• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 6
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 36
  • 36
  • 19
  • 18
  • 16
  • 15
  • 14
  • 12
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Ultracold dipolar gases in optical lattices

Trefzger, Christian 19 April 2010 (has links)
Esta tesis es un trabajo teórico, en el que estudiamos la física de los átomos dipolares bosónicos ultrafríos en retículos ópticos. Éstos gases consisten de átomos o moléculas bosónicas, enfriados bajo la temperatura de degeneración cuántica, típicamente del orden de nK. En éstas condiciones, en una trampa armónica tridimensional (3D), los bosones que interaccionan débilmente condensan y forman un Condensado de Bose Einstein (BEC). Cuando se carga un BEC en un retículo óptico producido por ondas estacionarias de luz láser, se producen nuevos fenómenos físicos. Estos sistemas entonces realizan modelos de tipo Hubbard y pueden ser llevados a regimenes fuertemente correlacionados.En 1989, M. Fisher et. al. predecían que el modelo de Bose-Hubbard homogéneo (BH) presenta la transición de fase cuántica Superfluid-Mott insulator (SF-MI). En 2002, la transición entre éstas dos fases fue observada experimentalmente por primera vez en el grupo de T. Esslinger e I. Bloch. La realización experimental de un BEC dipolar de cromo en el grupo de T. Pfau, y los progresos recientes en las técnicas de enfriamiento y atrapamiento de moléculas dipolares en los grupos de D. Jin e J. Ye, han abierto el camino hacia los gases cuánticos ultra-fríos dominados por la interacción dipolar. La evolución natural, y el reto de hoy en día por parte experimental, es de cargar BEC dipolares en retículos ópticos y estudiar los gases dipolares fuertemente correlacionados.Antes de éste trabajo de doctorado, estudios sobre modelos de BH con interacciones extendidas a los primeros vecinos mostraron la evidencia de nuevas fases cuánticas, como el supersólido (SS) y la fase checkerboard (CB). Debido al carácter de largo alcance de la interacción dipolo-dipolo, que decae con la potencia cúbica inversa de la distancia, es necesario incluir más de un primer vecino para obtener una descripción fiel y cuantitativa de los sistemas dipolares. De hecho, al incluir más vecinos se permiten y se estabilizan aún más nuevas fases.En esta tesis estudiamos modelos de BH con interacciones dipolares, investigando más allá del estado fundamental. Estudiamos un retículo bidimensional (2D) donde los dipolos están polarizados en dirección perpendicular al plano 2D, dando lugar a una interacción dipolar repulsiva e isotrópica. Utilizamos aproximaciones de campo-medio y un ansatz Gutzwiller, que son suficientemente correctos y adecuados para describir este sistema. Encontramos que los gases dipolares en 2D presentan una multitud de estados metaestables de tipo MI, que compiten con el estado fundamental, de modo parecido a sistemas desordenados. Estudiamos en detalle el destino de estos estados metaestables: como pueden ser preparados de manera controlada, como pueden ser detectados, cual es su tiempo de vida debido al tunnelling, y cual es su rol en los procesos de enfriamiento. Además, encontramos que el estado fundamental está caracterizado por estados MI de tipo checkerboard con coeficiente de ocupación n fraccionario (numero medio de partículas por sitio) que depende del cut-off utilizado en el radio de alcance de la interacción. Confirmamos esta predicción estudiando el mismo sistema con métodos Quantum Monte Carlo (worm algorithm). En este caso no utilizamos ningún cut-off en el radio de alcance de la interacción, y encontramos pruebas de una "Devil's staircase" en el estado fundamental, i.e. donde las fases MI aparecen en todos los n racionales del retículo subyacente. Encontramos además, regiones de los parámetros donde el estado fundamental es supersólido, obtenido drogando los sólidos con partículas o con agujeros.En este trabajo, investigamos también como cambia la estructura precedente en 3D. Nos focalizamos en el retículo 3D más sencillo compuesto de dos planos 2D, en el cual los dipolos están polarizados perpendicularmente a los planos; la interacción dipolar es entonces repulsiva por partículas del mismo plano, mientras es atractiva por partículas en el mismo sitio de dos planos diferentes. En cambio suprimimos el tunnelling entre los planos, lo cual hace el sistema equivalente a una mezcla bosónica en un retículo 2D. Nuestros cálculos muestran que las partículas se juntan en parejas, y demostramos la existencia de la nueva fase cuántica Pair Super Solid (PSS).Actualmente estamos estudiando un retículo 2D donde los dipolos están libres de apuntar en ambas direcciones perpendicularmente al plano, lo cual resulta en una interacción a primeros vecinos repulsiva (atractiva) por dipolos alineados (anti-alineados). Encontramos regiones de