• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 13
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 70
  • 70
  • 13
  • 10
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Application de méthodes optiques couplées à l'étude d'écoulements de fluides biréfringents / Application of coupled optical measurements for the study of birefringent fluid flows

Gibouin, Florence 03 September 2015 (has links)
L'utilisation de fluides au comportement rhéologique complexe (seuil d'écoulement, thixotropie) est de plus en plus courante dans notre quotidien. Une description globale du comportement n'est pas suffisante et c'est pourquoi ce travail se focalise sur la détermination locale des propriétés de ces matériaux complexes. Pour cela nous nous appuyons sur des méthodes optiques pour obtenir des informations sur la contrainte et la vitesse de cisaillement. Nous avons choisi d'opter pour la PIV (Particle Image Velocimetry) pour l'obtention du gradient de vitesse et la photoélasticimétrie pour la mesure de contrainte. L'emploi de ces deux techniques de mesure oblige que les fluides étudiés soient transparents et biréfringents. Nous étudions alors une solution de Milling Yellow (fluide au comportement rhéologique simple) pour valider nos techniques de mesure et des suspensions de Laponite qui sont des fluides à seuil et thixotropes. La première étape de ce travail consiste à avoir une idée générale du comportement rhéologique des fluides d'où leur caractérisation à l'aide d'un rhéomètre. Ensuite, dans une géométrie où la répartition de contrainte est connue (géométrie à cylindres coaxiaux), nous déterminons les lois rhéo-optiques nous permettant de relier la contrainte dans le matériau à sa réponse optique. Enfin, dans une géométrie plan-plan, nous couplons les deux techniques de mesure optiques (PIV et photoélasticimétrie) afin de reconstruire un rhéogramme local des différents fluides étudiés pouvant être comparé à celui issu de mesures classiques de rhéométrie. / The use of fluids with a complex rheological behavior (yield stress, thixotropy) is becoming more common in our daily lives. However, a global description of this behavior is not satisfactory even if it is quickly and easily accessible. The aim of this work is to advance in the understanding of complex behaviors at a local scale. Optical methods are the best way to do that. In our case, we need to get information about the shear stress and the shear rate. So we need a measurement technique for each of these variables. A PIV (Particle Image Velocimetry) technique is used to obtain the shear rate and the shear stress is determined by photoelasticimetry. The use of these two techniques requires that the studied fluids are transparent and birefringent. Then, our measurement techniques are validated using a Milling Yellow solution (a simple rheological fluid) before studying Laponite suspensions which are thixotropic yield stress fluids. Firstly, a rheometer is used to have a general idea of the rheological behavior of our fluids. Secondly, in a geometry where the shear stress distribution is known (a coaxial cylinders geometry), rheo-optical laws connecting the shear stress within the material to its optical response are determined. Finally, in a plate-plate geometry, the two optical measurement techniques (PIV and photoelasticimetry) are coupled to reconstruct a local rheogram for the studied fluids that can be compared to the one obtained from conventional Rheometric measurements.
62

[en] STATISTICAL SPECIFICATION OF THE POLARIZATION MODE DISPERSION IN OPTICAL LINKS / [pt] ESPECIFICAÇÃO ESTATÍSTICA DA DISPERSÃO DOS MODOS DE POLARIZAÇÃO EM ENLACES ÓPTICOS

