61 |
Optical Approaches to Study Nanoscale Electrochemical ProcessesMonaghan, Joseph, 0000-0002-5281-7130 January 2022 (has links)
In this work, we use optical approaches to study and provide mechanistic insight into electrochemical reactions occurring at the surface of single nanoparticles. Correlated optical-electrochemical studies offer several advantages over single nanoparticle electrochemical studies including, higher spatial resolution, the ability to interrogate many nanoparticles at the same time and identify populations of inactive nanoparticles. Throughout this dissertation, two optical techniques are discussed in detail, dark-field scattering and super-localization imaging. In the first set of experiments, we describe calcite-assisted localization and kinetics (CLocK) microscopy, a multiparameter super-localization imaging technique. By placing a rotating birefringent calcite crystal in the infinity space of an optical microscope, CLocK provides immediate polarization and orientation information while still maintaining the ability to localize a single nanoparticle with < 10 nm resolution. Additionally, we demonstrate that the CLocK point spread function encodes kinetic information that we quantified to be an order of magnitude shorter than the integration time of the camera. In this work, CLocK provides new mechanistic insight into dynamic processes such as the dissolution of single gold nanorods as well as single-molecule surface-enhanced Raman scattering. In the second work, dark-field scattering was employed to monitor a proposed post-synthesis silver nanoparticle surface cleaning strategy to improve homogeneity across a population. Here, a sacrificial silver-sulfide sulfide shell is chemically grown on single silver nanoparticles to outcompete surface impurities. We demonstrate that upon electrochemical removal of the shell, a more reactive and reproducible silver surface can be achieved as revealed by enhanced electrodissoluion of the freshly cleaned silver nanoparticles. In these experiments, we additionally found a sulfide-dependent formation of multiple sulfide-species as well as mixed character sulfide shells on single nanoparticles themselves, thus demonstrating the sensitivity provided by optical microscopy at identifying multiple surface chemistries. Overall, the work in this dissertation highlights the ability of optical tools at revealing heterogeneity in single particle studies providing insight into structure-function relationships. / Physiology
|
62 |
Investigating the potential of systematic optical petrography in a geometallurgical context : A case study on boulder characterization from Rajapalot property, FinlandBjörk, Annie January 2023 (has links)
Geometallurgy describes a holistic approach to mining (integrating geological, metallurgical, geotechnical, environmental, and more parameters) with the goal to improve the efficiency and sustainability of a mining operation. The potential of systematic optical petrography in a geometallurgical context was investigated in this study, as well as how petrography may be useful across disciplines in several blocks of the mining value chain. In a case study, twelve boulder samples (non-mineralized and mineralized) from the Rajapalot exploration property in Finland were characterized by detailed optical microscopy and scanning electron microscopy (SEM) with the aim to delineate the origin of the respective boulders. This allowed to demonstrate some benefits and challenges of systematic optical petrography in the mining value chain and geometallurgical programs. The study was performed through the geology department at Mitta AB in Luleå, Sweden, using rock samples supplied by Mawson Gold Ltd, Finland. The Rajapalot Au-Co property lies a few km east of the Rompas Au-U property, both owned by Mawson Gold Ltd and located in the Paleoproterozoic Peräpohja belt in northwest Finland. When determining the boulders’ origin, geochemical gradients of the Peräpohja belt lithostratigraphy; oxidized sodic rocks in the Kivalo group and reduced potassic rocks in the Paakkola group were crucial factors. The mineralization style of the Rompas Au-U association and the Rajapalot Au-Co association (including the “Palokas” Fe-Mg type and the “Rumajärvi” K-Fe type) were further crucial to classify the mineralized boulders. Results show that the rock types (and suggested origin) vary between boulder samples. Most samples are presumed to originate from the Paakkola group, one sample from the Kivalo group, and a few samples are inconclusive. Furthermore, the samples impact on the mining value chain was discussed based on the results of the petrographic analysis. A method description for a more systematic way of examining rock material is presented, including for example quantitative parameters such asmodal mineralogy and grain size distribution. However, the applicability of this method description needs further study.
|
63 |
Microscopic Investigations of the Adhesion of Bacteria and Algae on Biomaterial SurfacesPathak, Pooja 08 August 2007 (has links)
No description available.
|
64 |
Failure Mechanisms and Texture Evolution of Wrought AZ31B Magnesium at Temperatures Ranging from 25 C to 125 CScott, Jonathan Michael 14 March 2012 (has links) (PDF)
Failure mechanisms were studied in wrought AZ31B magnesium alloy under different strain paths and various temperatures. Optical micrographs were used to observe the formation of shear bands and regions of high twin density in samples strained under uniaxial, biaxial and plane strain conditions. Interrupted testing at 4% effective strain increments until failure was used to observe the evolution of the microstructure. Results showed that shear bands with a high percentage of twinned grains appeared early in the samples strained under biaxial or plane strain tension. These bands are similar to the failure region in uniaxial tension specimens. A forming limit diagram for AZ31B was developed from the strain data, showing that plane strain and biaxial tension had very similar limit strains, in contrast to materials like steel or aluminum alloys which typically have greater ductility in biaxial tension compared to plane strain tension.
