• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 6
  • 5
  • Tagged with
  • 42
  • 42
  • 40
  • 30
  • 18
  • 16
  • 13
  • 13
  • 13
  • 12
  • 9
  • 7
  • 6
  • 6
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Electron Paramagnetic Resonance Spectroscopy of Conjugated Polymers and Fullerenes for Organic Photovoltaics / Elektron-Paramagnetische Resonanz-Spektroskopie von konjugierten Polymeren und Fullerenen für die organische Photovoltaik

Sperlich, Andreas January 2013 (has links) (PDF)
In the presented thesis, the various excited states encountered in conjugated organic semiconductors are investigated with respect to their utilization in organic thin-film solar cells. Most of these states are spin-baring and can therefore be addressed by means of magnetic resonance spectroscopy. The primary singlet excitation (spin 0), as well as positive and negative polaronic charge carriers (spin 1/2) are discussed. Additionally, triplet excitons (spin 1) and charge transfer complexes are examined, focussing on their differing spin-spin interaction strength. For the investigation of these spin-baring states especially methods of electron paramagnetic resonance (EPR) are best suited. Therefore according experimental methods were implemented in the course of this work to study conjugated polymers, fullerenes and their blends with continuous wave as well as time-resolved EPR and optically detected magnetic resonance. / Die vorliegende Arbeit beschäftigt sich mit den vielfältigen Anregungszuständen in konjugierten organischen Halbleitern mit Hinblick auf deren Verwendung in organischen Dünnschicht-Solarzellen. Diese verschiedenen Zustände sind zumeist Spin-behaftet und daher mit Methoden der Magnetresonanz adressierbar. Es wird unterschieden zwischen Singulett-Exzitonen (Spin 0) als primärer Photoanregung, sowie positiven und negativen polaronischen Ladungsträgern (Spin 1/2). Des Weiteren werden Triplet-Exzitonen (Spin 1) und Ladungstransferkomplexe behandelt, die sich durch unterschiedlich starke Spin-Spin Wechselwirkung auszeichnen. Zur Untersuchung dieser Spin-behafteten Zustände bieten sich insbesondere Methoden der Elektron-Paramagnetischen Resonanz-Spektroskopie (EPR) an. Im Zuge dieser Arbeit wurden dafür entsprechede Messmethoden der Dauerstrich (cw) EPR, zeitaufgelösten, transienten EPR und der optisch detektierten Magnetresonanz (ODMR) implementiert und zur Erforschung von konjugierten Polymeren, Fullerenen und deren Mischungen eingesetzt.
12

Recombination Dynamics in Organic Solar Cells / Rekombinationsdynamiken in organischen Solarzellen

Förtig, Alexander January 2013 (has links) (PDF)
Neben herkömmlichen, konventionellen anorganischen Solarzellen — hauptsächlich auf Silizium basierend — ist die Organische Photovoltaik (OPV) auf dem besten Wege in naher Zukunft eine kostengünstige, umweltfreundliche, komplementäre Technolgie darzustellen. Die Produktionskosten, die Lebenszeit der Solarzellen sowie deren Wirkungsgrad müssen dabei weiter optimiert werden, um einen Markteintritt der OPV zu ermöglichen. Die vorliegende Arbeit befasst sich mit der Effizienz organischer Solarzellen und deren Limitierung durch die Rekombination von Ladungsträgern. Um funktionsfähige Zellen zu untersuchen, werden zeitaufgelöste Experimente wie die Messung der transienten Photospannung (TPV), des transienten Photostroms (TPC), die Ladungsextraktion (CE) sowie die time delayed collection field (TDCF) Methode angewandt. Untersucht werden sowohl flüssig prozessierte als auch aufgedampfte Proben, unterschiedliche Materialzusammensetzungen und verschiedene Probengeometrien. Das Standardmaterialsystem der OPV, P3HT:PC61BM, wird bei verschiedenen emperaturen und Beleuchtungsstärken auf die Lebenszeit und Dichte der photogenerierten Ladungsträger überprüft. Für den Fall spannungsunabhängiger Generation von Ladungsträgern zeigt sich die Anwendbarkeit der Shockley-Gleichung auf organische Solarzellen. Des Weiteren wird ein konsistentes Modell erläutert, welches den Idealtitätsfaktor direkt mit der Rekombination von freien mit gefangenen, exponentiell verteilten Ladungsträgern verknüpft. Ein Ansatz, bekannt unter der Bezeichung j=V Rekonstruktion, ermöglicht es, den leistungslimitierenden Verlustmechanismus in unbehandelten und thermisch geheizten P3HT:PC61BM Solarzellen zu identifizieren. Dieses Verf ahren, welches TPV, CE und TDCF Messungen beinhaltet, wird auf Proben basierend auf dem neuartigen, low-band gap Polymer PTB7 in Verbindung mit dem Fulleren PC71BM ausgeweitet. Während in der Zelle hergestellt aus reinem Chlorbenzol beträchtliche geminale wie nichtgeminale Verluste zu beobachten sind, erleichtert die Zugabe eines Lösungsmittelzusatzes die Polaronenpaartrennung, was zu einer starken Reduktion geminaler Verluste führt. In einer Kooperation mit dem IMEC Institut in Leuven, werden abschließend die beiden bedeutensten Probenarchitekturen organischer Solarzellen, die planare und die Mischübergang Struktur, jeweils basierend auf CuPC und C60, bezüglich nichtgeminaler Rekombination und Ladungsträgerverteilung miteinander verglichen. Neben den beiden experimentellen Techniken um TPV und CE werden makroskopische Simulationen herangezogen, um den Ursprung unterschiedlichen Voc vs. Lichtintensität–Verhaltens zu erklären. / Besides established, conventional inorganic photovoltaics—mainly based on silicon—organic photovoltaics (OPV) are well on the way to represent a lowcost, environment friendly, complementary technology in near future. Production costs, solar cell lifetime and performance are the relevant factors which need to be optimized to enable a market launch of OPV. In this work, the efficiency of organic solar cells and their limitation due to charge carrier recombination are investigated. To analyze solar cells under operating conditions, time-resolved techniques such as transient photovoltage (TPV), transient photocurrent (TPC) and charge extraction (CE) are applied in combination with time delayed collection field (TDCF) measurements. Solution processed and evaporated samples of different material composition and varying device architectures are studied. The standard OPV reference system, P3HT:PC61BM, is analyzed for various temperatures in terms of charge carrier lifetime and charge carrier density for a range of illumination intensities. The applicability of the Shockley Equation for organic solar cells is validated in case of field-independent charge photogeneration. In addition, a consistent model is presented, directly relating the ideality factor to the recombination of free with trapped charge carriers in an exponential density of states. An approach known as j=V reconstruction enables to identify the performance limiting loss mechanism of as-prepared and thermally treated P3HT:PC61BM solar cells. This procedure, involving TPV, CE and TDCF measurements, is extended to samples based on the rather new, low-band gap polymer PTB7 in combination with PC71BM. While in the devices processed from pure chlorobenzene solution considerable geminate and nongeminate losses are observed, the use of a solvent additive facilitates efficient polaron pair dissociation minimizing geminate recombination. Finally, in collaboration with the IMEC institute in Leuven, the two main organic solar cell device architectures, planar and bulk heterojunction—both based on CuPc and C60—are directly compared in terms of nongeminate recombination and charge carrier distribution. Two experimental techniques, TPV and CE, as well as a macroscopic device simulation are applied to reveal the origin of different Voc vs. light intensity dependence.
13