parámetros donde el estado fundamental es ferromagnético u anti-ferromagnético, y encontramos pruebas de la existencia de la fase cuántica Counterflow Super Solid (CSS).Las nuestras predicciones tienen directas consecuencias experimentales, y esperamos que vengan pronto controladas en experimentos con gases dipolares atómicos y moleculares ultra-fríos. / This thesis is a theoretical work, in which we study the physics of ultra-cold dipolar bosonic gases in optical lattices. Such gases consist of bosonic atoms or molecules, cooled below the quantum degeneracy temperature, typically in the nK range. In such conditions, in a three-dimensional (3D) harmonic trap, weakly interacting bosons condense and form a Bose-Einstein Condensate (BEC). When a BEC is loaded into an optical lattice produced by standing waves of laser light, new kinds of physical phenomena occur.These systems realize then Hubbard-type models and can be brought to a strongly correlated regime. In 1989, M. Fisher et. al. predicted that the homogeneous Bose-Hubbard model (BH) exhibits the Superfluid-Mott insulator (SF-MI) quantum phase transition. In 2002 the transition between these two phases were observed experimentally for the first time in the group of T. Esslinger and I. Bloch. The experimental realisation of a dipolar BEC of Chromium by the group of T. Pfau, and the recent progresses in trapping and cooling of dipolar molecules by the groups of D. Jin and J. Ye, have opened the path towards ultra-cold quantum gases with dominant dipole interactions. A natural evolution and present challenge, on the experimental side is then to load dipolar BECs into optical lattices and study strongly correlated ultracold dipolar lattice gases.Before this PhD work, studies of BH models with interactions extended to nearest neighbours had pointed out that novel quantum phases, like supersolid (SS) and checkerboard phases (CB) are expected. Due to the long-range character of the dipole-dipole interaction, which decays as the inverse cubic power of the distance, it is necessary to include more than one nearest neighbour to have a faithful quantitative description of dipolar systems. In fact, longer-range interactions tend to allow for and stabilize more novel phases.In this thesis we study BH models with dipolar interactions, going beyond the ground state search. We consider a two-dimensional (2D) lattice where the dipoles are polarized perpendicularly to the 2D plane, resulting in an isotropic repulsive interaction. We use the mean-field approximations and a Gutzwiller ansatz which are quite accurate and suitable to describe this system. We find that dipolar bosonic gas in 2D exhibits a multitude of insulating metastable states, often competing with the ground state, similarly as in a disordered system. We study in detail the fate of these metastable states: how can they be prepared on demand, how they can be detected, what is their lifetime due to tunnelling, and what is their role in various cooling schemes. Moreover, we find that the ground state is characterized by insulating checkerboard-like states with fractional filling factors v(average number of particles per site) that depend on the cut-off used for the interaction range. We confirm this prediction by studying the same system with Quantum Monte Carlo methods (the worm algorithm). In this case no cut-off is used, and we find evidence for a Devil's staircase in the ground state, i.e. where insulating phases appear at all rational of the underlying lattice. We also find regions of parameters where the ground state is a supersolid, obtained by doping the solids either with particles or vacancies.In this work, we also investigate how the previous scenario changes in 3D. We focus on the simplest 3D lattice composed of two 2D layers in which the dipoles are polarized perpendicularly to the planes; the dipolar interaction is then repulsive for particles laying on the same plane, while it is attractive for particles at the same lattice site on different layers. Instead we consider inter-layer tunnelling to be suppressed, which makes the system analogous to a bosonic mixture in a 2D lattice. Our calculations show that particles pair into composites, and demonstrate the existence of the novel Pair Super Solid (PSS) quantum phase.Currently we are studying a 2D lattice where the dipoles are free to point in both directions perpendicularly to the plane, which results in a nearest neighbour repulsive (attractive) interaction for aligned (antialigned) dipoles. We find regions of parameters where the ground state is ferromagnetic or antiferromagnetic, and find evidences for the existence of a Counterflow Super Solid (CSS) quantum phase.Our predictions have direct experimental consequences, and we hope that they will be soon checked in experiments with ultracold dipolar atomic and molecular gases.
12