When the experiments are repeated at elevated forming temperatures of 75 C and 125 C there is no observable shear band formation. The forming limit diagrams for each temperature were created and showed a marked increase in biaxial tension formability, compared to plane strain tension. Optical microscopy showed no sign of any compression twins and very few tensile twins in samples strained in biaxial or plane strain tension, up to 12% effective strain. The lack of compression twins at these strain levels shows that the effect of temperature on critical resolved shear stress for < c+a > slip is greater than previously expected.
|
65 |
Optically Induced Forces In Scanning Probe MicroscopyKohlgraf-Owens, Dana 01 January 2013 (has links)
The focus of this dissertation is the study of measuring light not by energy transfer as is done with a standard photodetector such as a photographic film or charged coupled device, but rather by the forces which the light exerts on matter. In this manner we are able to replace or complement standard photodetector-based light detection techniques. One key attribute of force detection is that it permits the measurement of light over a very large range of frequencies including those which are difficult to access with standard photodetectors, such as the far IR and THz. The dissertation addresses the specific phenomena associated with optically induced force (OIF) detection in the near-field where light can be detected with high spatial resolution close to material interfaces. This is accomplished using a scanning probe microscope (SPM), which has the advantage of already having a sensitive force detector integrated into the system. The two microscopies we focus on here are atomic force microscopy (AFM) and nearfield scanning optical microscopy (NSOM). By detecting surface-induced forces or force gradients applied to a very small size probe (~ 20 nm diameter), AFM measures the force acting on the probe as a function of the tip-sample separation or extracts topography information. Typical NSOM utilizes either a small aperture (~ 50 150 nm diameter) to collect and/or radiate light in a small volume or a small scatterer (~ 20 nm diameter) in order to scatter light in a very small volume. This light is then measured with an avalanche photodiode or a photomultiplier tube. These two modalities may be combined in order to simultaneously map the local intensity distribution and topography of a sample of interest. A critical assumption made when performing iv such a measurement is that the distance regulation, which is based on surface induced forces, and the intensity distribution are independent. In other words, it is assumed that the presence of optical fields does not influence the AFM operation. However, it is well known that light exerts forces on the matter with which it interacts. This light-induced force may affect the atomic force microscope tip-sample distance regulation mechanism or, by modifying the tip, it may also indirectly influence the distance between the probe and the surface. This dissertation will present evidence that the effect of optically induced forces is strong enough to be observed when performing typical NSOM measurements. This effect is first studied on common experimental situations to show where and how these forces manifest themselves. Afterward, several new measurement approaches are demonstrated, which take advantage of this additional information to either complement or replace standard NSOM detection. For example, the force acting on the probe can be detected while simultaneously extracting the tip-sample separation, a measurement characteristic which is typically difficult to obtain. Moreover, the standard field collection with an aperture NSOM and the measurement of optically induced forces can be operated simultaneously. Thus, complementary information about the field intensity and its gradient can be, for the first time, collected with a single probe. Finally, a new scanning probe modality, multi-frequency NSOM (MF-NSOM), will be demonstrated. In this approach, the tuning fork is driven electrically at one frequency to perform a standard tip-sample distance regulation to follow the sample topography and optically driven at another frequency to measure the optically induced force. This novel technique provides a viable alternative to standard NSOM scanning and should be of particular interest in the long wavelength regime, e.g. far IR and THz.
|
66 |
Localised Corrosion of Austenitic Stainless SteelsJha, Gyanendra Kumar 08 1900 (has links)
The localised corrosion behaviour of various grades of Austenitic Stainless Steels has been demonstrated by optical and electron microscopy. The effect of sensitisation upon subsequent corrosive attack has been investigated. A theoretical model based upon thermodynamic and kinetic considerations has been proposed to account for the observed experimental results. / Thesis / Master of Engineering (ME)
|
67 |
A NEAR FIELD SCANNING OPTICAL MICROSCOPY INVESTIGATION OF PHOTONIC STRUCTURESSHARMA, ADITI 17 April 2003 (has links)
No description available.