Impact of Charge Carrier Density and Trap States on the Open Circuit Voltage and the Polaron Recombination in Organic Solar Cells / Einfluss der Ladungsträgerdichte und Störstellen auf die Leerlaufspannung und die Polaronenrekombination in organischen Solarzellen

Rauh, Daniel January 2013 (has links) (PDF)
The focus of this work is studying recombination mechanisms occurring in organic solar cells, as well as their impact on one of their most important parameters — the open circuit voltage Voc. Firstly, the relationship between Voc and the respective charge carrier density n in the active layer under open circuit conditions is analyzed. Therefor, a model after Shockley for the open circuit voltage is used, whose validity is proven with the aid of fits to the measured data. Thereby, it is emphasized that the equation is only valid under special conditions. In the used reference system P3HT:PC61BM the fits are in agreement with the measurement data only in the range of high temperatures (150 - 300 K), where Voc increases linearly with decreasing temperature. At lower temperatures (50 – 150 K), the experiment shows a saturation of Voc. This saturation cannot be explained with the model by the measured falling charge carrier density with decreasing temperatures. In this temperature range Voc is not directly related to the intrinsic properties of the active layer. Voc saturation is due to injection energy barriers at the contacts, which is ascertained by macroscopic simulations. Furthermore, it is observed that Voc in the case of saturation is equivalent to the so-called built-in potential. The difference between the built-in potential and the energy gap corresponds thereby to the sum of the energy barriers at both contacts. With the knowledge of the Voc(n) dependency for not contact limited solar cells, it is possible to investigate the recombination mechanisms of charge carriers in the active layer. For Langevin recombination the recombination rate is Rn2 (recombination order RO = 2), for Shockley-Read-Hall (SRH) Rn1 (RO=1); in various publications RO higher than two is reported with two main explanations. 1: Trap states for charge carriers exist in the respective separated phases, i.e. electrons in the acceptor phase and holes in the donor phase, which leads to a delayed recombination of the charge carriers at the interface of both phases and finally to an apparent recombination order higher than 2. 2: The enhanced R(n) dependency is attributed to the so called recombination prefactor, which again is dependent from n dependent mobility µ. It is shown that for the system P3HT:PC61BM at room temperature the µ(n) dependency does nearly completely explain the higher RO but not at lower temperatures which in this case supports the first explanation. In the material system PTB7:PC71BM the increased RO cannot be explained by the µ(n) dependency even at room temperature. To support the importance of trap states in combination with a phase separation for the explanation of the enhanced RO, additional trap states were incorporated in the solar cells to investigate their influence on the recombination mechanisms. To achieve this, P3HT:PC61BM solar cells were exposed to synthetic air (in the dark and under illumination) or TCNQ was added in small concentrations to the active layer which act as electron traps. For the oxygen degraded solar cell the recombination order is determined by a combination of open Voc-transients and Voc(n) measurements. Thereby, a continuous increase of the recombination order from 2.4 to more than 5 is observed with higher degradation times. By the evaluation of the ideality factor it can be shown that the impact of SRH recombination is increasing with higher trap concentration in relation to Langevin recombination. A similar picture is revealed for solar cells with TCNQ as extrinsic trap states. Finally, a phenomenon called s-shaped IV-curves is investigated, which can sometimes occur for solar cells under illumination. As course of this a reduced surface recombination velocity can be found. Experimentally, the solar cells were fabricated using a special plasma treatment of the ITO contact. The measured IV-curves of such solar cells are reproduced by macroscopic simulations, where the surface recombination velocity is reduced. Hereby, it has to be distinguished between the surface recombination of majority and minority charge carriers at the respective contacts. The theory can be experimentally confirmed by illumination level dependent IV-curves as well as short circuit current density and open circuit voltage transients. / Im Fokus der vorliegenden Arbeit liegen die Rekombinationsmechanismen welche in organischen Solarzellen vorkommen, sowie deren Einfluss auf eine der wichtigsten charakteristischen Kenngrößen dieser - der Leerlaufspannung Voc. Zuerst wird der Zusammenhang zwischen Voc und zugehöriger Ladungsträgerdichte n in der aktiven Schicht unter Leerlaufbedingungen untersucht. Dazu wird ein Modell nach Shockley für die Leerlaufspannung verwendet, dessen Gültigkeit mit Hilfe von Fits an die Messdaten überprüft wird. Dabei stellt sich heraus, dass dieses nur für bestimmte Rahmenbedingungen gültig ist. Im verwendeten Referenzsystem P3HT:PC61BM stimmen die Fits nur im Bereich höherer Temperaturen (150 - 300 K), in denen Voc linear mit sinkenden Temperaturen steigt, mit den Messwerten überein. Im Bereich tieferer Temperaturen (50 - 150 K) stellt sich experimentell eine Sättigung von Voc ein. Diese Sättigung kann mit der gemessenen fallenden Ladungsträgerdichten mit sinkender Temperatur laut Modell nicht erklärt werden. Voc steht in diesem Temperaturbereich deshalb in keinem direkten Zusammenhang zu den intrinsischen Eigenschaften der aktiven Schicht. Die Ursache der Sättigung sind Energiebarrieren an den Kontakten, was mit Hilfe von makroskopischen Simulationen nachgewiesen werden kann. Weiterhin wird festgestellt, dass Voc im Sättigungsfall genau dem sogenannten eingebauten Potential entspricht. Die Differenz zwischen dem eingebauten Potential und der Bandlücke entspricht dabei der Summe der Energiebarrieren an beiden Kontakten. Mit der Erkenntnis, dass für nicht kontaktlimitierte Solarzellen eine Voc(n) Abhängigkeit besteht, kann man sich den Rekombinationsmechanismen in der aktiven Schicht widmen. Für Langevin Rekombination ist die Rekombinstionsrate Rn2 (Rekombinationsordnung RO = 2), für Shockley-Read-Hall (SRH) Rn1 (RO=1); experimentell wird in der Literatur aber von RO größer 2 berichtet wofür zwei Erklärungen existieren. 1.: Es gibt Fallenzustände für Ladungsträger in den entsprechenden separaten Phasen, d.h. Elektronen in der Akzeptorphase und Löcher in der Donatorphase, was in einer verzögerten Rekombination der Ladungsträger an der Grenzfläche beider Phasen führt und damit zu einer höheren RO als 2. 2.: Die erhöhte R(n)-Abhängigkeit wird dem sogenannten Rekombinationsvorfaktor zugeschrieben, welcher wiederum von der n-abhängigen Mobilität µ abhängt. Es wird gezeigt, dass für das System P3HT:PC61BM bei Raumtemperatur der µ(n) Verlauf fast komplett die erhöhte RO erklären kann, allerding nicht bei tieferen Temperaturen welches dort die erste Erklärung stützt. Im Materialsystem PTB7:PC71BM ist schon für Raumtemperatur die erhöhte RO nicht durch den µ(n) Verlauf erklärbar. Um zu untermauern, dass Störstellen in Kombination mit einer Phasenseparation für die erhöhte RO verantwortlich sind, wurden Störstellen in Solarzellen eingebaut um deren Einfluss auf die Rekombinationsmechanismen zu untersuchen. Dazu wurden P3HT:PC61BM Solarzellen zum einen synthetischer Luft ausgesetzt (im Dunkeln und unter Beleuchtung) zum anderen der aktiven Schicht in geringen Konzentrationen TCNQ beigefügt, welches als Elektronenstörstelle fungiert. Für die O2 degradierte Solarzelle wird die RO aus einer Kombination von Voc-Transienten und Voc(n) Messungen bestimmt. Dabei kann mit erhöhter Degradation ein kontinuierlicher Anstieg der RO von 2.4 auf mehr als 5 beobachtet werden. Durch die Auswertung des Idealitätsfaktors kann gezeigt werden, dass der Einfluss der SRH Rekombination in Relation zur Langevin Rekombination mit erhöhter Störstellenkonzentration zunimmt. Ein ähnliches Bild ergibt sich für die Solarzellen mit TCNQ als extrinsische Störstellen. Zuletzt wird das Phänomen s-förmiger Strom-Spannungs-Kennlinien untersucht, welches manchmal für Solarzellen unter Beleuchtung auftritt. Als Ursache kann eine reduzierte Oberflächenrekombinationsgeschwindigkeit ausgemacht werden. Experimentell wurden die Solarzellen mit einer speziellen Plasmabehandlung des ITO Kontaktes hergestellt. Die gemessenen IV-Kennlinien solcher Solarzellen können anhand von makroskopischen Simulationen nachgebildet werden, indem darin die Oberflächenrekombinationsgeschwindigkeit reduziert wird, wobei man dabei die Oberflächenrekombination von Majoritäts- bzw. Minoritätsladungsträgern an den entsprechenden Kontakten unterscheiden muss. Experimentell untermauert werden kann die Theorie anhand von lichtleistungsabhängigen IV-Kurven bzw. Transienten der Kurzschlussstromdichte und der Leerlaufspannung.
14