JOAO ARLINDO BRITO JUNIOR 17 December 2003 (has links)
[pt] Projetistas de sistemas de comunicações ópticas necessitam estimar o coeficiente de PMD dos enlaces ópticos visando determinar a correspondente penalidade de potência do enlace. Os valores de PMD nas fibras variam aleatoriamente, conseqüentemente a determinação da PMD dos enlaces deverá ser calculada através de metodologias estatísticas. Esta dissertação contém um estudo sistemático da estimação do coeficiente de PMD das seções amplificadas de 02 backbones. Três 03 técnicas estatísticas: Técnica de Monte Carlo, Modelo Gama e Teorema do Limite Central Generalizado, recomendadas pelo Método 1 da norma TIA/EIA TSB 107 foram usadas e os resultados comparados com os valores medidos em campo destas seções. Os resultados das avaliações realizadas mostraram que a metodologia apresentada por esta recomendação induz a uma superestimação do coeficiente de PMD do enlace devido a limitação dos equipamentos de medição e conseqüentemente a uma superestimação da penalidade prevista. Esta superestimação deve-se ao fato da PMD das fibras estar abaixo do limite de sensibilidade dos equipamentos de medida comercialmente disponíveis. A estimação do coeficiente de PMD de enlaces requer então a utilização de equipamentos de medida mais precisos (ainda não disponíveis) ou corrigir esta metodologia de cálculo para a estimação da PMD dos enlaces ópticos com a utilização de fibras/cabos de maior comprimento. / [en] Optical system designers need to estimate the expected PMD coefficient of the links in order to calculate the corresponding power penalty. Fiber PMD values varies randomly, therefore the link PMD estimation shall be calculated by statistical methodologies. This thesis presents a systematic study of PMD estimation of the amplified spans of two backbones. Three statistical techniques: Monte Carlo Technique, Gamma Model and Generalized Central Limit Theorem, recommended by Method 1 from TIA/EIA TSB 107 Guideline were used and the results compared with the field measurement values of these spans. Evaluation results showed that this methodology cause an overestimation of the link PMD coefficient due to a limitation of the measurement eqquipments and consequently an overestimation of the power penalty. This overestimation is due to the fact that fiber PMD is bellow of the resolution limit of the commercially available measurement equipments. Link PMD coefficient estimation needs the use of more precise measurement equipment (Not available yet) or to correct this calculus methodology for the optical link PMD estimation with the use of longer fibers/cables.
63

Optical Characterization and Energy Simulation of Glazing for High-Performance Windows / Optisk karakterisering och energisimulering av smarta fönster

Jonsson, Andreas January 2009 (has links)
This thesis focuses on one important component of the energy system - the window. Windows are installed in buildings mainly to create visual contact with the surroundings and to let in daylight, and should also be heat and sound insulating. This thesis covers four important aspects of windows: antireflection and switchable coatings, energy simulations and optical measurements. Energy simulations have been used to compare different windows and also to estimate the performance of smart or switchable windows, whose transmittance can be regulated. The results from this thesis show the potential of the emerging technology of smart windows, not only from a daylight and an energy perspective, but also for comfort and well-being. The importance of a well functioning control system for such windows, is pointed out. To fulfill all requirements of modern windows, they often have two or more panes. Each glass surface leads to reflection of light and therefore less daylight is transmitted. It is therefore of interest to find ways to increase the transmittance. In this thesis antireflection coatings, similar to those found on eye-glasses and LCD screens, have been investigated. For large area applications such as windows, it is necessary to use techniques which can easily be adapted to large scale manufacturing at low cost. Such a technique is dip-coating in a sol-gel of porous silica. Antireflection coatings have been deposited on glass and plastic materials to study both visual and energy performance and it has been shown that antireflection coatings increase the transmittance of windows without negatively affecting the thermal insulation and the energy efficiency. Optical measurements are important for quantifying product properties for comparisons and evaluations. It is important that new measurement routines are simple and applicable to standard commercial instruments. Different systematic error sources for optical measurements of patterned light diffusing samples using spectrophotometers with integrating spheres have been investigated and some suggestions are made for how to avoid such errors.
64

Multispectral optics in complex media : theory and application to dense microalgal media in a context of mass cultivation monitoring. / Optique multispectral en milieux complexes : théorie et application aux milieux denses de microalgues dans le contexte du suivi et du pilotage de la culture de masse.

