11 |
Moldagem por injeção de microcomponentes ópticos poliméricos gerados em insertos usinados por torneamento de ultraprecisão / Injection molding of polymer micro-optical components generated in inserts by ultra-precision turningRenê Mendes Granado 17 December 2010 (has links)
Este trabalho analisou o processo de moldagem por injeção de micro elementos ópticos difrativos usinados em insertos de cobre eletrolítico com ferramenta de diamante com ponta única. Quatro tipos de microestruturas características foram selecionados neste estudo, a saber: lente anesférica, lente de Fresnel, grade de difração (blaze grating) e sensor de frente de onda. A análise da fidelidade de replicação foi feita considerando aspectos dimensionais micrométricos e nanométricos para a microestrutura e acabamento. Um perfilometro óptico e microscópio eletrônico de varredura foram utilizados para avaliar os insertos usinados e as características dos replicados. Uma ferramenta de diamante com geometria especial, com meio raio, foi usada para usinar as características de difração. As superfícies usinadas apresentaram baixo acabamento superficial, na faixa de 16 nm Rms. As simulações numéricas foram realizadas para avaliar o desempenho do processo de moldagem por injeção com polimetilmetacrilato (PMMA), e os resultados foram utilizados para orientar a injeção do polímero. Com base na simulações numéricas as temperaturas do molde e pressões de injeção foram variadas entre 85ºC/130°C e 70 bar/130 bar, respectivamente. A influência destes parâmetros no desempenho do processo de replicação foi analisada. A análise quantitativa da replicação foi feita através de um parâmetro denominado grau de replicação que define a relação entre a altura nominal da microestrutura do inserto e à altura da microestrutura na réplica de polímero. A grade de difração e o sensor de frente de onda apresentaram os melhores níveis de replicação: 98% e 99%, respectivamente. Os resultados experimentais mostraram que o processo de moldagem por injeção é uma técnica viável para replicar com alta qualidade microcaracterísticas de elementos ópticos de difração gerados por torneamento com ferramenta de diamante com ponta única. / This work investigated the injection molding process of micro diffractive optical elements machined on electrolytic copper inserts by single point diamond turning. Four types of microstructure features were selected in this study, namely: aspherical lens, Fresnel lens, blaze grating and the wavefront sensor. The replication fidelity was evaluated in terms of dimensional micrometric features found in the microstructure and the surface finish. An optical profiler and scanning electron microscopy were used to assess the machined inserts and the replicated features. A special geometry diamond tool with half radius was used to machine the diffraction features. The machined surfaces presented very low surface finish in the range of 16 nm Rms. Numerical simulations were carried out to evaluate the performance of the injection molding process with polymethylmethacrylate (PMMA), and the results were used to guide the polymer injection. Based on numerical simulations mold temperatures and injection pressures were varied between 85°C/130°C and 70 bar/130 bar, respectively. The influence of these parameters on performance of the replication process was assessed. The quantitative assessement of the replication was made by using a parameter called degree of replication which defines the ratio between the nominal height of the microstructure in the insert and the height of the microstructure in the polymer replica. The blaze grating and the wavefront sensor presented the best degrees of replication: 98% and 99%, respectively. The experimental results showed that injection molding process is a viable technique to replicate high quality micro features of optical diffraction elements generated by single point diamond turning.
|
12 |
Ubiquitous Projection: New Interfaces using Mobile ProjectorsWillis, Karl D. D. 19 March 2013 (has links)
The miniaturization of projection technology has enabled a new class of lightweight mobile devices with embedded projectors. Projection engines as small as a postage stamp are currently being embedded in thousands of mobile devices. Mobile projector-based devices differ in very fundamental ways from the display-based devices we commonly use. Mobile projectors can be carried with the user and project imagery into almost any space, projected content is visible to multiple users and supports social interaction, physical objects and surfaces can be augmented with projected content, and embedded projectors can enable new form-factors for mobile displays.