Numerical simulations on limitations and optimization strategies of organic solar cells / Numerische Simulationen von Limitierungen und Optimierungsstrategien organischer Solarzellen

Wagenpfahl, Alexander Johannes January 2013 (has links) (PDF)
Continuously increasing energy prices have considerably influenced the cost of living over the last decades. At the same time increasingly extreme weather conditions, drought-filled summers as well as autumns and winters with heavier rainfall and worsening storms have been reported. These are possibly the harbingers of the expected approaching global climate change. Considering the depletability of fossil energy sources and a rising distrust in nuclear power, investigations into new and innovative renewable energy sources are necessary to prepare for the coming future. In addition to wind, hydro and biomass technologies, electricity generated by the direct conversion of incident sunlight is one of the most promising approaches. Since the syntheses and detailed studies of organic semiconducting polymers and fullerenes were intensified, a new kind of solar cell fabrication became conceivable. In addition to classical vacuum deposition techniques, organic cells were now also able to be processed from a solution, even on flexible substrates like plastic, fabric or paper. An organic solar cell represents a complex electrical device influenced for instance by light interference for charge carrier generation. Also charge carrier recombination and transport mechanisms are important to its performance. In accordance to Coulomb interaction, this results in a specific distribution of the charge carriers and the electric field, which finally yield the measured current-voltage characteristics. Changes of certain parameters result in a complex response in the investigated device due to interactions between the physical processes. Consequently, it is necessary to find a way to generally predict the response of such a device to temperature changes for example. In this work, a numerical, one-dimensional simulation has been developed based on the drift-diffusion equations for electrons, holes and excitons. The generation and recombination rates of the single species are defined according to a detailed balance approach. The Coulomb interaction between the single charge carriers is considered through the Poisson equation. An analytically non-solvable differential equation system is consequently set-up. With numerical approaches, valid solutions describing the macroscopic processes in organic solar cells can be found. An additional optical simulation is used to determine the spatially resolved charge carrier generation rates due to interference. Concepts regarding organic semiconductors and solar cells are introduced in the first part of this work. All chapters are based on previous ones and logically outline the basic physics, device architectures, models of charge carrier generation and recombination as well as the mathematic and numerical approaches to obtain valid simulation results. In the second part, the simulation is used to elaborate issues of current interest in organic solar cell research. This includes a basic understanding of how the open circuit voltage is generated and which processes limit its value. S-shaped current-voltage characteristics are explained assigning finite surface recombination velocities at metal electrodes piling-up local space charges. The power conversion efficiency is identified as a trade-off between charge carrier accumulation and charge extraction. This leads to an optimum of the power conversion efficiency at moderate to high charge carrier mobilities. Differences between recombination rates determined by different interpretations of identical experimental results are assigned to a spatially inhomogeneous recombination, relevant for almost all low mobility semiconductor devices. / Stetig steigende Preise für Energie haben die Lebenshaltungskosten in Deutschland über die letzten Jahrzehnte maßgeblich beeinflusst. Gleichzeitig werden scheinbar extremere Wetterbedingungen, dürrere Sommer, ebenso wie regen und sturmreichere Winter aufgezeichnet. Dies könnten bereits heute die Vorboten eines kommenden, globalen Klimawandels sein. Berücksichtigt man die Endlichkeit fossiler Energieträger und die wachsende Ablehnung gegenüber nuklearer Energieerzeugung, führt kein Weg an einer genaueren Erforschung innovativer, erneuerbarer Energiequellen vorbei. Neben Wind- und Wasserkraft stellt die direkte Umwandlung von Sonnenlicht in elektrischen Strom einen der erfolgversprechendsten Ansätze dar. Seit Beginn der Synthese und der genaueren Untersuchungen organischer, halbleitender Polymere und Fullerene innerhalb der letzten Jahre, wurde eine neue Arte der Solarzellenherstellung, neben den bereits etablierten Technologien, denkbar. Zusätzlich zu klassischen Aufdampfverfahren können Solarzellen aus organischen Materialien in Lösung hergestellt und auf verschiedenartigste Materialien wie Plastik, Stoff oder Papier aufgebracht werden. Aufgrund der Unordnung in den aktiven Schichten verhalten sich solche Solarzellen jedoch anders als solche aus anorganischen Materialien. Eine organische Solarzelle ist ein komplexes elektrisches Bauteil, welches durch eine Anzahl physikalischer Effekte maßgeblich beeinflusst wird. So ist, beispielsweise, die Verteilung erzeugter Ladungsträger durch optische Interferenzeffekte bestimmt. Ladungstransport und Ladungsträgerrekombination stellen weitere Einflussfaktoren dar. Die experimentell gemessenen Strom-Spannungs-Kennlinien sind somit stets makroskopische Kombination mehrerer Effekte. Änderungen einzelner Parameter führen zu einer komplexen Änderung des elektrischen Verhaltens des Bauteils. Folgerichtig ist es notwendig, ein Modell zu entwickeln, welches das Verhalten organischer Solarzellen bei sich ändernden Umgebungsbedingungen, allgemeingültig vorhersagen kann. Im Rahmen dieser Arbeit wurde, zu diesem Zweck, eine eindimensionale, numerische Simulation entwickelt. Basierend auf Drift- und Diffusionsgleichungen für Elektronen, Löcher und Exzitonen kann der Ladungstransport in organischen Halbleitern beschrieben werden. Benötigte Generations- und Rekombinationsraten werden durch entsprechende Ratengleichungen bestimmt. Über die Poisson-Gleichung wird zudem das auftretende elektrische Feld innerhalb der Solarzelle berücksichtigt. Das resultierende differentielle Gleichungssystem ist jedoch nicht analytisch lösbar. Nur mit Hilfe spezieller numerischer Methoden, können gültige Lösungen gefunden werden. Hiermit kann das Verhalten organischer Solarzellen sehr gut beschrieben. Eine zusätzliche optische Simulation kann dazu benutzt werden, optische Interferenzeffekte zu berücksichtigen. Im des ersten Teiles dieser Arbeit werden Methoden und Modellvorstellungen für Prozesse in organischer Solarzellen vorgestellt. Die Kapitel bauen aufeinander auf und gehen nacheinander auf die grundlegende Physik, die Bauteilarchitektur, die Modelle der Ladungsträgergeneration und -rekombination, ebenso wie auf die benötigten mathematischen und numerischen Methoden ein. Beiträge zur aktuellen Forschung werden im zweiten Abschnitt vorgestellt. Diese Umfassen ein grundlegendes Verständnis der offenen Klemmspannung organischer Solarzellen. Diese wird entweder durch Oberflächenrekombination an den Elektroden oder durch Injektionsbarrieren limitiert. S-förmige Verformungen von gemessenen und simulierten Strom-Spannungs-Kennlinien konnten durch endliche Oberflächenrekombinationsgeschwindigkeiten erklärt werden. Aufgrund verminderter Extraktions- und Injektionseigenschaften entsteht eine spannungsabhängige Raumladungszone, welche diese oft beobachtete Verformung verursacht. Der Wirkungsgrad organischer Solarzellen konnte als Kompromiss zwischen Ladungsträgeranhäufung und -extraktion im Bauteil identifiziert werden. Dies führt letztendlich zu einem Optimum der Solarzelleneffizienz bei moderaten bis hohen Ladungsträgerbeweglichkeiten. Abweichungen experimentell unterschiedlich bestimmter Rekombinationsraten konnten auf eine räumlich inhomogene Verteilung der Ladungsträgerrekombination zurückgeführt werden. Diese wird durch selektive Kontakte erzeugt und ist für alle halbleitenden Bauelemente mit niedriger Mobilität relevant.
15