|
68 |
Two-dimensional colloidal systems : grain boundaries and confinementSkinner, Thomas Olof Edwin January 2012 (has links)
The behaviour of colloidal particles in two-dimensional (2D) systems is addressed in real space and time using magnetic fields, optical tweezers and optical video microscopy. First, the fluctuations of a grain boundary in a 2D colloidal crystal are analysed. A real space analogue of the capillary fluctuation method is derived and successfully employed to extract the key parameters that characterise the grain boundary. Good agreement is also found with a fluctuation-dissipation based method recently suggested in simulation. Following on from analysis of the interface fluctuations, the properties of the individual grain boundary particles are analysed to investigate the long standing hypothesis that suggests that grain boundary particle dynamics are similar to those in supercooled liquids. The grain boundary particle dynamics display cage breaking at long times, highly heterogeneous particle dynamics and the formation of cooperatively moving regions along the interface, all typical behaviour of a supercooled liquid. Next, the frustration induced by confining colloidal particles inside a pentagonal environment is investigated. The state of the system is adjusted via two separate control parameters: the inter-particle interaction potential and the number density. A gradual crystalline to confined liquid-like transition is observed as the repulsive inter-particle interaction potential is decreased. In contrast, re-entrant orientational ordering and dynamical effects result as the number density of the confined colloidal particles is increased. Finally, the dynamics of colloidal particles distributed amongst a random array of fixed obstacle particles is probed as a function of both the mobile particle and fixed obstacle particle number densities. Increasing the mobile and the obstacle particle number density drives the system towards a glass transition. The dynamics of the free particles are shown to behave in a similar way to the normal glass transition at low obstacle density and more analogous to a localisation glass transition at high obstacle density.
|
69 |
Estudo de Fases Termotrópicas por Microscopia Óptica, Medidas de Densidade, Entálpicas e Espalhamento de Raios X / Thermotropic phase study, by optical microscopy, density and calorimetric measurements and X-ray scattering.Duarte, Evandro Luiz 05 May 2000 (has links)
Neste trabalho estudamos a influência do tamanho molecular médio sobre a natureza da transição de fase esmética A (SA)-colestérica (C) líquido-cristalina para os compostos termotrópicos de miristato de colesterila (C14), nonanoato de colesterila (C9) e misturas binárias de C14 e C9 e caproato de colesterila (C6) e C9. Medidas de microscopia óptica foram realizadas para determinar as temperaturas de transição de fase SA C e C-isotrópica (I). Isto possibilitou a escolha dos intervalos de temperatura próximos às transições de fases, como referências para as outras técnicas utilizadas no trabalho. A natureza das transições de fase (descontínua, também denominada de primeira ordem, ou contínua) foi inferida através das análises de medidas de densidade e entálpicas. Os resultados evidenciaram que a transição passa de primeira ordem para contínua quando o tamanho molecular médio e a temperatura reduzida, r (definida como a razão entre as temperaturas de transição de fases SA C e C I ), decrescem no sistema. A ocorrência de uma transição de fase SA C contínua foi observada para a concentração de 65% de C9 na mistura C6 C9, para o valor de r ~ 0, 92. Propriedades mesoscópicas dos compostos estudados, como a distância entre as camadas esméticas na fase SA, dSA, o tamanho molecular médio, , no domínio C, e o comportamento do tamanho de correlação, , ao longo das transições de fase, foram determinadas da análise dos picos de difração de raios X. Os dados revelaram que dSA diminui com o decréscimo do tamanho molecular médio, como era esperado. Além disso, os valores de obtidos na fase C, próximos à transição I C, concordam com os tamanhos moleculares médios calculados supondo que as moléculas estejam em conformação estendida. Mais ainda, foi observado um aumento no tamanho de correlação na fase C quando a temperatura é reduzida da fase I para a fase SA, representando um aumento no grau de ordem orientacional. Contudo, o parâmetro troca abruptamente na transição C SA. Tal descontinuidade diminui com o decréscimo do tamanho molecular médio (e assim com r). Para o sistema particular composto por 65% C9 : 35% C6, onde identificamos um transição de fase contínua SA C, observamos um comportamento de (T TSAC)0,5 no domínio da fase C, em bom acordo com a teoria de campo médio. / The influence of the mean molecular length on the nature of the smectic A (SA)- cholesteric (C) liquid crystal phase transition has been studied for cholesteryl myristate (C14), cholesteryl nonanoate (C9) and binary mixtures of C14 and C9 and cholesteryl caproate (C6) and C9. Optical microscopy was carried out to determine the temperatures of the SAC as weel as the C - isotropic (I) phase transitions. This allowed the choice of the optimum temperature interval near the phase transitions. Information concerning the nature of the