This research investigates the potential of mobile projectors as a new platform for human-computer interaction. I aim to demonstrate that the unique affordances created by the miniaturization of projection technology can inspire new and compelling interaction with single-users, multi-users, the environment, and projector-embedded objects. This research presents a comprehensive survey of mobile projector-based interaction – documenting interaction with historic projection devices; introducing novel interaction techniques, metaphors, and principles for mobile projector-based systems; providing implementation details of functional prototype devices using mobile projectors; presenting technical innovations, such as the development of specialized projectors and custom marker tracking algorithms; and detailing results from preliminary user testing with the prototype systems created. This research forms a systematic investigation of the past, the present, and a possible future for interaction using mobile projectors.
|
13 |
Additive Lithography Fabrication And Integration Of Micro OpticsPitchumani, Mahesh 01 January 2006 (has links)
Optical elements are the fundamental components in photonic systems and are used to transform an input optical beam into a desired beam profile or to couple the input beam into waveguides, fibers, or other optical systems or devices. Macroscopic optical elements are easily fabricated using grinding and polishing techniques, but few methods exist for inexpensive fabrication of micro optical elements. In this work we present an innovative technique termed Additive Lithography that makes use of binary masks and controlled partial exposures to sculpt photoresist into the desired optical surface relief profile. We explore various masking schemes for fabricating a variety of optical elements with unprecedented flexibility and precision. These masking schemes used in conjunction with the additive lithographic method allows us to carefully control the photoresist exposure and reflow processes for fabricating complex aspheric lens elements, including aspheric elements whose fabrication often proves highly problematic. It will be demonstrated that employing additive lithography for volume sculpting followed by controlled reflow can also allow us to fabricate refractive beam shaping elements. Finally we will discuss the dry etching techniques used to transfer these optical elements into the glass substrate. Thus the additive lithography technique will be demonstrated as an inexpensive, high throughput and efficient process in the fabrication of micro optical elements.
|
14 |
Elementos ópticos difrativos operando em regime de modulação complexa completa / Diffractive optical elements Operating in Regime of Full Complex ModulationCardona, Patricia Soares Pinto 04 June 2003 (has links)
Neste trabalho desenvolvemos duas séries de EODs operando em regime simultâneo de modulação das componentes de fase e de amplitude de uma frente de luz (Modulação Complexa Completa MCC). A primeira destas séries foi constituída por Hologramas de Fourier calculados através do Algoritmo Iterativo da Transformada de Fourier (Iterative Fourier Transform Algorithm IFTA) e a segunda, por Hologramad de Fresnel cujo cálculo da propagação da luz foi obtido por filmagem linear espacial proveniente da solução da Equação de Helmholtz no domínio da frequência. Nos dois casos, a Modulação Complexa Completa foi implementada fisicamente empregando, para realizar a modulação de fase, um micro-relevo gravado em um filme de DLC (Diamond Like Carbon) depositado sobre um substrato de vidro. Sobre este relevo foi implementada a modulação de amplitude, através da deposição de um filme de alumínio, no qual foram realizadas micro-aberturas diferentes cujas áreas eram proporcionais à amplitude em cada pixel. Nos Hologramas de Fourier, uma diferente espessura do filme DLC localizada sobre cada pixel foi responsável pela modulação do valor de fase relativo àquele ponto. Nos Hologramas de Fresnel, a combinação de duas espessuras diferentes do filme de DLC em cada pixel foi responsável pela modulação do valor de fase relativo a cada ponto. Os elementos foram caracterizados física e opticamente e produziram imagens de reconstrução totalmente livres de ruídos do tipo speckle. Também em caráter de avaliação dos resultados foi efetuada a comparação entre as imagens de reconstrução óptica produzidas pelos Hologramas de Fresnel com MCC com as produzidas por Hologramas de Fresnel convencionais em regime de modulação de fase. / In this work, we developed two sets of DOESs able to modulate both phase and amplitude components of light simultaneously (Complete Complex Modulation CCM). The first set is composed of Fourier Holograms calculated by Iteractive Fourier Transform Algorithm (IFTA). The second set is composed by Fresnel Holograms, which light propagation was calculated by spatial linear filtering obtained from the solution of the Helmholtz Equation in the frequency domain. In both cases, Complete Complex Modulation was physically implemented by a micro-relief, for phase modulation, recorded on a Diamond Like Carbon (DLC) film deposited on a glass substrate. Amplitude modulation was implemented on a aluminum fim layer deposited on this relief. In this layer, micro-appertures proportional to the amplitude on each pixel, were recorded. Phase modulation in each pixel of the Fourier Holograms was achivied by different thicknesses of the DLC film. For Fresnel Holograms, phase modulation was achieved by combining two different thicknesses of DLC film inside each pixel. The elements were physically and optically characterized and produced reconstruction images completly free of speckle like noise. The optical reconstruction images produced from Fresnel Holograms working in CCM regime and convencional phase-only modulated Fourier Holograms were compared.