Excitation Dynamics and Charge Carrier Generation in Organic Semiconductors / Anregungsdynamik und Ladungsträgergenerierung in organischen Halbleitern

Gieseking, Björn January 2014 (has links) (PDF)
The transport of optically excited states, called excitons, as well as their conversion into charges define the two major steps allowing for the operation of organic photovoltaic (OPV) devices. Hence, a deep understanding of these processes, the involved mechanisms as well as possible loss channels is crucial for further improving the efficiency of organic solar cells. For studying the aforementioned processes spectroscopic methods like absorption and emission measurements are useful tools. As many of the processes take place on a sub-nanosecond (ns) timescale ultrafast spectroscopic methods are required. Due to this reason two experiments based on a femtosecond laser system were built and employed in this work, namely picosecond (ps) time-resolved photoluminescence (PL) and transient absorption (TA) spectroscopy. By analyzing the PL decay dynamics in the prototypical organic semiconductor rubrene, the feasibility of a new approach for improving the efficiency of organic solar cells by harvesting triplet excitons generated by singlet fission was examined. Singlet fission describes a process where two triplet excitons are generated via a photoexcited singlet exciton precursor state if the energy of the two triplets is comparable with the energy of the singlet. For this purpose the influence of characteristic length scales on the exciton dynamics in different rubrene morphologies exhibiting an increasing degree of confinement was analyzed. The results show that the quenching at interfacial states efficiently suppresses the desired fission process if these states are reached by excitons during migration. Since interfacial states are expected to play a significant role in thin film solar cells and are easily accessible for the migrating excitons, the results have to be considered for triplet-based OPV. While the aforementioned approach is only investigated for model systems so far, the efficiency of disordered organic bulk heterojunction (BHJ) solar cells could be significantly enhanced in the last couple of years by employing new and more complex copolymer donor materials. However, little is known about the photophysics and in particular the excitation dynamics of these systems. By carrying out a systematic optical study on the prominent copolymer PCDTBT and its building blocks we were able to identify the nature of the two characteristic absorption bands and the coupling mechanism between these levels. The latter mechanism is based on an intrachain partial charge transfer between two functional subunits and our time-resolved measurements indicate that this coupling governs the photophysical properties of solar cells based on these copolymers. The efficient coupling of functional subunits can be seen as a key aspect that guarantees for the success of the copolymer approach. Another important issue concerns the optimization of the morphology of BHJ solar cells. It arises from the discrepancy between the exciton diffusion length \mbox{($\approx$ 10 nm)} and the absorption length of solar irradiation ($\approx$ 100 nm). Due to this reason, even for devices based on new copolymer materials, processing parameters affecting the morphology like annealing or employing processing additives are of major importance. In our combined optical, electrical and morphological study for solar cells based on the high-efficient copolymer PBDTTT-C we find a direct correlation between additive content and intermixing of the active layer. The observed maximum in device efficiency can be attributed to a morphology guaranteeing for an optimized balance between charge generation and transport. Our results highlight the importance of understanding the influence of processing parameters on the morphology of the BHJ and thus on the efficiency of the device. / Der Transport optischer Anregungen, genannt Exzitonen, sowie deren Umwandlung in Ladungsträger stellen die beiden wesentlichen Mechanismen dar, welche die Funktion von organischer Photovoltaik (OPV) erst ermöglichen. Daher ist ein genaues Verständnis dieser Prozesse, der beteiligten Mechanismen sowie möglicher Verlustkanäle von essentieller Bedeutung, um die Effizienz organischer Solarzellen weiter zu steigern. Für die Untersuchung der genannten Vorgänge bieten sich grundsätzlich spektroskopische Methoden, wie etwa die Untersuchung der Absorptions- und Emissioncharakteristiken, an. Da sich viele der erwähnten Prozesse auf der sub-Nanosekunden (ns) Zeitskala abspielen, werden für deren Unteruchung hoch-zeitaufgelöste Messmethoden benötigt. Aus diesem Grund wurden im Rahmen dieser Arbeit zwei Messmethoden, basierend auf einem Femtosekunden-Lasersystem aufgebaut und verwendet. Hierbei handelt es sich um die Picosekunden (ps) zeitaufgelöste Photolumineszenz-Spektroskopie (PL) und die transiente Absorptionsspektroskopie (TA). Anhand des prototypischen organischen Halbleiters Rubren habe ich mich mit der Fragestellung beschäftigt, inwieweit ein alternativer Ansatz zur Erhöhung der Effizienz von organischen Solarzellen, basierend auf der Nutzung von Triplet Exzitonen, welche durch Singlet Fission generiert wurden, genutzt werden könnte. Bei der Singlet Fission werden aus einem optisch angeregten Singlet Exziton zwei Triplet Exzitonen erzeugt, unter der Voraussetzung, dass die Summe der Energien der beiden Triplets in etwa der Energie des Singlet Exzitons entspricht. Hierfür wurde der Einfluss von charakteristischen Längenskalen auf die Exzitonendynamik in verschiedenen Rubren-Morphologien, die ein zunehmend begrenztes Anregungsvolumen aufweisen, untersucht. Dabei zeigt sich, dass durch den Einfluss von Grenzflächenzuständen der erwünschte Singlet Fission Prozess effizient unterdrückt wird, sollten diese Zustände von Exzitonen während ihrer Migration erreicht werden. Dieser Sachverhalt ist bei einer möglichen Realisierung von Triplet-basierter OPV zu berücksichtigen, da in Dünnschicht-Solarzellen solche Grenzflächenzustände eine relevante Rolle spielen und für Exzitonen gut zugänglich sind. Während der oben genannte Ansatz bis jetzt nur für Modellsysteme untersucht wird, konnte die Effizienz ungeordneter organischer ''bulk heterojunction'' (heterogemisch, BHJ) Solarzellen in den vergangenen Jahren durch die Verwendung neuer, komplexerer Donormaterialen signifikant gesteigert werden. Allerdings war eine genaue Kenntnis der dahinter stehenden Photophysik und insbesondere der Anregungsdynamik dieser Systeme nicht vorhanden. Anhand einer systematischen optischen Studie am prominenten Copolymer PCDTBT und seiner Bausteine konnte die Natur der angeregten Zustände und deren Kopplungsmechanismus, basierend auf einem teilweisen Ladungsübertrag zwischen zwei funktionalen Gruppen des Copolymers identifiziert werden. Die Ergebnisse der zeitaufgelösten Messungen deuten darauf hin, dass dieser interne Kopplungsmechanismus die Photophysik von organischen Solarzellen, basierend auf diesen Copolymeren bestimmt. Diese effiziente Kopplung ist ein wesentlicher Grund für den Erfolg des Copolymerkonzeptes. Ein weiterer wichtiger Aspekt betrifft die Optimierung der Morphologie der aktiven Schicht von BHJ Solarzellen, welcher sich aus der Diskrepanz zwischen Exzitonendiffusionslänge ($\approx$ 10 nm) und Absorptionslänge des Sonnenlichts \mbox{($\approx$ 100 nm)} ergibt. Aus diesem Grund sind auch bei BHJ Zellen, basierend auf neuartigen Copolymeren die Prozessparameter, welche die Morphologie beeinflussen --- wie das Ausheizen der Zelle oder die Zugabe von Additiven --- von großer Bedeutung. Unsere kombinierte optische, elektrische und morphologische Studie an Solarzellen, basierend auf dem hocheffizienten Copolymer PBDTTT-C zeigt dabei einen direkten Zusammenhang von Additivkonzentration und Durchmischungsgrad der aktiven Schicht. Das beobachtete Effizienzmaximum ergibt sich dabei für diejenige Morphologie, welche ein optimiertes Gleichgewicht zwischen Erzeugung und Transport von Ladungsträgern aufweist. Die Ergebnisse verdeutlichen, wie wichtig das Verständnis der Auswirkungen einzelner Prozessparameter auf die Morphologie und damit die Effizienz von BHJ Solarzellen ist.
16