Bellini, Sarah 18 November 2014 (has links)
Les microalgues autotrophes sont une source prometteuse de biomasse pour des applications aussi variées que l'extraction de molécules, l'alimentation animale et humaine, la production énergétique ou la décontamination environnementale. La production de masse est donc en forte augmentation dans le monde. Cependant, les techniques actuelles pour caractériser l'état physiologique des cellules algales au cours de la croissance sont coûteuses en main d'œuvre et en temps, souvent basées sur du matériel de mesure générique répondant mal au cahier des charges. Elles sont inadaptées à la mesure en ligne.De nouveaux outils doivent donc être développés pour optimiser le pilotage des procédés de culture, en effectuant des mesures rapides de l'état physico-chimique des cellules. La spectroscopie visible (VIS) et proche infrarouge (NIR) se présente comme une solution pratique. De plus des travaux antérieurs ont démontrés que les propriétés spectrales d'absorption et de diffusion des cellules d'algues dans le domaine VIS-NIR sont très corrélées à leur caractéristiques chimiques (pigments) et physiques (tailles, densité des cellules). Les densités de cellules considérées en cultures denses sont très élevées (10^6-10^9 cellules/mL), rendant inévitables les phénomènes de multidiffusion. Cependant ces derniers ont été identifiés comme gênants pour l'extraction de données à partir des spectres mesurés, car ils rendent l'hypothèse de validité de la loi de Beer Lambert fausse. Dans cette thèse nous nous intéressons à l'extraction de données sur la physiologie des cellules algales à partir de mesures spectrales effectuées sur des échantillons denses, non-dilués, directement issus du milieu de culture. Notre approche se décline en plusieurs axes, correspondants aux différentes échelles de description du problème. D'abord, l'échelle de l'échantillon algal global est considérée. Nous en définissons les propriétés spectrales apparentes, et analysons le problème pratique de leur mesure. Nous avons utilisé un montage à double sphères d'intégration et développé un protocole de mesure complet, que nous décrivons. Ensuite, les propriétés spectrales linéaires intrinsèques au milieu algal sont abordées, et nous cherchons à les reliées aux propriétés apparentes de l'échantillon. Pour cela nous utilisons le formalisme de l'équation de transfert radiatif (ETR) donnant une modélisation rigoureuse des phénomènes de multidiffusion à l'œuvre dans les milieux turbides. En pratique, résoudre l'ETR ne peut se faire que par une approximation ou la simulation. Dans nos travaux nous examinons la méthode Adding-Doubling et son inverse, utilisées avec succès par d'autres équipes sur des échantillons turbides de tissus biologiques. En troisième lieu, l'échelle de description de la cellule d'algue individuelle est abordée. AlgaSim, un programme de simulation basé sur la théorie de Mie étendue, a été développé au cours de cette thèse pour modéliser les spectres d'absorption et de diffusion d'une cellule algale décrite par ses paramètres physiologiques, tels que la taille et le poids sec, les proportions des différents matériaux cellulaires, la quantité et la composition des pigments. Ainsi, les liens entre propriétés physiques et chimiques de la cellule et ses propriétés spectrales sont étudiés. Enfin, une méthode complète est proposée pour articuler toutes les échelles de description précédemment examinées. Les liens entre propriétés intrinsèques du milieu algal et les propriétés optiques individuelles des cellules sont cherchés. Les paradigmes développés aux différentes échelles sont ensuite mis bout à bout pour relier la description physiologique des cellules d'algue aux propriétés spectrales apparentes mesurées sur un échantillon donné. La méthode est testée sur des échantillons algaux réels. Les premiers résultats sont prometteurs, démontrant le potentiel opérationnel de la spectroscopie VIS-NIR pour le suivi de procédés de culture dense de microalgues. / Autotrophic microalgae are seen as a promising source of biomass for various applications such as chemicals extraction, animal and human food, energy production and environment cleaning. Consequently, the global mass production of microalgae has largely increased over the last decade. However, the current techniques used for the characterization of the algal cells all along the growth process require time-consuming sample preparation, a large amount of costly, standard instrumentation and cannot usually be performed in situ.New tools are needed to optimize the monitoring of the cultivation process by providing a faster measurement of the microalgal cells physical and chemical states. For this purpose, utilizing visible (VIS) and near infrared (NIR) spectroscopy is looked as a promising solution. Moreover, previous studies demonstrated that the spectral absorption and scattering properties of microalgal suspensions in the VIS-NIR domain depend heavily on the chemical characteristics (pigments) and physical characteristics of the cells (size, density of the cells). In a context of cultivation process, cell density in the culture medium is very high (10^6-10^9 cell/mL) which makes the multi-scattering phenomena significant. However, recent studies have showed that the data extraction from spectroscopic measurements performed on turbid samples is highly complicated by the influence of the scattering phenomena on the spectra, making the classical processing methods based on the assumption of Beer law irrelevant. This thesis addresses the issue of retrieving information about the physiological state of microalgal cells from spectral measurements performed on non-diluted, dense bulk culture media. For this purpose, our approach includes successive guidelines, corresponding to different scales of description. First, the scale of the bulk algal aliquot is considered: the apparent spectral properties are defined, and the practical issue of measuring them with an adapted setup is investigated. In particular, a double-integrating sphere setup, as well as a complete measurement protocol are implemented. Second, the intrinsic linear spectral properties of the dense algal medium are defined, and the links between the intrinsic and apparent spectral properties are investigated. The formalism of the radiative transport equation (RTE) is used for this purpose, as it rigorously models the physical phenomena due to multiple scattering. Solving the RTE must be implemented in practice with an approximation or simulation method. In this work, we investigate in particular the Adding-Doubling method and its inverse, which have been proved to be adapted to the case of highly turbid organic tissues and materials. Third, the scale of an individual algal cell is considered. In this thesis we have developed a simulation program called AlgaSim based of the extended Mie theory, which makes it possible to simulate the spectral absorption and scattering properties of an algal cell described by its physiological characteristics, such as its mean size and dry weight, proportions of different cell materials and pigment quantity and composition. The links between the chemical and physical properties of an algal cell and its spectral properties are thus investigated.Finally, a complete method is proposed to link all the scales of description. In particular, the links between the intrinsic spectral properties of an algal medium and the individual properties of the constitutive cells are considered. By organizing all the paradigms previously investigated, it is possible to implement a complete model linking the physiological description of the constitutive algal cells to the apparent spectral properties measured on a dense culture sample. The method and its inverse are tested on real algal samples. They show promising primary results, proving the operational potential of VIS-NIR spectroscopy for the monitoring of dense algal cultures.
65