|
15 |
Elementos ópticos difrativos operando em regime de modulação complexa completa / Diffractive optical elements Operating in Regime of Full Complex ModulationPatricia Soares Pinto Cardona 04 June 2003 (has links)
Neste trabalho desenvolvemos duas séries de EODs operando em regime simultâneo de modulação das componentes de fase e de amplitude de uma frente de luz (Modulação Complexa Completa MCC). A primeira destas séries foi constituída por Hologramas de Fourier calculados através do Algoritmo Iterativo da Transformada de Fourier (Iterative Fourier Transform Algorithm IFTA) e a segunda, por Hologramad de Fresnel cujo cálculo da propagação da luz foi obtido por filmagem linear espacial proveniente da solução da Equação de Helmholtz no domínio da frequência. Nos dois casos, a Modulação Complexa Completa foi implementada fisicamente empregando, para realizar a modulação de fase, um micro-relevo gravado em um filme de DLC (Diamond Like Carbon) depositado sobre um substrato de vidro. Sobre este relevo foi implementada a modulação de amplitude, através da deposição de um filme de alumínio, no qual foram realizadas micro-aberturas diferentes cujas áreas eram proporcionais à amplitude em cada pixel. Nos Hologramas de Fourier, uma diferente espessura do filme DLC localizada sobre cada pixel foi responsável pela modulação do valor de fase relativo àquele ponto. Nos Hologramas de Fresnel, a combinação de duas espessuras diferentes do filme de DLC em cada pixel foi responsável pela modulação do valor de fase relativo a cada ponto. Os elementos foram caracterizados física e opticamente e produziram imagens de reconstrução totalmente livres de ruídos do tipo speckle. Também em caráter de avaliação dos resultados foi efetuada a comparação entre as imagens de reconstrução óptica produzidas pelos Hologramas de Fresnel com MCC com as produzidas por Hologramas de Fresnel convencionais em regime de modulação de fase. / In this work, we developed two sets of DOESs able to modulate both phase and amplitude components of light simultaneously (Complete Complex Modulation CCM). The first set is composed of Fourier Holograms calculated by Iteractive Fourier Transform Algorithm (IFTA). The second set is composed by Fresnel Holograms, which light propagation was calculated by spatial linear filtering obtained from the solution of the Helmholtz Equation in the frequency domain. In both cases, Complete Complex Modulation was physically implemented by a micro-relief, for phase modulation, recorded on a Diamond Like Carbon (DLC) film deposited on a glass substrate. Amplitude modulation was implemented on a aluminum fim layer deposited on this relief. In this layer, micro-appertures proportional to the amplitude on each pixel, were recorded. Phase modulation in each pixel of the Fourier Holograms was achivied by different thicknesses of the DLC film. For Fresnel Holograms, phase modulation was achieved by combining two different thicknesses of DLC film inside each pixel. The elements were physically and optically characterized and produced reconstruction images completly free of speckle like noise. The optical reconstruction images produced from Fresnel Holograms working in CCM regime and convencional phase-only modulated Fourier Holograms were compared.