Optical study of the excited states in the semiconducting polymer poly(3-hexylthiophene) for photovoltaic applications / Untersuchung angeregter Zustände des halbleitenden Polymers Poly(3-hexylthiophene) mittels optischer Spektroskopie für Anwendungen in der Photovoltaik

Gorenflot, Julien François January 2014 (has links) (PDF)
In the course of this dissertation, we have presented the interest of using spectroscopic methods to unravel the physics of polymer semiconductors in photovoltaic applications. Applying photoluminescence and photoinduced absorption spectroscopy to the reference system P3HT:PCBM has enabled us to study the major steps of photocurrent generation in organic bulk heterojunctions, from excitons generation to charges extraction and loss mechanisms and thus to improve the understanding of those mechanisms. The exciton binding energy, is the first obstacle to overcome for photocurrent generation in organic solar cell and the reason for the use of two materials, whose heterojunction act as a driving force for charge separation. We developed an original photoluminescence-detected field-induced exciton quenching method to investigate this energy. Absorption and photoluminescence spectra of pure P3HT show that, while both amorphous and crystalline domains participate in absorption, the energy is then transferred to the crystalline domains, from where the photoluminescence is exclusively originating. The field dependence of this photoluminescence showed that an energy of no less than 420 meV is necessary to split excitons into non photon-emitting species. Comparing those results with energy levels obtained by absorption and photoelectron spectroscopies, confirmed that the formation of those species is only a first step toward dissociation into free charges. Indeed, photoemission spectroscopy and the onset of photocurrent upon increasing the photon energy in a pure P3HT solar cell, concomitantly show that the energy level of a pair of free polarons is located 0.7 eV above the one of the exciton. The comprehensive analysis of those results originating from those different method enable us to draw a global picture of the states and energies involved in free polarons generation in pure material. This work has been widely acknowledged by the scientific community, published in Physical Review B in 2010 [1] and presented in national [2] and international [3] conferences. The spectroscopy of excited states is used to detect the presence of wanted species (charges) and potentially unwanted neutral species upon photoexcitation. As such, it offers us the possibility to qualify the efficiency of charge generation and, if any, identify the competing processes and the generation of unwanted species. In the frame of the European Marie Curie Research Network SolarNType,[4] this possibility was used - in combination with morphological, charge transport and devices characterizationsn - to study a number of new donor:acceptor blends. Thanks to those techniques, we were able to not only quantify the potential of those blends, but also to provide the chemist laboratories with a precious and detailed feedback on the strengths and weakness of the molecules, regarding charge generation, transport and extraction. The detailed study of terrylene-3,4:11,12-bis(dicarboximide) as electron acceptor for solar cells application was published in the peer review journal Synthetic Metals and was chosen to illustrate the cover page of the issue [5]. Finally, in the last chapter, we have used time resolved photoinduced absorption to improve the understanding of the charge carrier loss mechanisms in P3HT:PCBM active layers. This comprehension is of prime importance because, the fact that this recombination is far weaker than expected from the Langevin theory, enable polarons to travel further without recombining and thus to build thicker and more efficient devices. A comprehensive analysis of steady-state PIA spectra of pure P3HT, indicates that probing at 980 nm at a temperature between 140 and 250 K enables to monitor specifically polaron densities in both neat P3HT and P3HT:PCBM. Applying this finding to transient absorption enabled us to monitor, for the first time, the bimolecular recombination in pure P3HT, and to discover that - in sharp contrast with the blend - this recombination was in agreement with the Langevin theory. Moreover, it enables us to pinpoint the important role played by the existence of two materials and of energetical traps in the slow recombination and high recombination orders observed in the blend. This work has been published in the Journal of Applied Physics.[6] Those new insights in the photophysics of polymer:fullerene photoactive layers could have a strong impact on the future developement of those materials. Consistent measurements of the binding energy of excitons and intermediate species, would enable to clarify the role played by excess thermal energy in interfacial states dissociation. Better understanding of blends morphology and its influence on solar cells parameters and in particular on recombination could enable to reproduce the conditions of limited recombination on material systems offering some promising performances but with only limited active layer thicknesses. However, due to the number of parameters involved, further experimentation is required, before we can reach a quantitative modeling of bimolecular recombination. [1] Deibel et al., Phys. Rev. B, 81:085202, 2010 [2] Gorenflot et al., Deutsche Physikalische Gesellschaft Frühjahrstagung 2010, CPP20:10, Regensburg, Germany, 2010 [3] Gorenflot et al., International Conference of Synthetic Metals, 7Ax:05, Kyoto, Japan, 2010 [4] Marie-Curie RTN "SolarNTyp" Contract No. MRTN-CT-2006-035533 [5] Gorenflot et al., Synth. Met., 161(23{24):2669-2676, 2012 [6] Gorenflot et al., J. Appl. Phys., 115(14):144502, 2014 / In der vorliegenden Arbeit wurden die zugrundeliegenden Mechanismen, die während der Photostromgeneration in Polymer:Fulleren-Solarzellen stattfinden, von der Exzitonengeneration bis zur Ladungsträgerextraktion, mittels