Experimental nanomechanics of 1D nanostructures

Pant, Bhaskar 02 July 2010 (has links)
Nanotechnology offers great promise for the development of nanodevices. Hence it becomes important to study the mechanical behavior of nanostructures for their use in such systems. MEMS (Micro ElectroMechanical Systems) provide an effective and precise method for testing nanostructures. Consequently this study focuses on the development of a MEMS thermal nanotensile tester to investigate the mechanical behavior of one-dimensional nanostructures. Extensive characterization of these MEMS devices (structural, electrical and thermal behavior) was performed using experimental as well as finite element methods. Tensile testing of nanostructures requires manipulation of individual nanostructures on the MEMS device. The study involves the development of an efficient methodology for the manipulation of nanowires and nanobeams for nanoscale testing. Furthermore, two different sensing schemes for the developed devices, namely capacitive and resistive, have been extensively investigated and the advantages and various issues related to both have been discussed. Nanocrystalline (nc) Ni nanobeams (typical dimensions of 500 nm x 200 nm x 20 µm) have been tested to failure using the MEMS devices. Improvements in the design for the MEMS nanotensile tester have been suggested to significantly enhance the device performance and to resolve the various issues involved with nano scale tests. Differential capacitive sensing for stress-strain measurements has been suggested to improve the accuracy of strain measurements.
66

