphenylacetate, confirming the structure of the natural product. Ireland ester Claisen rearrangement of dimethylallyl 2-(2,5-dimethoxy-4-methylphenyl)pent-4-enoate followed by RCM reaction and demethylation furnished a lactone, cyclopentaspirobenzofuranone, which on further functional group transformations completed the first total synthesis of the spirobenzofuran. 1-(2,5-Dimethoxy-4-methylphenyl)-1,2-dimethylcyclopent-3-enecarboxylate, an intermediate in the synthesis of spirobenzofuran, has been further elaborated into 1-aryl-1,2,2-trimethylcyclopent-3-ene, which on functional group transformations transformed into (±)lagopodin A and (±)-enokipodins A and B. Efficient total syntheses of laurencenone C, α-chamigrene and β-chamigrenes have been accomplished employing an Ireland ester Claisen rearrangement and RCM reaction as key steps starting from the Diels-Alder adduct of isoprene and acrylic acid. Ireland ester Claisen rearrangement of dimethylallyl cyclohex-3-enecarboxylate generated methyl 1-(1',1'-dimethylallyl)cyclohex-3-enecarboxylate, which was further elaborated into 5,5,9-trimethyl-spiro[5.5]undeca-3,8-dien-1-ol employing an RCM reaction as the key step. The spirodienol on further functional group transformations generated (±)-laurencenone C, (±)-α-chamigrene and (±)-β-chamigrene.
158

Φωτοκαταλυτική συμπεριφορά των στηριζόμενων σε οξειδικούς φορείς φουλερενίων

Νταραράς, Ευάγγελος 11 November 2008 (has links)
Στην παρούσα διατριβή μελετήθηκε η ετερογενοποίηση της αντίδρασης φωτοξείδωσης του 2 μεθυλ 2 βουτενίου προς αλλυλικά υδροπεροξείδια με τη χρήση φωτοκαταλυτών που περιέχουν φουλερένιο C60 στηριγμένο σε οξειδικούς φορείς. Το φουλερένιο C60 είναι γνωστό για τη δράση του ως φωτοευαισθητοποιητής της παραγωγής οξυγόνου απλής κατάστασης (singlet oxygen) κατά την ακτινοβόληση με ορατή ακτινοβολία, το οποίο πραγματοποιεί την οξείδωση αλκενίων μέσω της αντίδρασης Schenck-Ene. Ήταν επιθυμητό να παρασκευαστούν καταλύτες στους οποίους το C60 να διαθέτει σταθερή ομοιοπολική σύνδεση με την επιφάνεια των φορέων. Αυτό πραγματοποιήθηκε μέσω της σύνθεσης ενός μονοϋποκατεστημένου μεθανοφουλερενικού παραγώγου, το οποίο συνδέθηκε με την επιφάνεια των φορέων (Grafting). Επιπλέον, τα υλικά σχεδιάστηκαν έτσι, ώστε να παρέχουν τη δυνατότητα της πλήρους και ελεγχόμενης αποκοπής κάτω από κατάλληλες συνθήκες, γεγονός που επιτρέπει τον έλεγχο της ακεραιότητας του C60 μετά από χρήση του σε αντίδραση ή μετά από θερμική ή χημική κατεργασία. Παράλληλα παρασκευάστηκαν καταλύτες με κλασικές μεθόδους σύνθεσης ετερογενών καταλυτών. Ως φορείς χρησιμοποιήθηκαν η SiO2 και η Al2O3. Τα υλικά που παρασκευάστηκαν, μελετήθηκαν ως προς τη φωτοκαταλυτική τους δράση ως προς την αντίδραση φωτοξείδωσης του 2 μεθυλ 2 βουτενίου και έγινε σύγκριση τους με βάση τον τρόπο παρασκευής και το φορέα στήριξης. Ακόμη, έγινε σύγκριση της ετερογενούς διεργασίας με την ανάλογη ομογενή. Τα υλικά εμφάνισαν στο σύνολο τους φωτοκαταλυτική δράση στην παραπάνω αντίδραση. Σε κάθε περίπτωση οι στηριγμένοι σε SiO2 καταλύτες εμφάνισαν υψηλότερη δραστικότητα από τους αντίστοιχους που παρασκευάστηκαν σε φορέα Al2O3. Ακόμη, τα υλικά που παρασκευάστηκαν με τη μέθοδο Grafting σε φορέα SiO2 παρουσίασαν την υψηλότερη δραστικότητα ανάμεσα σε όλους καταλύτες που εξετάστηκαν. Η δραστικότητά τους ήταν μάλιστα υψηλότερη και από την αντίστοιχη που παρατηρήθηκε κατά τη χρήση ισομοριακής ποσότητας C60 σε ομογενή αντίδραση αλλά μικρότερη από αυτή των γνωστών φωτοκαταλυτών Rose Bengal και TPP (5,10,15,20-τετραφαινυλο-21Η,23Η-πορφυρίνης). Τέλος, μελετήθηκε η θερμική σταθερότητα των υλικών κάτω από οξειδωτικές συνθήκες. Διαπιστώθηκε ότι η σύνδεση του C60 στην επιφάνεια των φορέων με τη μέθοδο Grafting εμφανίζει γενικά παρόμοια θερμική σταθερότητα σε σχέση με τους καταλύτες που παρασκευάστηκαν με τη μέθοδο του Υγρού Εμποτισμού. / The scope of this dissertation was the heterogenization of the photooxidation reaction of 2-methyl-2-butene towards allylic hydroperoxides with the use of fullerene C60 containing catalysts supported on oxide carriers. The reaction was known to be efficient under homogeneous conditions. The photooxidation of alkenes is conducted by singlet oxygen (1Δg) which is produced by photosensitizers. C60 is known for its photosensitizing ability to produce singlet oxygen under visible irradiation. It was a requirement that C60 would be connected through stable and covalent bonding to the catalysts surface. This became possible through the preparation of a monosubstituted methanofullerene which was subsequently attached through covalent bonding to the surface of the carriers (Grafting). Additionally, a key requirement in the materials design was to provide us with the ability of controlled -under the appropriate conditions- and quantitative detachment of the part which bears C60, and its recovery in solution. This is important because it allows us to examine possible changes in the C60 molecule after the material’s use in catalytic processes or after its thermal or chemical treatment. Employing well-known methods of heterogeneous catalysts synthesis catalysts with the corresponding % molar concentration in C60 were also prepared. The photocatalytic behavior of the prepared materials was investigated in the photooxidation reaction of 2-methyl-2-butene. The effect of carrier and preparation method was also investigated. A comparison was also made with the homogeneous case. The prepared materials were all efficient catalysts in the photooxidation reaction of 2-methyl-2-butene. In all cases, the supported on SiO2 catalysts showed higher reactivity than the corresponding ones supported on Al2O3. Moreover, the catalysts prepared with the Grafting method on SiO2 showed the highest reactivity among all the catalysts examined. The reactivity was higher than in the homogeneous case using equimolar solutions of C60 but lower to the reactivity recorded in the case of the well established photosensitizers Rose Bengal and Tetraphenylporphine (TPP). Finally, the thermal stability of the prepared materials under oxidative conditions was studied._It was realized that materials prepared through Grafting show generally similar thermal behavior with the catalysts prepared with the Incipient Wetness method.
159

