Spelling suggestions: "subject:"orthogonal.""
21 |
Grilles orthogonales, trames tissées et réseaux aléatoires, trois paradigmes pour l'art et l'architecture / Orthogonal grids, woven wefts and random networks, three paradigms in art and in architectureFischbach, Martin 18 December 2014 (has links)
Cette recherche traite de trois figures, la grille orthogonale, la trame tissée et le réseau aléatoire. Tout en étant constituées de lignes, ces figures caractériseraient des pratiques plastiques et approches théoriques diverses. Chacune constituerait un modèle conceptuel, un paradigme pour l’art et pour l’architecture. La grille orthogonale, modèle du strié, serait à la fois division spatiale, mode d’assemblage, matière immatérielle, figure géométrique flexible et universelle, symbole de la modernité et de l’anti-modernité, structure rythmique, trace de rationalité, structure langagière, écriture du discontinu et signe de l’universel. La trame tissée tirerait sa texture de logiques mathématiques. Cette dialectique entre structure / ornement se retrouverait dans la peinture. Le tissage serait un modèle d’hybridation et d’unicité. Les entrelacs mouvants représenteraient des chemins initiatiques et serviraient de modèle pour l’architecture tout comme le tissage dans divers procédés. La trame souple permettrait des déformations, des inflexions et des plis. Modèle relationnel, omniprésent dans l’univers et la philosophie, le réseau aléatoire signifierait le nomadisme. Il tracerait sur des cartes cette vision circulatoire du monde. Labyrinthe, il représenterait l’imaginaire. Diagramme, il ferait émerger par ses mises en relations, du sens en art Il serait aussi un modèle d’interactions et d’intersubjectivité. Les artistes simuleraient les réseaux chaotiques de la nature, pour générer des formes réticulaires. Le réseau, modèle des bifurcations situationnistes et ludiques, serait également celui des flux en architecture. / This research deals with three figures, the orthogonal grid, the woven wefts and the random network. While consisting of lines, these figures characterize plastics practices and various theoretical approaches. Each would be a conceptual model, a paradigm in art and in architecture. The orthogonal grid, pattern of striated, would be both spatial division, assembly mode, immaterial matter, flexible and universal geometric figure, symbol of modernity and antimodernity, rhythmic structure, trace of rationality, language structure, writing the discontinuous and sign of the universal. The woven weft would draw its texture from mathematical logic. This dialectic between structure / ornament would be present in painting. Weaving would be a model of hybridization and uniqueness. Intertwining would represent initiatory paths and serve as a model for architecture as well as weaving in various processes. The flexible weft would allow deformations, inflections and folds. Relational model, omnipresent in the universe and philosophy, random network would mean nomadism. It would trace on maps that circulatory worldview. Maze, it would represent the imagination. Diagram, by its connections, he would reveal meaning in art. It would be also a model of interactions and intersubjectivity. Artists would simulate the chaotic network of nature to generate lattice forms. The network model of Situationists and fun bifurcations, would also be flow in architecture.
|
22 |
Space-time block codes with low maximum-likelihood decoding complexitySinnokrot, Mohanned Omar 12 November 2009 (has links)
In this thesis, we consider the problem of designing space-time block codes that have low maximum-likelihood (ML) decoding complexity. We present a unified framework for determining the worst-case ML decoding complexity of space-time block codes. We use this framework to not only determine the worst-case ML decoding complexity of our own constructions, but also to show that some popular constructions of space-time block codes have lower ML decoding complexity than was previously known.
Recognizing the practical importance of the two transmit and two receive antenna system, we propose the asymmetric golden code, which is designed specifically for low ML decoding complexity. The asymmetric golden code has the lowest decoding complexity compared to previous constructions of space-time codes, regardless of whether the channel varies with time.
We also propose the embedded orthogonal space-time codes, which is a family of codes for an arbitrary number of antennas, and for any rate up to half the number of antennas. The family of embedded orthogonal space-time codes is the first general framework for the construction of space-time codes with low-complexity decoding, not only for rate one, but for any rate up to half the number of transmit antennas. Simulation results for up to six transmit antennas show that the embedded orthogonal space-time codes are simultaneously lower in complexity and lower in error probability when compared to some of the most important constructions of space-time block codes with the same number of antennas and the same rate larger than one.