High Precision Optical Frequency Metrology

Das, Dipankar 05 1900 (has links)
Precise measurements of both absolute frequencies and small frequency differences of atomic energy levels have played an important role in the development of physics. For example, high precision measurements of absolute frequencies of the 2S½ → 2P ½ transition (D1 line) of alkali atoms form an important link in the measurement of the fine structure constant, α. Similarly, precise interferometric measurements of the local gravitational acceleration (g) rely on the knowledge of the absolute frequencies of the 2S½ → 2P 3/2 transition (D2line) in alkali atoms. Difference frequency measurements of hyperfine structure and isotope shifts of atomic energy levels provide valuable information about the structure of the nucleus, which in turn helps in fine tuning the atomic wave functions used in theoretical calculations. The work reported in this thesis starts with the development and refinement of high precision measurement of absolute frequencies using a ring-cavity resonator. The measurement technique is relatively simple and cost-effective, but the accuracy is comparable to that achieved with the frequency comb technique (10¯11) when the accuracy is limited by the natural linewidth of the transition being measured. The technique combines the advantages of using tunable diode lasers to access atomic transitions with the fact that the absolute frequency of the D2 line in87Rb is known with an accuracy of 6 kHz. A frequency-stabilized diode laser locked to this line is used as a frequency reference, along with a ring-cavity resonator whose length is locked to the reference laser. For a given cavity length, an unknown laser locked to an atomic transition has a small frequency offset from the nearest cavity resonance. We use an acousto-optic modulator (AOM) to compensate for this frequency offset. The measured offset is combined with the cavity mode number to obtain a precise value for the frequency of The unknown laser. We have used this technique for absolute frequency measurements Of the D lines in133Cs and 6,7Li, and the 398.8nm line in Yb. We have also developed a technique to measure the ‘difference frequency’ of atomic energy levels using a single diode laser and an AOM. In this technique, the laser is first locked to a given hyperfine transition. The laser frequency is then shifted using the AOM to another hyperfine transition and the AOM frequency is locked to this difference. Thus the AOM frequency directly gives a measurement of the hyperfine interval. Applying this AOM technique we have measured the hyperfine interval of the D1 lines of all alkali atoms with high precision. We have further developed a technique of coheren-tcontrol spectroscopy (CCS) using co-propagating control and probe beam that is useful for highresolution spectroscopy. In this technique, the probe beam is locked to a transition and its absorption signal is monitored while the control beam is scanned through neighbouring transition. As the control comes into resonance with another transition, the probe absorption is reduced and the signal shows a Doppler free dip. This technique allows us to resolve transitions that are otherwise swamped by crossover resonances in conventional saturated absorption spectroscopy (SAS). We have applied this technique to measure hyperfine intervals in the D2 line of several alkali atoms. Thus, we were able to do high-precision measurements of both absolute and difference frequency of atomic transitions. The precision of the absolute frequency measurement is finally limited by the accuracy of 6 kHz with which the reference frequency is known. The nearby two photon transition in Rb, i.e. the 5S1/2→5D3/2 transition at 778 nm, is known with an accuracy of 1 kHz. In future, we hope to improve the accuracy of our technique using this transition as the reference. This thesis is organized as follows: In Chapter1,we give a brief introduction to our work.. We review the importance of frequency measurements and precision spectroscopy, followed by a comparison of the frequency comb and our ring cavity technique. In Chapter2, we describe measurements of the absolute frequency of the D lines of 133Cs using the ring cavity. We give a detailed discussion of the technique, the Possible sources of errors, and ways to check for the errors. The measurement of the absolute frequency of the D lines of Cs allows a direct comparison to frequency comb measurements, and thus acts as a good check on our technique. In Chapter 3, we describe the absolute frequency and isotope shift measurements in the 398.8 nm line in Yb. We probed this line by frequency doubling the output of a tunable Ti:Sapphire laser. We obtained< 60 kHz precision in our measurements and were able to resolve several discrepancies in previous measurements on this line. In Chapter 4, we describe the measurement of hyperfine structure in the D1 lines of alkali atoms. We used conventional saturated-absorption spectroscopy in a vapor cell to probe different hyperfine transitions and then used our AOM technique to measure the hyperfine interval with high precision. In Chapter 5 we discuss our measurements of hyperfine structure in the D2 lines of several alkali atoms. In the case of 23Na and 39K, the closely-spaced hyperfine transitions are not completely resolved in conventional saturatedabsorption spectroscopy due to the presence of cross over resonances. We have used coherent control spectroscopy to obtain crossover-free spectra and then measured the hyperfine intervals using an AOM. This technique was also used for high resolution spectroscopy in the D2 line of 133Cs. Finally, we describe our measurements of hyperfine structure in the D2 line of Rb using normal saturated absorption spectroscopy. Chapter 6, describes the relative and absolute frequency measurements in the D lines of6,7 Li at 670nm. High-precision measurements in lithium are of special interest because theoretical calculations of atomic properties in this simple three electron system are fairly advanced. Lithium spectroscopy poses an experimental challenge and we describe our efforts in doing highresolution spectroscopy on this system. Chapter 7 describes the hyperfine spectroscopy on the1P 1 state of 173Yb. Measurement of hyperfine structure in 173Yb has a problem because two of the hyperfine transitions overlap with the transition in 172Yb. In our earlier work (described in chapter 4), we had solved this problem by using multipeak fitting to the partially resolved spectrum. Here, we directly resolve the hyperfine transitions by using transverse laser cooling to selectively deflect the 173Yb isotope. In Chapter 8 , we give a broad conclusion to the work reported in this thesis and suggest future avenues of research to continue the work commenced here.
67