Développement de nouveaux outils de contrôle conformationnel utilisant des interactions non-covalentes pour effectuer des macrocyclisations

Bolduc, Philippe 11 1900 (has links)
Les macrocycles ont longtemps attiré l'attention des chimistes. Malgré cet intérêt, peu de méthodes générales et efficaces pour la construction de macrocycles ont été développés. Récemment, notre groupe a développé un programme de recherche visant à développer de nouvelles voies vers la synthèse de paracyclophanes et ce mémoire présente l pluspart des efforts les plus récents dans ce domaine. Traditionnellement, la synthèse de paracyclophanes rigides est facilitée par l'installation d'un groupe fonctionnel capable de contrôler la structure de la molécule en solution (ex un élément de contrôle de conformation (ECC)). Cependant, cette approche utilisant des auxiliaires exige que le ECC soit facilement installé avant macrocyclisation et facilement enlevé après la cyclisation. Le présent mémoire décrit une méthode alternative pour guider la macrocyclisations difficile à travers l'utilisation d'additifs comme ECC. Les additifs sont des hétérocycles aromatiques N-alkylé qui sont bon marché, faciles à préparer et peuvent être facilement ajoutés à un mélange de réaction et enlevés suite à la macrocyclisation par simple précipitation et de filtration. En outre, les ECCs sont recyclables. L'utilisation du nouveau ECC est démontré dans la synthèse des para-et métacyclophanes en utilisant soit la métathèse de fermeture de cycle (RCM) ou couplage de Glaser-Hay. / Macrocycles have long attracted the attention of chemists. Despite that interest, few general and efficient methods for the construction of macrocycles have been developed. Recently our group has developed a research program aimed at developing novel routes towards the synthesis of paracyclophanes and the present thesis details the most recent efforts in this area. Traditionally, the synthesis of rigid paracyclophanes is aided by the installation of functional groups capable of controlling the solution state structure of the molecules (ie. a conformational control element (CCE)). However, this auxiliary-like approach requires that the CCE be readily installed prior to macrocyclization and easily removed following the cyclization. In the present thesis describes an alternative method to guiding difficult macrocyclizations through the use of additives as CCEs is described. The additives are N-alkylated aromatic heterocycles that are cheap, easily prepared and can be easily added to a reaction mixture and removed following the macrocyclization through simple precipitation and filtration. In addition, the CCEs are recyclable. The use of the new CCEs is demonstrated in the synthesis of para- and metacyclophanes using either ring closing metathesis (RCM) or Glaser-Hay couplings.
160

Carbon molecular sieve hollow fiber membranes for olefin/paraffin separations

Xu, Liren 25 September 2013 (has links)
Olefin/paraffin separation is a large potential market for membrane applications. Carbon molecular sieve membranes (CMS) are promising for this application due to the intrinsically high separation performance and the viability for practical scale-up. Intrinsically high separation performance of CMS membranes for olefin/paraffin separations was demonstrated. The translation of intrinsic CMS transport properties into the hollow fiber configuration is considered in detail. Substructure collapse of asymmetric hollow fibers was found during Matrimidᆴ CMS hollow fiber formation. To overcome the permeance loss due to the increased separation layer thickness, 6FDA-DAM and 6FDA/BPDA-DAM polyimides with higher rigidity were employed as alternative precursors, and significant improvement has been achieved. Besides the macroscopic morphology control of asymmetric hollow fibers, the micro-structure was tuned by optimizing pyrolysis temperature protocol and pyrolysis atmosphere. In addition, unexpected physical aging was observed in CMS membranes, which is analogous to the aging phenomenon in glassy polymers. For performance evaluation, multiple "proof-of-concept" tests validated the viability of CMS membranes under realistic conditions. The scope of this work was expanded from binary ethylene/ethane and propylene/propane separations for the debottlenecking purpose to mixed carbon number hydrocarbon processing. CMS membranes were found to be olefins-selective over corresponding paraffins; moreover, CMS membranes are able to effectively fractionate the complex cracked gas stream in a preferable way. Reconfiguration of the hydrocarbon processing in ethylene plants is possible based on the unique CMS membranes.

Page generated in 0.0615 seconds