spektroskopischer Methoden untersucht. Nach der Absorption eines Photons ist die Exzitonenbindungsenergie das erste zu überwindende Hindernis, um einen Photostrom in organischen Halbleitern zu generieren. Diese begründet die Notwendigkeit, zwei unterschiedliche Halbleitermaterialien zu implementieren, deren energetischer Offset die treibende Kraft für Exzitonentrennung am Heterogrenzfläsche bildet. Zur Erforschung dieser Energie haben wir eine neuartige Methode entwickelt, mit welcher wurden Einfluss eines elektrischen Feldes auf die Exzitonen durch Photolumineszenzmessungen quantifizieren können. Aus Absorptions- und Photolumineszenzspektren ist ersichtlich, dass im reinen P3HT sowohl amorphe als auch kristalline Bereiche zur Absorption beitragen. Daraufhin erfolgt ein anschließender effektiver. Energietransfer zu den kristallinen Domänen, der durch die ausschließlich in diesen Bereichen auftretende Photolumineszenz nachgewiesen wird. Diese Exzitonen sind als interchain excitons bekannt, die bereits bei 0.42 eV; in nicht emittierende Spezies dissoziiert werden können, wie unsere feldabhängigen Photolumineszenzmessungen zeigen. Mit Hilfe komplementärer Methoden konnten wir nachweisen, dass diese Dissoziation nur ein erster Schritt zur Generation freier Ladungsträger ist. So konnte durch Photoelektronenspektroskopie 10 und Messungen der externen Quanteneffizienz gezeigt werden, dass die Erstellung freier Ladungsträger 0.7 eV benötigt. Die zusammenführende Analyse dieser Ergebnisse ermöglicht die Erstellung eines umfassenden Bildes der für die Photostromgeneration relevanten Energieniveaus in reinem P3HT. Desweiteren wurden die Ergebnisse dieser Arbeit national [1] als auch international [2] auf Konferenzen präsentiert und im Jahr 2010 in Physical Review B [3] publiziert. Die Tatsache, dass diese bereits über 50 mal zitiert wurden, verdeutlicht die große Bedeutung der erlangten Resultate. Durch die Verwendung der Quasi-Steady-State-Spektroskopie angeregter Spezies können unter Beleuchtung erwünschte (Ladungsträger) und unerwünschte (neutrale) Zustände detektiert werden. Im Rahmen des EU-Projekts "SolarNType" [4] wurden dazu mehrere, als Elektronenakzeptor dienende, Moleküle teilnehmender Institutionen untersucht. Mit Hilfe unserer spektroskopischen Methode und durch ergänzende Messungen des Ladunsträgerstransports sowie der Morphologie und Strom-Spannungs-Charakteristiken der Solarzellen waren wir im Stande, nicht nur das Potential dieser Moleküle zu beurteilen, sondern auch unseren Projektmitarbeitern detaillierte und wertvolle Informationen über die Stärken und Schwächen der von ihnen synthetisierten Materialien zu geben. Die detaillierte Untersuchung von terrylene-3,4:11,12-bis(dicarboximide) als Elektronenakzeptor, welche wir für das Max-Planck-Institut in Mainz erstellten, wurde im Jahr 2012 in Synthetic Metals publiziert und für die Titelseite ausgewählt. [5] Im letzten Abschnitt werden die Ergebnisse transienter photoinduzierter Absorptionsmessungen diskutiert, welche zur Bestimmung der Rekombination freier Ladunsträger in P3HT:PCBM Mischschichten durchgeführt wurden. Diese Rekombination ist dafür bekannt, nicht der Langevin-Theorie zu folgen, was für Solarzellen von großer Bedeutung ist. Anstelle von Rekombination zweiter Ordnung nach der Langevin-Theorie, rekombinieren Ladungsträger in dieser Materialkombination unter höherer Ordnung und einem starken zusätzlichen Reduktionsfaktor. Dies hat zur Folge, dass die Ladungsträger weiter difundieren können, was die Erstellung dickerer und daher effizienterer Solarzellen ermöglicht. Durch umfassende Analysen der P3HT Quasi-Steady-State-Spektren wurde einspektraler sowie thermischer Bereich identifiziert, in dem in reinem P3HT ausschließlich Polaronen für die Absorption verantwortlich sind. Die Verwendung dieser Ergebnisse in transienten Absorptionsmessungen ermöglichte es erstmals, das Rekombinationsverhalten in reinen sowie mit PCBM gemischten P3HT Schichten zu vergleichen. Es zeigt sich, dass die Abnahme der Ladungsträgerdichte in reinem P3HT der Langevin-Theorie perfekt folgt. Demzufolge scheint die beobachtete limitierte Rekombination in gemischten P3HT:PCBM-Schichten aus der Präsenz zweier unterschiedlicher Materialien zu resultieren. Nach der Betrachtung mehrerer möglicher Mechanismen kommen wir zu dem Schluss, dass eine Kombination von energetischem Trapping und Phasenseparation für dieses Verhalten verantwortlich ist. Diese Ergebnisse wurden im Jahr 2014 in the Journal of Applied Physics publiziert. [6] Die erlangten neuen Einblicke in die photophysischen Eigenschaften von Polymer:Fulleren-Mischschichten besitzen große Bedeutung für die weitere Entwicklung in diesem Bereich. Systematische Messungen der Bindungsenergien von Exzitonen sowie Polaronenpaaren scheinen eine vielversprechende Methode zu sein, die Bedeutung der Exzitonen-Überschussenergie für die Photostromgeneration zu verstehen. Ein besseres Verständnis der Mischungsmorphologie sowie ihren Einfluss auf die bimolekulare Rekombinationsdynamik bahnt den Weg zur Steigerung der Leistung in vielversprechenden Materialsystemen, die bisher durch die limitierte Dicke der Solarzellen eingeschränkt ist. Allerdings bedingt die große Anzahl an Faktoren, die in diesen Rekombinationsmechanismen eine Rolle spielen, weitere fundierte experimentelle Ergebnisse, bevor eine quantitative Modellierung der Prozesse erreicht werden kann. [1] Gorenflot et al., Deutsche Physikalische Gesellschaft Frühjahrstagung 2010, CPP20:10, Regensburg, Germany, 2010 [2] Gorenflot et al., International Conference of Synthetic Metals, 7Ax:05, Kyoto, Japan, 2010 [3] Deibel et al., Phys. Rev. B, 81:085202, 2010 [4] Marie-Curie RTN "SolarNTyp" Contract No. MRTN-CT-2006-035533 [5] Gorenflot et al., Synth. Met., 161(23{24):2669-2676, 2012 [6] Gorenflot et al., J. Appl. Phys., 115(14):144502, 2014
17

Merocyanine Dyes as Organic Semiconductors for Vacuum-processed Solar Cell and Transistor Devices / Merocyaninfarbstoffe als organische Halbleiter für vakuumprozessierte Solarzellen und Transistoren