Metoda fyzikálního modelování přechodových hran v obraze pro určení skutečné pozice obrysu předmětu / Image Transition Edge Physical Modeling Method for Exact Object Shape Position Determination

Kohoutek, Michal January 2009 (has links)
Doctoral thesis is focused on a design of a new original image transition edge physical modeling method for exact object shape position determination. Automatic Optical Inspection systems for the high accuracy optical measurements is main application area for designed method. The new method design is based on precise physical analysis of a defined imaging system. Object side telecentric lens, telecentric backlight source and CCD video camera are main parts of the analyzed imaging system. New image transition edge physical model and method for accurate shape position detection within the model are derived by geometrical and Fourier optics imaging system analysis. Possible influences of the model parameters changes to the accuracy of shape position detection are studied precisely. A new modeling function suitable for implementation in a new optimal approximation method is derived from the physical transition edge model. The modeling function optimal approximation method is implemented in to a Tester2D measuring system and verified by length etalon measurements. The Tester2D measuring system was successfully accredited for dimensions measurement in range with accuracy up to . Documentation of results of the accreditation process with the record of obtained results from measurement system in scope of preformed interlaboratory comparison tests are appended to the doctoral thesis.
68

Non-instantaneous polarization in perovskite-like ferroelectrics revealed by correlated (ultra)fast luminescence and absorption spectroscopy. On the formation of self-trapped excitons in lithium niobate and their relation to small electron and hole polaron pairs