Robust, reusable qubits for quantum information applications

Gibbons, Michael J. 21 January 2011 (has links)
Most neutral atom quantum computing experiments rely on destructive state detection techniques that eject the detected qubits from the trap. These techniques limit the repetition rate of these experiments due to the necessity of reloading a new quantum register for each operation. We address this problem by developing reusable neutral atom qubits. Individual Rubidium 87 atoms are trapped in an optical lattice and are held for upwards of 300 s. Each atom is prepared in an initial quantum state and then the state is subsequently detected with 95% fidelity with less than a 1% probability of losing it from the trap. This combination of long storage times and nondestructive state detection will facilitate the development of faster and more complex quantum systems that will enable future advancements in the field of quantum information.
13

Exploring Matter-wave Dynamics with a Bose-Einstein Condensate

Chang, Rockson 08 January 2014 (has links)
Bose-Einstein condensates of dilute gases provide a rich and versatile platform to study both single-particle and many-body quantum phenomena. This thesis describes several experiments using a Bose-Einstein condensate of Rb-87 as a model system to study novel matter-wave effects that traditionally arise in vastly different systems, yet are difficult to access. We study the scattering of a particle from a repulsive potential barrier in the non-asymptotic regime, for which the collision dynamics are on-going. Using a Bose-Einstein condensate interacting with a sharp repulsive potential, two distinct transient scattering effects are observed: one due to the momentary deceleration of particles atop the barrier, and one due to the abrupt discontinuity in phase written on the wavepacket in position-space, akin to quantum reflection. Both effects lead to a redistribution of momenta, resulting in a rich interference pattern that may be used to reconstruct the single-particle wavefunction. In a second experiment, we study the response of a particle in a periodic potential to an applied force. By abruptly applying an external force to a Bose-Einstein condensate in a one-dimensional optical lattice, we show that the initial response of a particle in a periodic potential is in fact characterized by the bare mass, and only over timescales long compared to that of interband dynamics is the usual effective mass an appropriate description. This breakdown of the effective mass description on fast timescales is difficult to observe in traditional solid state systems due to their large bandgaps and fast timescale of interband dynamics. Both these experiments make use of the condensate's long coherence length, and the ability to shape and modulate the external potential on timescales fast compared to the particle dynamics, allowing for observation of novel matter-wave effects.
14