|
16 |
Composant diffractif numérique multispectral pour la concentration multifonctionnelle pour des dispositifs photovoltaïque de troisième génération / Multispectral digital diffractive element for smart sunlight concentration for third generation photovoltaïc devicesAlbarazanchi, Abbas Kamal Hasan 21 September 2015 (has links)
La lumière du soleil est un bon candidat comme source propre et abondante d'énergie renouvelable. Cette source d'énergie écocompatible peut être exploitée pour répondre aux besoins croissants en énergie du monde. Plusieurs générations de cellules photovoltaïques ont été utilisées pour convertir directement la lumière solaire en énergie électrique. La troisième génération de type multijonction des cellules photovoltaïques est caractérisée par un niveau d'efficacité plus élevé que celui de tous les autres types de cellules photovoltaïques. Des dispositifs optiques, tels que des concentrateurs optiques, des séparateurs optiques et des dispositifs optiques réalisant simultanément la séparation du spectre et la concentration du faisceau ont été utilisés dans des systèmes de cellules solaires. Récemment, les Eléments Optiques Diffractifs (EOD) font l'objet d'un intérêt soutenu en vue de leur utilisation dans la conception de systèmes optiques appliqués aux cellules photovoltaïques. Cette thèse est consacrée à la conception d'un EOD qui peut réaliser simultanément la séparation du spectre et la concentration du faisceau pour des cellules photovoltaïques de type multijonction latéral ou similaire. Les EOD qui ont été conçus ont une structure sous-longueur d'onde et fonctionnent en espace lointain pour implanter la double fonction séparation du spectre et concentration du faisceau. Pour cette raison, des outils de simulation ont été développés pour simuler le comportement du champ magnétique à l'intérieur de l'EOD à structure sous-longueur d'onde. De plus, un propagateur hybride rigoureux a aussi été développé, il est basé sur les deux théories de la diffraction, à savoir la théorie scalaire et la théorie rigoureuse. La méthode FDTD (Finite Difference Time Domain) ou méthode de différences finies dans le domaine temporel a été utilisée pour modéliser la propagation du champ magnétique en champ proche c'est-à-dire à l'intérieur et autour de l'EOD. La méthode ASM (Angular Spectrum Method) ou méthode à spectre angulaire a été utilisée pour modéliser de façon rigoureuse la propagation libre en champ lointain. Deux EOD différents ont été développés permettant d'implanter les fonctions souhaitées (séparation du spectre et concentration du faisceau) ; il s'agit d'une part d'un composant diffractif intitulé G-Fresnel (Grating and Fresnel lens) qui combine un réseau avec une lentille de Fresnel et d'autre part d'une lentille hors-axe. Les composants proposés réalisent la séparation du spectre en deux bandes pour une plage visible-proche infrarouge du spectre solaire. Ces deux bandes peuvent être absorbées et converties en énergie électrique par deux cellules photovoltaïques différentes et disposées latéralement par rapport à l'axe du système. Ces dispositifs permettent d'obtenir un faible facteur de concentration et une efficacité de diffraction théorique d'environ 70 % pour les deux bandes séparées. Grâce à une distance de focalisation faible, ces composants peuvent être intégrés dans des systèmes compacts de cellules solaires. La validation expérimentale du prototype fabriqué montre une bonne correspondance entre les performances expérimentales et le modèle théorique / Sunlight represents a good candidate for an abundant and clean source of renewable energy. This environmentally friendly energy source can be exploited to provide an answer to the increasing requirement of energy from the world. Several generations of photovoltaic cells have been successively used to convert sunlight directly into electrical energy. Third generation multijunction PV cells are characterized by the highest level of efficiency between all types of PV cells. Optical devices have been used in solar cell systems such as optical concentrators, optical splitters, and hybrid optical devices that achieve Spectrum Splitting and Beam Concentration (SSBC) simultaneously. Recently, diffractive optical elements (DOE’s) have attracted more attention for their smart use it in the design of optical devices for PV cells applications.This thesis was allocated to design a DOE that can achieve the SSBC functions for the benefit of the lateral multijunction PV cells or similar. The desired design DOE's have a subwavelength structure and operate in the far field to implement the target functions (i.e. SSBC). Therefore, some modelling tools have been developed which can be used to simulate the electromagnetic field behavior inside a specific DOE structure, in the range of subwavelength features. Furthermore, a rigorous hybrid propagator is developed that is based on both major diffraction theories (i.e. rigorous and scalar diffraction theory). The FDTD method was used to model the propagation of the electromagnetic field in the near field, i.e. inside and around a DOE, and the ASM method was used to model rigorously propagation in the free space far field.The proposed device required to implement the intended functions is based on two different DOE’s components; a G-Fresnel (i.e. Grating and Fresnel lens), and an off-axis lens. The proposed devices achieve the spectrum splitting for a Vis-NIR range of the solar spectrum into two bands. These two bands can be absorbed and converted into electrical energy by two different PV cells, which are laterally arranged. These devices are able to implement a low concentration factor of “concentrator PV cell systems”. These devices also allow achieving theoretically around 70 % of optical diffraction efficiency for the both separated bands. The impact distance is very small for the devices proposed, which allows the possibility to integrate these devices into compact solar cell systems. The experimental validation of the fabricated prototype appears to provide a good matching of the experimental performance with the theoretical model.