Arjona Esteban, Alhama January 2015 (has links) (PDF)
The present thesis comprises the synthesis of new functional merocyanine dyes, the study of their electro-optical properties as well as solid state packing and their application as p-type semiconductor materials in transistor and solar cell devices. The absorption properties of the obtained compounds could be modified by variation of the donor unit, the introduction of electron-withdrawing substituents in the acceptor unit or elongation of the polymethine chain. For a particular dye, the absorption band could be shifted by more than 160 nm by increasing the solvent polarity due to a conformational switch between a merocyanine-like and a cyanine-like structure. Single crystal analyses revealed that the studied dyes tend to pack either in an antiparallel fashion forming dimers with no overall dipole moment or in a staircase-like pattern where the dipole moments point to the same direction and are only balanced by another staircase oriented in the opposite direction (stair dimer). With respect to application as semiconductor materials, the latter packing arrangement resulted most favorable for charge carrier mobility. We concluded that this packing motif is preserved in the solar cell devices, where the selenium-containing dye afforded the highest performance of this series for an optimized planar-mixed heterojunction solar cell (6.2 %). / Die vorliegende Arbeit beschreibt die Synthese neuer funktioneller Merocyaninfarbstoffe sowie die Studie ihrer elektro-optischen Eigenschaften, ihrer Packungsmotive im Festkörper und deren Anwendung als p-Halbleitermaterialien in Transistoren und Solarzellen. Die optischen Eigenschaften der erhaltenen Moleküle konnten durch Variation der Donoreinheiten, Einführung elektronenziehender Substituenten am Akzeptorgerüst oder durch Verlängerung der Polymethinkette modifiziert werden. Im Fall einer außergewöhnlichen Verbindung konnte die Absorption um mehr als 160 nm verschoben werden, indem die Lösemittelpolarität erhöht wurde. Diese Verschiebung entspricht einem Konformationswechsel zwischen einer merocyaninartigen zu einer cyaninartigen Struktur. Einkristallstrukturanalysen zeigten für mehrere Substanzen ein antiparalleles Packungsmuster, welches die Aufhebung des Dipolmoments auf der supramolekularen Ebene bewirkt. Die entstandenen Dimere können je nach Substituenten entweder isoliert vorliegen oder eindimensionale Stapel bilden. Andere Substanzen zeigten jedoch ein bisher unbekanntes Packungsmuster, in welchem sich die Moleküle mit parallelen Dipolmomenten in einer treppenartigen Struktur aufeinander stapeln. Das makromolekulare Dipolmoment der Treppe wird hierbei durch eine benachbarte Treppe, welche in Gegenrichtung orientiert ist, ausgeglichen. Dieses neue Packungsmotiv eignete sich sehr für guten Ladungstransport, wodurch der Wirkungsgrad einer optimierten Solarzelle des Selenderivats auf bis zu 6.2 % gesteigert werde konnte.
18

Ladungstransportschichten für effiziente organische Halbleiterbauelemente

Colsmann, Alexander January 2008 (has links)
Zugl.: Karlsruhe, Univ., Diss., 2008 / Hergestellt on demand
19

Optimizing Organic Solar Cells

Falkenberg, Christiane 15 October 2012 (has links) (PDF)
This thesis deals with the characterization and implementation of transparent electron transport materials (ETM) in vacuum deposited p-i-n type organic solar cells (OSC) for substituting the parasitically absorbing standard ETM composed of n-doped C60. In addition to transparency in the visible range of the sun spectrum, the desired material properties include high electron mobility and conductivity, thermal and morphological stability, as well as good energy level alignment relative to the adjacent acceptor layer which is commonly composed of intrinsic C60. In this work, representatives of three different material classes are evaluated with regard to the above mentioned criteria. HATCN (hexaazatriphenylene hexacarbonitrile) is a small discoid molecule with six electron withdrawing nitrile groups at its periphery. It forms smooth thin films with an optical energy gap of 3.3eV, thus being transparent in the visible range of the sun spectrum. Doping with either 5wt% of the cationic n-dopant AOB or 7wt% of the proprietary material NDN1 effectively increases the conductivity to 7.6*10^-6 S/cm or 2.2*10^-4 S/cm, respectively. However, the fabrication of efficient OSC is impeded by the exceptionally high electron affinity (EA ) of approximately 4.8eV that causes the formation of an electron injection barrier between n-HATCN and intrinsic C60 (EA=4.0eV). This work presents a strategy to remove the barrier by introducing doped and undoped C60 intermediate layers, thus demonstrating the importance of energy level matching in a multi-layer structure and the advantages of Fermi level control by doping. Next, a series of six Bis-Fl-NTCDI (N,N-bis(fluorene-2-yl)-naphthalenetetracarboxylic diimide) compounds, which only differ by the length of the alkyl chains attached to the C9 positions of the fluorene side groups, is examined. When increasing the chain length from 0 to 6 carbon atoms, the energy levels remain nearly unchanged: We find EA=3.5eV as estimated from cyclic voltammetry, an ionization potential (IP ) in the range between 6.45eV and 6.63eV, and Eg,opt=3.1eV which means that all compounds form transparent thin films. Concerning thin film morphology, the addition of side chains results in the formation of amorphous layers with a surface roughness <1nm on room temperature glass substrates, and (1.5+/-0.5)nm for deposition onto glass substrates heated to 100°C. In contrast, films composed of the side chain free compound Bis-HFl-NTCDI exhibit a larger surface roughness of (2.5+/-0.5)nm and 9nm, respectively, and are nanocrystalline already at room temperature. Moreover, the conductivity achievable by n-doping is very sensitive to the side chain length: Whereas doping of Bis-HFl-NTCDI with 7wt% NDN1 results in a conductivity in the range of 10^-4 S/cm, the attachment of alkyl chains causes a conductivity which is more than three orders of magnitude smaller despite equal or slightly higher doping concentrations. The insufficient transport properties of the alkylated derivatives lead to the formation of pronounced s-kinks in the jV -characteristics of p-i-n type OSC while the use of n-Bis-HFl-NTCDI results in well performing devices. The last material, HATNA-Cl6 (2,3,8,9,14,15- hexachloro-5,6,11,12,17,18-hexaazatrinaphthylene), exhibits Eg,opt=2.7eV and is therefore not completely transparent in the visible range of the sun spectrum. However, its energy level positions of EA=4.1eV and IP=7.3eV are well suited for the application as ETM in combination with i-C60 as acceptor. The compound is dopable with all available n-dopants, resulting in maximum conductivities of sigma=1.6*10^-6, 3.5*10^-3, and 7.5*10^-3 S/cm at 7.5wt% AOB, Cr2(hpp)4, and NDN1, respectively. Applying n-HATNA-Cl6 instead of the reference ETM n-C60 results in a comparable or improved photocurrent density at an ETM thickness d(ETM)=40nm or 120nm, respectively. At d(ETM)=120nm, the efficiency eta is more than doubled as it increases from eta(n-C60)=0.4% to eta(n-HATNA-Cl6)=0.9% . Optical simulations show that the replacement of n-C60 by n-Bis-HFl-NTCDI, n-HATNA-Cl6, or the previously studied n-NTCDA (naphthalenetretracarboxylic dianhydride) in p-i-n or n-i-p type device architectures is expected to result in an increased photocurrent due to reduced parasitic absorption. For quantifying the gain, the performance of p-i-n type OSC with varying ETM type and thickness is evaluated. Special care has to be taken when analyzing devices comprising the reference ETM n-C60 as its conductivity is sufficiently large to extend the area of the aluminum cathode and thus the effective device area which may lead to distorted results. Overall, the experiment is able to confirm the trends predicted by the optical simulation. At large ETM thickness in the range between 60 and 120nm, the window layer effect of the ETM is most pronounced. For instance, at d(ETM)=120nm, eta(C60) is more than doubled using n-HATNA-Cl6 and even more than tripled using n-Bis-HFl-NTCDI or n-NTCDA. At optimized device geometry the photocurrent gain is slightly less than expected but nonetheless, the efficiency is improved from eta(max)=2.1% for n-C60 and n-HATNA-Cl6 solar cells to eta(max)=2.3, and 2.4% for n-Bis-HFl-NTCDI and n-NTCDA devices, respectively. This development is supported by generally higher Voc and FF in solar cells with transparent ETM. Finally, p-i-n type solar cells with varying ETM are aged at a temperature of 50°C and an illumination intensity of approximately 2 suns. Having extrapolated lifetimes t(80) of 36, 500, and 14000h and nearly unchanged jV-characteristics after 2000h, n-C60 and n-Bis-HFl-NTCDI devices exhibit the best stability. In contrast, n-NTCDA devices suffer from a constant decrease in Isc while n-HATNA-Cl6 solar cells show a rapid dscegradation of both Isc and FF associated with a decomposition of the material or a complete de-doping of the ETM. Here, lifetimes of only 4500h and 445hare achieved.
20