Exploring Matter-wave Dynamics with a Bose-Einstein Condensate

Chang, Rockson 08 January 2014 (has links)
Bose-Einstein condensates of dilute gases provide a rich and versatile platform to study both single-particle and many-body quantum phenomena. This thesis describes several experiments using a Bose-Einstein condensate of Rb-87 as a model system to study novel matter-wave effects that traditionally arise in vastly different systems, yet are difficult to access. We study the scattering of a particle from a repulsive potential barrier in the non-asymptotic regime, for which the collision dynamics are on-going. Using a Bose-Einstein condensate interacting with a sharp repulsive potential, two distinct transient scattering effects are observed: one due to the momentary deceleration of particles atop the barrier, and one due to the abrupt discontinuity in phase written on the wavepacket in position-space, akin to quantum reflection. Both effects lead to a redistribution of momenta, resulting in a rich interference pattern that may be used to reconstruct the single-particle wavefunction. In a second experiment, we study the response of a particle in a periodic potential to an applied force. By abruptly applying an external force to a Bose-Einstein condensate in a one-dimensional optical lattice, we show that the initial response of a particle in a periodic potential is in fact characterized by the bare mass, and only over timescales long compared to that of interband dynamics is the usual effective mass an appropriate description. This breakdown of the effective mass description on fast timescales is difficult to observe in traditional solid state systems due to their large bandgaps and fast timescale of interband dynamics. Both these experiments make use of the condensate's long coherence length, and the ability to shape and modulate the external potential on timescales fast compared to the particle dynamics, allowing for observation of novel matter-wave effects.
15

Ultracold atoms in optical potentials : from noise-induced transport to superfluidity

Zelan, Martin January 2011 (has links)
In this thesis, both experimental studies and numerical simulations of ultracold atoms in optical potentials are presented in a collection of nine scientific papers. In particular, noise-induced transport in dissipative optical lattices and superfluid properties of Bose-Einstein condensates have been studied. Noise is usually regarded as a complication to most systems and as something that needs to be minimized. However, in a series of experiments at Umeå University, noise has been shown to play a key role for laser-cooled cesium atoms trapped in dissipative optical lattices. By using a combination of two dissipative optical lattices, where the relative spatial phase between them can be controlled, a so-called Brownian motor can be realized, where energy can be extracted from the inherent noise. In the experiment, this energy is used to control the transport of the laser-cooled atoms in real time and along pre-designed paths. This thesis also presents a way to characterize this system in terms of energy conversion efficiency and coherence of the transport, which may allow for a more straightforward comparison with other systems that rely on noise rectification. In the studies, it is also shown that the noise triggers a downward drift due to gravity, even though the optical potential should support the atoms. Further investigation of this might help to understand the underlying principles of laser cooling, as well as showing that the system might be suitable as a flexible test bed for statistical physics. In close relation to the experimental system, two numerical simulations are also presented, one in which different ways to induce asymmetries between two periodic potentials are investigated, and one in which a proposal for detecting quantum walks is explored. In the second part of the thesis, a work from the Joint Quantum Institute is presented, where a long-lived persistent current in a toroidal Bose-Einstein condensate, held in an all-optical trap, is created. The critical velocity of the superflow is measured in the presence of a tunable barrier. The system can be seen as a first realization of an elementary closed-loop atom circuit. Finally a theoretical study of the crossover between one- and two-dimensional systems is presented, in particular the transition between a two-dimensional superfluid to a one-dimensional Mott insulator is investigated. / Medelst nio vetenskapliga artiklar presenteras i denna avhandling experimentella och teoretiska studier av ultrakalla atomer fångade i optiska potentialer. Framförallt har brusinducerade transporter och supraytande egenskaper hos Bose-Einstein-kondensat studerats.     För de flesta system betraktas brus som något negativt som bör minimeras, men i en serie experiment som redovisas i denna avhandling spelar bruset istället en avgörande positiv roll. I ett system där laserkylda atomer genom växelverkan med laserstrålar fångas i två individuella optiska kristallgitter, kan atomernas kollektiva rörelse styras genom att energi utvinns ur det inneboende bruset. I denna avhandling, genom att kontrollera de optiska potentialerna i realtid, visas att atomernas kollektiva rörelse kan styras längs förutbestämda banor med en så kallade Brownska motor. I ett annat experiment mäts verkningsgraden i omvandligen mellan brus och arbete, samt koherensen i atomtransporten. En sådan karakterisering gör att systemet blir enklare att jämföra med andra system som bygger på liknande principer. I avhandlingen presenteras också en studie där det visas att det inneboende bruset i systemet, tillsammans med en svag kraft, i detta fall från gravitation, kan skapa drifter trots att de optiska potentialerna borde vara tillräckligt djupa för att atomerna ska vara fångade. Denna upptäckt kan leda till ökad grundläggande kundskap om laserkylning. Dessutom visar det att systemet kan beskrivas med modeller från statistisk fysik. I relation till det experimentella systemet i Umeå redovisas även två teoretiska studier, en för två symmetriska periodiska potentialer och deras sätt att möjliggöra inducerade drifter med olika typ av asymmetrier, samt en annan för möjligheten att genomföra och detektera kvantvandringar.     I avhandlingen presenteras också ett experimentellt arbete utfört vid Joint Quantum Institute, där en långlivad ihållande ström i ett torusformat Bose-Einstein-kondensat har skapats i en optisk fälla. Den kritiska hastigheten på strömmen har mätts i närvaron av en ställbar optisk barriär. Detta system kan ses som en första realisation av en grundläggande atomkrets. Slutligen presenteras även en teoretisk studie av övergången mellan en- och tvådimensionella system, där fasövergången mellan superytande och Mottisolation studeras.
16