|
17 |
Kombinovaná elektronová litografie / Combined Electron Beam LithographyKrátký, Stanislav January 2021 (has links)
This thesis deals with grayscale e-beam lithography and diffractive optical elements fabrication. Three topics are addressed. The first topic is combined grayscale e-beam lithography. The goal of this task is combining exposures performed by two systems with various beam energies. This combined technique leads to a better usage of both systems because various structures can be more easily prepared by one electron beam energy than by the other. The next topic is the optimization of shape borders of exposing structures that are defined by image input. The influence of such optimization on exposure data preparation is evaluated, as well as the exposure time and the change of optical properties of testing structures. The possibility of deep multilevel diffractive optical element fabrication in plexiglass blocks is researched as the third topic. Plexiglass can replace the system of a resist and a substrate. A new approach to writing down the structures by electron beam is presented, minimizing thermal stress on the plexiglass block during the exposure. The writing method also improves the homogeneity of exposed motifs. A method for computing the exposure dose for specific multilevel structures was designed. This method is based on the existing model of proximity effect computation and it minimizes the computing time necessary to obtain the exposure doses.
|
18 |
Optimální rozložení optické intenzity v laserovém svazku pro FSO komunikace / Optimal Intensity Distribution in a Laser Beam for FSO CommunicationsBarcík, Peter January 2016 (has links)
Dizertačná práca je zameraná na štúdium a analýzu rozloženia optickej intenzity v laserovom zväzku v rovine vysielacej (TXA) a prijímacej apertúry (RXA), ktorý podlieha zmenám ako pri šírení voľným priestorom, tak pri šírení atmosférou. Cieľom práce je nájsť optimálne rozloženie optickej intezity v rovine vysielacej apertúry, ktoré bude minimálne ovplyvnené apertúrou vysielača a atmosférickými turbulenciami. Za účelom analýzy šírenia optickej vlny atmosférou bola využitá simulácia založená na metóde Split-Step. Šírenie Flattened Gaussian zväzku bolo analyzované pre režim slabých a stredných turbulencií. Práca sa zaoberá použitím multimódového vlákna s veľkým priemerom jadra ako tvarujúceho elementu a obsahuje návrh refrakčného tvarovača, pomocou ktorého je možno konvertovať Gaussovský zväzok na zväzok s uniformným rozložením optickej intenzity. Nakoniec je pomocou získaných poznatkov zostavený plne fotonický vysielač a prijímač, ktorých použitie spočíva v generovaní a príjmaní optickej koherentnej vlny prenášajúcej presnú fázu.
|
19 |
Mutual interactions of femtosecond pulses and transient gratings in nonlinear optical spectroscopyNolte, Stefan 16 November 2018 (has links)
This work is dedicated to a comprehensive experimental study on the interaction of femtosecond laser pulses with the nonlinear optical medium lithium niobate. The nonlinear optical response in the nanosecond regime was already studied extensively with a variety of techniques, whereas femtosecond pulses were mainly used in transient absorption or transient grating experiments. Naturally, the temporal resolution of these measurements depends on the pulse duration, however, dynamics during the pulse excitation were barely investigated.