Krampf, Andreas 28 August 2020 (has links)
In this work the transient non-instantaneous polarization, i.e., laser-pulse injected small polarons and self-trapped excitons, is studied in the perovskite-like ferroelectric lithium niobate. The investigations span a time scale from femtoseconds to several hours. It is shown that the established small polaron picture is not able to describe transient absorption and photoluminescence of lithium niobate consistently. Several strong indications are presented demonstrating that the photoluminescence cannot be caused by geminate small polaron annihilation. Instead, the idea of radiatively decaying self-trapped excitons at the origin of the blue-green photoluminescence is revived. Excitons pinned on defect sites are proposed to lead to the already observed long-lived transient absorption in the blue spectral range in Mg- and Fe-doped crystals. Excitons pinned on iron-defects are studied in more detail. Their spectral fingerprint and absorption cross section is determined. Furthermore, it is shown that the occurrence of these pinned STEs can be tailored by chemical treatment of the samples and the experimental parameters such as the pump pulse intensity and photon energy. Based on the new experimental results and reviewing data published in literature, an atomistic picture of hopping and pinning of self-trapped excitons in lithium niobate is proposed. The question is addressed whether small polarons and self-trapped excitons in lithium niobate are coupled species in the sense that oppositely-charged polarons may merge into self-trapped excitons or STEs break into small polaron pairs. Decay kinetics of transient absorption and luminescence assigned to free small polarons and STEs indicate that this is not the case. For a more complete picture the ultrafast time scale is investigated as well. The formation times of small polarons and STEs are determined, which both lie in the range of 200 fs. No indications are found on the (sub)picosecond time scale indicating a coupling of both quasi-particle species either. In order to gain access to the formation of self-trapped excitons a custom-built femtosecond broadband fluorescence upconversion spectrometer is installed. Based on an already existing scheme, it is adapted to the inspection of weakly luminescent solid samples by changing to an all reflective geometry for luminescence collection. To avoid the necessity for an experimentally determined photometric correction of the used setup, an already established calculation method is extended considering the finite spectral bandwidth of the gate pulses. The findings presented here are important not only as fundamental research, but also regarding the technical application of lithium niobate and other similar nonlinear optical crystals. The simultaneous occurrence of both small polarons and self-trapped excitons is a rather rarely described phenomenon. Usually, the optical response of wide band gap oxide dielectrics is associated with only one of these quasi-particle species. This work may therefore be a stimulus to review the existing microscopic models for transient phenomena in other oxide dielectrics, which may help to improve their application in nonlinear optical and electro-optical devices. In this context the ultrafast transient photoluminescence spectroscopy established here for weakly luminescing solid samples may again provide valuable insight. With respect to lithium niobate, the results do not only resolve inconsistencies between the microscopic pictures described in literature, but also provide information regarding the extends to which the propagation of ultrashort laser pulses may be affected by (pinned-)STE absorption. It is shown that tailoring of the long-lived absorption center in the blue spectral range is possible, which may be used to avoid optical damage when high repetition rates are applied. It is important to emphasize that the microscopic model proposed in this work is mainly based on experimental indications. It is the task of further detailed theoretical investigations, e.g., via time-dependent density functional theory, to test whether the proposed model is justified. From an experimental perspective the important question remains whether (pinned-)STEs contribute to a photorefractive effect. In the experimentally easily accessible spectral range no absorption feature of mobile STEs is observed. As a complementary experimental technique, ultrafast holographic spectroscopy may reveal an excitonic contribution to photorefraction and provide further insight to STE transport and pinning phenomena.
69

Modélisation et contrôle actif des instabilités aéroacoustiques en cavité sous écoulement affleurant

Chatellier, Ludovic 05 September 2002 (has links) (PDF)
La thèse présente la modélisation, l'étude expérimentale et le contrôle actif des instabilités aéroacoustiques rencontrées en cavité sous écoulement turbulent à faible nombre de Mach. On propose une formulation problème de stabilité de l'interface fluide séparant deux écoulements uniformes de vitesse différente en integrant les effets acoustiques. Les modes d'instabilité de l'interface sont alors étudiés en fonction du nombre de Mach et de la configuration géométrique. Une maquette comportant une cavité de dimensions réglables est ensuite étudiée en soufflerie à l'aide de mesures de pression. Ces données valident en partie l'approche analytique adoptée. On conçoit alors un dispositif de contrôle des modes d'instabilité, appliqué en particulier dans le cas de leur couplage avec l'acoustique de la veine d'essais. Enfin, un système de vélocimétrie par images de particules synchronisé sur les modes d'oscillation permet de valider l'étude théorique et la stratégie de contrôle.
70