Strategies for Optimizing Organic Solar Cells

Wynands, David 14 February 2011 (has links) (PDF)
This work investigates organic solar cells made of small molecules. Using the material system α,ω-bis(dicyanovinylene)-sexithiophene (DCV6T) - C60 as model, the correlation between the photovoltaic active layer morphology and performance of the solar cell is studied. The chosen method for controlling the layer morphology is applying different substrate temperatures (Tsub ) during the deposition of the layer. In neat DCV6T layers, substrate heating induces higher crystallinity as is shown by X-ray diffraction and atomic force microscopy (AFM). The absorption spectrum displays a more distinct fine structure, a redshift of the absorption peaks by up to 11 nm and a significant increase of the low energy absorption band at Tsub = 120°C compared to Tsub = 30°C. Contrary to general expectations, the hole mobility as measured in field effect transistors and with the method of charge extraction by linearly increasing voltage (CELIV) does not increase in samples with higher crystallinity. In mixed layers, investigations by AFM and UV-Vis spectroscopy reveal a stronger phase separation induced by substrate heating, leading to larger domains of DCV6T. This is indicated by an increased grain size and roughness of the topography, the increase of the DCV6T luminescence signal, and the more distinct fine structure of the DCV6T related absorption. Based on the results of the morphology analysis, the effect of different substrate temperatures on the performance of solar cells with flat and mixed DCV6T - C60 heterojunctions is investigated. In flat heterojunction solar cells, a slight increase of the photocurrent by about 10% is observed upon substrate heating, attributed to the increase of DCV6T absorption. In mixed DCV6T : C60 heterojunction solar cells, much more pronounced enhancements are achieved. By varying the substrate temperature from -7°C to 120°C, it is shown that the stronger phase separation upon substrate heating facilitates the charge transport, leading to a significant increase of the internal quantum efficiency (IQE), photocurrent, and fill factor. Consequently, the power conversion efficiency (PCE) increases from 0.5% at Tsub = -7°C to about 3.0 % at Tsub ≥ 77°C. Subsequent optimization of the DCV6T : C60 mixing ratio and the stack design of the solar cell lead to devices with PCE of 4.9±0.2 %. Using optical simulations, the IQE of these devices is studied in more detail to identify major remaining loss mechanisms. The evaluation of the absorption pattern in the wavelength range from 300 to 750 nm shows that only 77 % of the absorbed photons contribute to the exciton generation in photovoltaic active layers, while the rest is lost in passive layers. Furthermore, the IQE of the photovoltaic active layers, consisting of an intrinsic C60 layer and a mixed DCV6T : C60 layer, exhibits a lower exciton diffusion efficiency for C60 excitons compared to DCV6T excitons, attributed to exciton migration into the adjacent electron transport layer. / Diese Arbeit befasst sich mit organischen Solarzellen aus kleinen Molekülen. Anhand des Materialsystems α,ω-bis(Dicyanovinylen)-Sexithiophen (DCV6T) - C60 wird der Zusammenhang zwischen Morphologie der photovoltaisch aktiven Schicht und dem Leistungverhalten der Solarzellen untersucht. Zur Beeinflussung der Morphologie werden verschiedene Substrattemperaturen (Tsub ) während des Schichtwachstums der aktiven Schicht eingestellt. Beim Heizen des Substrates weisen DCV6T Einzelschichten eine erhöhte Kristallinität auf, die mittels Röntgenbeugung und Rasterkraftmikroskopie (AFM) erkennbar ist. Zudem bewirkt die Erhöhung der Substrattemperatur von 30°C auf 120°C eine ausgeprägtere Feinstrukturierung des Absorptionsspektrums, eine Rotverschiebung um bis zu 11 nm und eine Verstärkung der niederenergetischen Absorptionsbande. Entgegen den Erwartungen wird weder in Feldeffekttransistoren noch mit der Methode der Ladungsextraktion bei linear steigenden Spannungspulsen (CELIV) eine Verbesserung der Löcherbeweglichkeit in Zusammenhang mit der erhöhten Kristallinität gemessen. Mischschichten mit C60 weisen bei erhöhten Substrattemperaturen eine stärkere Phasentrennung auf, die zu größeren DCV6T Domänen innerhalb der Schicht führt. Dieser Effekt wird zum Einen durch größere Körnung und Rauigkeit der Topographie, zum Anderen durch die Erhöhung des Lumineszenzsignals von DCV6T sowie der Ausprägung der Feinstruktur im Absorptionsspektrum nachgewiesen. Ausgehend von den Ergebnissen der Morphologieuntersuchung werden die Auswirkungen von verschiedenen Substrattemperaturen auf das Leistungsverhalten von DCV6T - C60 Solarzellen mit planarem und Volumen-Heteroübergang analysiert. Solarzellen mit planarem Heteroübergang weisen eine geringe Verbesserung des Photostromes von etwa 10 % beim Heizen des Substrates auf. Diese wird durch die Erhöhung der DCV6T Absorption verursacht. In Volumen-Heteroübergängen führt die stärkere Phasentrennung bei steigender Substrattemperatur im untersuchten Temperaturbereich von -7°C bis 120°C zu einer Verbesserung des Ladungsträgertransports. Dadurch verbessern sich die interne Quanteneffizienz (IQE), der Photostrom und der Füllfaktor. Der Wirkungsgrad der Solarzellen erhöht sich von 0.5 % bei Tsub = -7°C auf 3.0 % bei Tsub ≥ 77°C. Eine weitere Optimierung des DCV6T : C60 Mischverhältnisses und des Schichtaufbaus ermöglicht Solarzellen mit Wirkungsgraden von 4.9±0.2 %. Mittels optischer Simulationen wird die IQE dieser Solarzellen näher untersucht, um verbleibende Verlustmechanismen zu identifizieren. Es ergibt sich, dass innerhalb des Wellenlängenbereichs von 300 bis 750 nm nur 77 % der absorbierten Photonen tatsächlich in den photovoltaisch aktiven Schichten absorbiert werden, während der Rest in nicht aktiven Schichten verloren geht. Des Weiteren kann nachgewiesen werden, dass C60 Exzitonen aus der aktiven Schicht, bestehend as einer intrinsischen C60 Schicht und einer DCV6T : C60 Mischschicht, durch Diffusion in die angrenzende Elektronentransportschicht verloren gehen.

Page generated in 0.1071 seconds