transitions (descontinuous, also referred to as first order, or continuous) was evaluated through the analysis of the density and enthalpic measurements. The results have evidenced that the transition crosses over from first order to continuous when both the mean molecular length and the reduced temperature, r (ratio between SAC and CI phase transition temperatures), decrease in the system. The occurrence of a continuous SA C phase transition is observed for a concentration very near 63.1 molar percent of C9 in the C6 C9 mixture (65 wt% C9 : 35 wt% C6), at r ~ 0.92. Mesoscopic properties of the systems, as the distance between the smectic layers in the SA phase, dSA, the mean molecular length, , in the C domain, and the correlation length, , behavior along the phase transitons, were determined from the X-ray difraction peaks. The data have revealed that dSA decreases as the mean molecular length is reduced, as it was expected. Moreover, values obtained in the C phase near the I C phase transition agree with the mean molecular lengths calculated from the corresponding extended molecule lengths. In addition, an increase in the correlation length in the C phase is observed, as the temperature is reduced from I to SA phases, representing an increase in the orientational order. Nevertheless, the parameter jumps in the C SA phase transition. Such discontinuity decreases as the mean molecular length (and hence the reduced temperature) diminishes. For the particular system composed of 65 wt% C9 : 35 wt% C6, where a continuous SA C phase transition was identified, a behavior of (T TSAC)0,5 in the C domain was observed, in good agreement with the mean field theory.
|
70 |
Caractérisation de la chiralité optique dans des systèmes plasmoniques / Characterization of optical chirality effects in plasmonic systemsPham, Kim Anh Aline 06 November 2018 (has links)
L'objectif de ce projet de thèse est de mettre en évidence des phénomènes de chiralité optique induits dans des systèmes plasmoniques. La manipulation des différents degrés de liberté de la lumière est mise en évidence par le biais de techniques expérimentales complémentaires basées sur la tomographie en polarisation, la microscopie à fuites radiatives et la microscopie en champ proche optique (SNOM). D'une part, nous rapportons une méthode de caractérisation non-invasive afin de révéler la présence conjointe de chiralité planaire et volumique au sein de métasurfaces plasmoniques. Pour décrire cette chiralité mixte, une généralisation du modèle de Kuhn est développée. D'autre part, nous démontrons deux dispositifs plasmoniques exploitant le couplage spin-orbite optique pour contrôler les moments angulaires de spin et orbitaux de la lumière. En particulier, le mécanisme réciproque de l'effet spin Hall optique est démontré à l'aide de nano-ouvertures en forme de T: la trajectoire des plasmons de surface est adressée dans le moment angulaire de spin des photons. Cette fonctionnalité est ensuite mise en œuvre dans une expérience de brouillage d'interférence. La génération de vortex plasmoniques est également réalisée par le biais de cavités spirales, dont la chiralité conditionne l'intensité et le moment angulaire orbital des vortex. Enfin, une preuve de concept sur la mesure de la densité locale d’états optique, façonnée par un environnement chiral, est démontrée à l'aide d'une sonde SNOM classique et quantique. Ce travail permet de connecter les grandeurs de densité et de flux de chiralité aux interactions lumière-matière. L'étude de la chiralité dans le contexte de la plasmonique ouvre des perspectives prometteuses dans la nano-manipulation optique, la séparation de molécules chirales et le contrôle de sources quantiques. / In this thesis, we aim at demonstrating chiral optical effects in plasmonic systems. The manipulation of the different degrees of freedom of light is evidenced by complementary experimental approaches based on polarisation tomography, leakage radiation microscopy and scanning near-field optical microscopy (SNOM). On one hand, we report on a non-invasive method to reveal the coexistence of surface and bulk chirality in plasmonic metasurfaces. Specifically, we extend the model of Kuhn to describe this chirality mixture. On the other hand, we demonstrate two plasmonic devices which rely on the optical spin-orbit coupling to control the spin and the orbital angular momentum of light. In particular, the reciprocal mechanism of the spin-Hall effect of light is shown using T-shaped nano-apertures: the trajectory of surface plasmons can be encoded in the spin of the photons. This which-path marker is then implemented in an interference erazer experiment. Plasmonic vortex generation is also reported in spiral cavities. The spiral chirality rules the intensity as well as the angular orbital momentum of the singular fields. Finally, as a proof of concept, we demonstrate using a conventional and quantum SNOM probe that the local density of optical states can be structured by a chiral environment. We also connect the density and flux chirality to light-matter interactions. Studying chirality in the context of plasmonics opens promising prospects in the optical nano-manipulation, chiral molecules discrimination and the control of quantum sources.
|
Page generated in 0.1398 seconds