Investigation of exotic correlated states of matter in low dimension / Etude d'états exotiques corrélés de la matière en basse dimension

Soni, Medha 16 September 2016 (has links)
La physique statistique quantique formule les règles permettant de classifier les différentes particules. Dans cette thèse nous avons étudié deux projets, l'un portant sur les anyons dits de "Fibonacci" et l'autre sur les fermions sur réseau optique. Ici, nous avons naturellement étendu cette étude aux cas pertinent d'anyons itinérants en interaction sur des échelles. Notre but a été de construire le modèle 2D le simple possible d'anyons itinérants en interaction, analogue direct des systèmes fermioniques et inspiré par les études précédentes. En particulier, nous nous sommes demandé si la séparation spin-charge, bien connu à 1D, pouvait subsister dans le cas d'anyons sur une échelle. De plus, dans l'étude de ce modèle, nous avons découvert une nouvelle phase incompressible pouvant présenter un caractère topologique. Dans le cas des fermions confinés sur un réseau optique unidimensionnel, nous avons étudié les effets d'un chargement non-adiabatique et proposé des protocoles visant à minimiser le réchauffement du gaz quantique. Les atomes ultra-froids sur réseau optique constituent une réalisation idéale pour étudier les systèmes fortement corrélés soumis à un potentiel périodique. Le refroidissement évaporatif d'un nuage d'atomes confiné, c.a.d. sans le potentiel du réseau, s'est avéré être un processus très efficace. Les protocoles courants permettent d'obtenir(pour des fermions) des températures aussi basses que T/TF ≈ 0.08, impossible à réaliser en présence du réseau optique. Notre étude concerne les effets de redistribution de densité pour un système 1D de fermions. Notre but était de voir si des défauts causés par la mauvaise répartition des particules lors du chargement du réseau optique pouvaient empêcher les atomes de se refroidir jusqu'à la température voulue. Nous avons conçu des scenario améliorés où certains paramètres sont modifiés de façon dynamique afin de réduire la densité de défauts créés. / Quantum statistics is an important aspect of quantum mechanics and it lays down the rules for identifying dfferent classes of particles. In this thesis, we study two projects, one that surveys models of Fibonacci anyons and another that delves into fermions in optical lattices. We analyse the physics of mobile non-Abelian anyons beyond one-dimension by constructing the simplest possible model of 2D itinerant interacting anyons in close analogy to fermionic systems and inspired by the previous anyonic studies. In particular, we ask the question if spin-charge separation survives in the ladder model for non-Abelian anyons. Furthermore, in the study of this model, we have found a novel physical effective model that possibly hosts a topological gapped state. For fermions in one dimensional optical lattices, we survey the effects of non-adiabatic lattice loading on four different target states, and propose protocols to minimise heating of quantum gases. The evaporative cooling of a trapped atomic cloud, i.e. without the optical lattice potential, has been proven to be a very effective process. Current protocols are able to achieve temperatures as low as T/TF ≈ 0.08, which are lost in the presence of the optical lattice. We aim to understand if defects caused by poor distribution of particles during lattice loading are important for the fermionic case, forbidding the atoms to cool down to the desired level. We device improved ramp up schemes where we dynamically change one or more parameters of the system in order to reduce density defects.
17