Measurements of the complex refractive index of volcanic ash

Reed, Benjamin Edward January 2016 (has links)
This thesis describes laboratory measurements of the complex refractive index of volcanic ash particles. These measurements are needed to model the radiative impact of volcanic ash, vital for accurate satellite remote sensing. Three experimental methods have been developed, and the results for the complex refractive index and optical properties of a wide range of volcanic ash samples are presented. Measurements were made of the spectral transmission of radiation through suspended volcanic ash particles inside an aerosol cell, using a Fourier transform spectrometer at infrared wavelengths and two diffraction grating spectrometers covering ultraviolet, visible, and near-infrared wavelengths. In addition to the optical measurements, a suite of sampling and sizing instruments were connected downstream of the aerosol cell to measure the particle size distribution. The method was calibrated using two quartz samples. Mass extinction coefficients for nine volcanic ash samples, at 0.3-14 μm, are presented and show considerable variation. These variations are linked to the composition of the samples, measured using X-ray fluorescence (XRF) analysis. The complex refractive index, at 0.3-14 μm, of the two quartz samples and two samples of volcanic ash from the 2010 Eyjafjallajökull eruption were retrieved from the extinction measurements. The forward model used Mie theory and a classical damped harmonic oscillator (CDHO) model to represent the complex refractive index of the samples in terms of a finite set of band parameters, as well as the real refractive index of the sample in the small wavelength limit. Previous studies have shown that there is a redundancy in the retrievals between the band strength parameters and the real refractive index in the small wavelength limit, which can lead to spurious values for the retrieved complex refractive index. This problem was overcome by using an independent measurement of the real refractive index at a visible wavelength, to constrain the model parameter of the real refractive index in the short wavelength limit. Independent measurements of the complex refractive index at visible wavelengths are also important because the extinction produced at these wavelengths is highly sensitive to the particle size distribution, and any uncertainty in the measured size distribution will contribute to significant systematic error in the refractive index retrieved from extinction. The retrieved spectral complex refractive index of Eyjafjallajökull ash was applied using the ORAC retrieval scheme to measurements of the 2010 Eyjafjallajökull eruptionmade by theMODIS instrument aboard NASA's Terra satellite. Significant difference were found in the retrieved plume parameters of optical path, effective radius, and plume altitude, compared to assuming a literature measurement for the refractive index of pumice. For three discrete visible wavelengths (450, 546.7, and 650 nm) an optical microscope was used to make measurements of the complex refractive index of the volcanic ash samples. The long-established Becke line method was used to measure the real refractive index of the samples. For the imaginary refractive index, a new and novelmethod was developed involving measurements of the attenuation of light in individual particles. A strong linear correlation was found between the SiO<sub>2</sub> content of the samples and both their real and imaginary refractive indices at the visible wavelengths investigated. Furthermore, from the XRF compositional analysis of the samples values were calculated for the ratio of non-bridging oxygen atoms per tetrahedral cation (NBO/T), and it was found that NBO/T was an even stronger predictor of real refractive index at visible wavelengths. The optical microscope measurements could only be applied to particles with a radius larger than 10 μm. A new refractometer method was investigated for retrieving the real refractive index of submicron particles from colloidal reflectance measurements close to the critical angle in an internal reflection configuration. A coherent scattering model (CSM) was used to model the coherent reflection from a half-space of monodisperse or polydisperse particles, and a simple extension of the model is presented to properly account for the modified size distribution at the interface in an internal reflection set-up. A rigorous sensitivity analysis was performed to determine how experimental uncertainties propagate into uncertainty associated with the retrieved real refractive index, and the uncertainty due to non-spherical effects was estimated using T-matrix methods. Experimental reflectance data at a wavelength of 635 nm were obtained for spherical monodisperse polystyrene calibration particles, a polydisperse sand sample, and a polydisperse volcanic ash sample. The retrieved values for the real refractive index agreed, within propagated uncertainties, with values measured using other techniques. The method is shown to be a viable technique for measuring the real refractive index of small quantities of submicron particles, and can also retrieve the concentration and size of particles.

Page generated in 0.0739 seconds