Spelling suggestions: "subject:"optimale liquidierung"" "subject:"optimale flouridierung""
1 |
Portfolio liquidation under small market impactKivman, Evgueni 24 July 2024 (has links)
Wir beweisen neuartige Konvergenz- und Approximationsresultate für die Lösungen einer Klasse von Modellen optimaler Portfolioliquidierung mit sofortigem Preiseinfluss und stochastischer Resilienz. Jedes betrachtete Liquidierungsproblem erlaubt nur absolut stetige Handelsstrategien, und die optimale Strategie ist durch ein voll gekoppeltes mehrdimensionales quadratisches BSDE-System mit einer singulären Endbedingung gegeben. Innerhalb unseres Modellierungsrahmens beweisen wir, dass wenn der Parameter des sofortigen Preiseinflusses gegen null konvergiert, der absolut stetige optimale Portfolioprozess gegen einen stochastischen Prozess konvergiert, der durch die eindeutige Lösung einer regulären eindimensionalen quadratischen BSDE gegeben ist. Es stellt sich heraus, dass dieser Grenzwert die Lösung eines Modells optimaler Portfolioliquidierung ohne sofortigen Preiseinfluss, aber mit allgemeiner Semimartingalkontrolle mit Sprüngen ist. Unser Resultat liefert einen vereinheitlichten Rahmen, in den die zwei am häufigsten gebrauchten Modellierungsrahmen der Literatur über optimale Liquidierung eingebettet werden können, und liefert eine Grundlage für die Nutzung von Semimartingalen als Liquidierungsstrategien und für die Nutzung von Portfolioprozessen von unbeschränkter Variation. Unsere Resultate beruhen auf neuartigen Konvergenzresultaten für BSDEs mit singulären Endbedingungen und auf einem neuartigen Resultat der Darstellung von Lösungen von BSDEs durch gleichmäßig stetige Funktionen von Vorwärtsprozessen. Wir beweisen außerdem, dass die optimale Lösung in der deterministischen Version des ursprünglichen Liquidierungsmodells gleichmäßig approximiert werden kann, indem das Taylor-Polynom erster Ordnung verwendet wird, das um den singulären Punkt, an dem der sofortige Preiseinfluss verschwindet, entwickelt wird. Diese Approximation ist explizit darstellbar, was im Allgemeinen nicht für die optimale Lösung gilt. / We establish novel convergence and approximation results for the solutions to a class of optimal portfolio liquidation problems with instantaneous price impact and stochastic resilience. Each considered liquidation problem only allows for absolutely continuous trading strategies, and the optimal strategy is given in terms of a fully coupled multi-dimensional quadratic BSDE system with a singular terminal condition. Within our modeling framework, we prove that, when the instantaneous price impact parameter converges to zero, the absolutely continuous optimal portfolio process converges to a stochastic process that is given in terms of the unique solution to a regular one-dimensional quadratic BSDE. This limit turns out to be the solution to an optimal liquidation problem without instantaneous price impact, but with general semimartingale controls with jumps. Our result provides a unified framework within which to embed the two most commonly used modeling frameworks in the optimal liquidation literature and provides a foundation for the use of semimartingale liquidation strategies and the use of portfolio processes of unbounded variation. Our results are based on novel convergence results for BSDEs with singular terminal conditions and a novel representation result of BSDE solutions in terms of uniformly continuous functions of forward processes. We also prove that the optimal solution in the deterministic version of the original pre-limit optimal liquidation model can be approximated uniformly by using the first order Taylor polynomial expanded around the singular point where the instantaneous price impact vanishes. This approximation is explicitly computable, while the optimal solution generally is not.
|
2 |
Optimal liquidation problems and HJB equations with singular terminal conditionGraewe, Paulwin 05 May 2017 (has links)
Gegenstand dieser Arbeit sind stochastische Kontrollprobleme im Kontext von optimaler Portfolioliquidierung in illiquiden Märkten. Dabei betrachten wir sowohl Markovsche sowie nicht-Markovsche Preiseinflussfunktionale und berücksichtigen den Handel sowohl im Primärmarkt als auch in Dark Pools. Besonderes Merkmal von Liquidierungsproblemen ist die durch die Liquidierungsbedingung induzierte singuläre Endbedingung an die Wertfunktion. Der Standardansatz für linear-quadratische Probleme reduziert die HJB-Gleichungen für die Wertfunktion - je nach Zustandsdynamik - auf (ein System) partielle(r) Differentialgleichungen, stochastische(r) Rückwärtsdifferentialgleichungen beziehungsweise stochastische(r) partielle(r) Rückwärtsdifferentialgleichungen (BSPDE). Wir beweisen neue Existenz-, Eindeutigkeits- und Regularitätsresultate für diese zur Lösung optimaler Liquidierungsprobleme verwendeten Differentialgleichungen mit singulärer Endbedingung, verifizieren die Charakterisierung der zugehörigen Wertfunktion anhand dieser Differentalgleichungen und geben die optimale Handelsstrategie in Feedbackform. Für Markovsche und nicht-Markovsche Preiseinflussmodelle wird eine neuartiger Ansatz basierend auf der genauen singulären Asymptotik der Wertfunktion vorgelegt. Für vollständig Markovsche Liquidierungsprobleme erlaubt uns dieser, die Existenz glatter Lösungen der singulären partiellen Differentialgleichungen zu zeigen. Für eine Klasse von Problemen mit Markovscher/nicht-Markovscher Struktur charakterisieren wir die HJB-Gleichungen durch eine singuläre BSPDE, für die wir die Existenz und Eindeutigkeit einer Lösung über einen Bestrafungsansatz herleiten. / We study stochastic optimal control problems arising in the framework of optimal portfolio liquidation under limited liquidity. Our framework is flexible enough to allow for Markovian and non-Markovian impact functions and for simultaneous trading in primary venues and dark pools. The key characteristic of portfolio liquidation models is the singular terminal condition of the value function that is induced by the liquidation constraint. For linear-quadratic models, the standard ansatz reduces the HJB equation for the value to a (system of) partial differential equation(s), backward stochastic differential equation(s) or backward stochastic partial differential equation(s) with singular terminal condition, depending on the choice of the cost coefficients. We establish novel existence, uniqueness and regularity results for (BS)PDEs with singular terminal conditions arising in models of optimal portfolio liquidation, prove that the respective value functions can indeed be described by a (BS)PDE, and give the optimal trading strategies in feedback form. For Markovian and non-Markovian impact models we establish a novel approach based on the precise asymptotics of the value function at the terminal time. For purely Markovian liquidation problems this allows us to establish the existence smooth solutions to singular PDEs. For a class mixed Markovian/non-Markovian models we characterize the HJB equation in terms of a singular BSPDE for which we establish existence and uniqueness of a solution using a stochastic penalization method.
|
Page generated in 0.0651 seconds