Experimental studies of phase coherence of Bose gases in a two-dimensional optical anti-dot lattice / 二次元アンチドット光格子中におけるボース気体の位相コヒーレンスに関する実験的研究

Yamashita, Kazuya 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(人間・環境学) / 甲第22546号 / 人博第949号 / 新制||人||226(附属図書館) / 2019||人博||949(吉田南総合図書館) / 京都大学大学院人間・環境学研究科相関環境学専攻 / (主査)准教授 木下 俊哉, 教授 吉田 鉄平, 教授 森成 隆夫 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DGAM
18

INVESTIGATION OF ATOMIC MOTION IN OPTICAL LATTICES VIA INTENSITY CORRELATION MEASUREMENT

Agyare, Benjamin A. 06 August 2007 (has links)
No description available.
19

Majorana Quasiparticles in a Few-Body Number Conserving Atomic System

Jared E Bland (18426279) 24 April 2024 (has links)
<p dir="ltr">In this work we investigate the existence and experimentally measurable properties of Majorana quasiparticles in a few-body number conserving atomic system.</p>
20

Special purpose quantum information processing with atoms in optical lattices

Klein, Alexander January 2007 (has links)
Atoms in optical lattices are promising candidates to implement quantum information processing. Their behaviour is well understood on a microscopic level, they exhibit excellent coherence properties, and they can be easily manipulated using external fields. In very deep optical lattices, each atom is restricted to a single lattice site and can be used as a qubit. If the lattice is shallow enough such that the atoms can move, their properties can be used to simulate certain condensed matter phenomena such as superconductivity. In this thesis, we show how technical problems of optical lattices such as restricted decoherence times, or fundamental shortcomings such as the lack of phonons or strong spin interactions, can be overcome by using current or near-future experimental techniques. We introduce a scheme that makes it possible to simulate model Hamiltonians known from high-temperature superconductivity. For this purpose, previous simulation schemes to realise the spin interaction terms are extended. We especially overcome the condition of a filling factor of exactly one, which otherwise would restrict the phase of the simulated system to a Mott-insulator. This scheme makes a large range of parameters accessible, which is difficult to cover with a condensed matter setup. We also investigate the properties of optical lattices submerged into a Bose-Einstein condensate (BEC). A weak-coupling expansion in the BEC-impurity interaction strength is used to derive a model that describes the lattice atoms in terms of polarons, i.e.~atoms dressed by Bogoliubov phonons. This is analogous to the description of electrons in solids, and we observe similar effects such as a crossover from coherent to incoherent transport for increasing temperatures. Moreover, the condensate mediates an attractive off-site interaction, which leads to macroscopic clusters at experimentally realistic parameters. Since the atoms in the lattice can also be used as a quantum register with the BEC mediating a two-qubit gate, we derive a quantum master equation to examine the coherence properties of the atomic qubits. We show that the system exhibits sub- and superdecoherence and that a fast implementation of the two-qubit gate competes with dephasing. Finally, we show how to realise the encoding of qubits in a decoherence-free subspace (DFS) using optical lattices. We develop methods for implementing robust gate operations on qubits encoded in a DFS exploiting collisional interactions between the atoms. We also give a detailed analysis of the performance and stability of the gate operations and show that a robust implementation of quantum repeaters can be achieved using our setup. We compare the robust repeater scheme to one that makes use of conventional qubits only, and show the conditions under which one outperforms the other.

Page generated in 0.1578 seconds