The motivation of this work is to widen the limits of femtosecond spectroscopy, not only to temporally resolve faster nonlinear optical processes, but further to show a sensitivity to other coupling mechanisms between the pulses and the material. Especially, the role of transient, dynamic holographic gratings is investigated with a careful determination of the pulse duration, bandwidth and frequency chirp. A basis of this work is established in the first part by studying the material response via light-induced absorption before focusing on the main topic, the pulse interaction with elementary (holographic) gratings, both self-induced and static, in the second part. By this detailed study, several features of femtosecond laser pulses, holographic gratings and the ultrafast material response can be revealed: (i) grating recording is feasible even with pulses of different frequencies, provided that their pulse duration is sufficiently short, (ii) grating based pulse coupling causes a pronounced energy transfer even in a common pump-probe setup for transient absorption measurements with (non-)degenerated frequencies, (iii) beyond expectation, oscillations in the phonon frequency range become apparent in different measurements. The presented results point towards appropriate future experiments to obtain a more consistent, microscopic model for the ultrafast response of the crystal, involving the interplay between photo-generated polarons, self-induced gratings, and phonons.
|
20 |
Wellenlängenmultiplexing mit thermisch fixierten Volumenphasenhologrammen in photorefraktiven Lithiumniobat-Kristallen / Wavelength Division Multiplexing with Thermally Fixed Volume Phase Holograms in Photorefractive Lithium Niobate CrystalsBreer, Stefan 08 September 2000 (has links)
Wavelength division multiplexing (WDM) is essential for further enhancement of the transmission capacities of optical
telecommunication systems. Key devices in WDM networks are multiplexing/demultiplexing components, which enable
the combination/separation of several carrier waves with different wavelengths for the purpose of simultaneous
transmission through one optical fibre. These components can be realized using Bragg diffraction from volume
holographic gratings. Especially reflection holograms provide a pronounced wavelength selectivity which makes them
attractive for free-space WDM applications.
Holograms can be stored permanently in photorefractive lithium niobate crystals by the method of Thermal Fixing.
Heating of the crystal during or after the recording process and subsequent development by homogeneous illumination at
room temperature create nonvolatile holograms. The recording and development processes of Thermal Fixing in iron-
and copper-doped lithium niobate crystals were investigated. Macroscopic Gaussian-shaped intensity patterns were
used to analyse the origin of the fixing mechanism. Spatially resolved absorption measurements were performed to
determine the concentration profiles of electron traps (Fe II/III) and protons. Results of computer simulations were
compared with experimental results, which showed that protons can be found to work as compensators during hologram
recording at temperatures around 180 degree C. Nevertheless thermal fixing without protons was possible, another
compensation mechanism stood in. The obtained refractive-index changes were due to the electro-optic effect, other
contributions could be neglected.
With this detailed knowledge about thermal fixing, a two-channel demultiplexing unit was built by superposition of two
thermally fixed reflection holograms in an iron-doped lithium niobate crystal. For this purpose a special two-beam
interference setup with precisely adjustable writing angles was arranged in a vacuum chamber to eliminate thermally
induced phase disturbances of the holographic recording procedure. Continuous development of the holograms by
incoherent light was necessary. In the dark, the enhanced dark conductivity of the crystal used gave rise to a hologram
degradation within about one day. Large diffraction efficiencies were attained (intensity losses between 2.3 and 5.2 dB
only) uilizing crystals with high-quality polished surfaces. The crosstalk supression of the realized demultiplexer was >
25 dB, which is comparable with the performance of other multiplexing techniques like fibre Bragg gratings or
arrayed-waveguide gratings. The low polarization dependence of the demultiplexer can be improved by superposition of
two holograms for each channel.
|
Page generated in 0.0923 seconds