Having considered the design of space-time block codes with low ML decoding complexity on the transmitter side, we also develop efficient algorithms for ML decoding for the golden code, the asymmetric golden code and the embedded orthogonal space-time block codes on the receiver side. Simulations of the bit-error rate performance and decoding complexity of the asymmetric golden code and embedded orthogonal codes are used to demonstrate their attractive performance-complexity tradeoff.
|
23 |
毀損資料推算之研究李小明, Li, Xiao-Ming Unknown Date (has links)
直交性(Orthogonality) 的存在簡化了變異數分析的過程;但是毀損資料(Spoilt
data)的發生破壞了直交往,使得資料分析過程複雜化,且降低了實驗的有效性。
若有人可給予毀損資料一正確的估計值,則資料分析的問題可以被處理得相當完滿。
本文探討估計毀損資料的各種方法以及採用這些估計值做分析時所引發的一些問題,
例如平方和的虛增使得檢定的顯著性微增。另外也討論以電子計算機來處理估計毀損
資料時純計算的部份。最後將各種估計方法做一總結,並討論估計值的性質。
|
24 |
Indices de Sobol généralisés par variables dépendantes / Sensitivity analysis and dependent input variablesChastaing, Gaëlle 23 September 2013 (has links)
Dans un modèle qui peut s'avérer complexe et fortement non linéaire, les paramètres d'entrée, parfois en très grand nombre, peuvent être à l'origine d'une importante variabilité de la sortie. L'analyse de sensibilité globale est une approche stochastique permettant de repérer les principales sources d'incertitude du modèle, c'est-à-dire d'identifier et de hiérarchiser les variables d'entrée les plus influentes. De cette manière, il est possible de réduire la dimension d'un problème, et de diminuer l'incertitude des entrées. Les indices de Sobol, dont la construction repose sur une décomposition de la variance globale du modèle, sont des mesures très fréquemment utilisées pour atteindre de tels objectifs. Néanmoins, ces indices se basent sur la décomposition fonctionnelle de la sortie, aussi connue soue le nom de décomposition de Hoeffding. Mais cette décomposition n'est unique que si les variables d'entrée sont supposées indépendantes. Dans cette thèse, nous nous intéressons à l'extension des indices de Sobol pour des modèles à variables d'entrée dépendantes. Dans un premier temps, nous proposons une généralisation de la décomposition de Hoeffding au cas où la forme de la distribution des entrées est plus générale qu'une distribution produit. De cette décomposition généralisée aux contraintes d'orthogonalité spécifiques, il en découle la construction d'indices de sensibilité généralisés capable de mesurer la variabilité d'un ou plusieurs facteurs corrélés dans le modèle. Dans un second temps, nous proposons deux méthodes d'estimation de ces indices. La première est adaptée à des modèles à entrées dépendantes par paires. Elle repose sur la résolution numérique d'un système linéaire fonctionnel qui met en jeu des opérateurs de projection. La seconde méthode, qui peut s'appliquer à des modèles beaucoup plus généraux, repose sur la construction récursive d'un système de fonctions qui satisfont les contraintes d'orthogonalité liées à la décomposition généralisée. En parallèle, nous mettons en pratique ces différentes méthodes sur différents cas tests. / A mathematical model aims at characterizing a complex system or process that is too expensive to experiment. However, in this model, often strongly non linear, input parameters can be affected by a large uncertainty including errors of measurement of lack of information. Global sensitivity analysis is a stochastic approach whose objective is to identify and to rank the input variables that drive the uncertainty of the model output. Through this analysis, it is then possible to reduce the model dimension and the variation in the output of the model. To reach this objective, the Sobol indices are commonly used. Based on the functional ANOVA decomposition of the output, also called Hoeffding decomposition, they stand on the assumption that the incomes are independent. Our contribution is on the extension of Sobol indices for models with non independent inputs. In one hand, we propose a generalized functional decomposition, where its components is subject to specific orthogonal constraints. This decomposition leads to the definition of generalized sensitivity indices able to quantify the dependent inputs' contribution to the model variability. On the other hand, we propose two numerical methods to estimate these constructed indices. The first one is well-fitted to models with independent pairs of dependent input variables. The method is performed by solving linear system involving suitable projection operators. The second method can be applied to more general models. It relies on the recursive construction of functional systems satisfying the orthogonality properties of summands of the generalized decomposition. In parallel, we illustrate the two methods on numerical examples to test the efficiency of the techniques.
|
25 |
Universalidade e ortogonalidade em espaços de Hilbert de reprodução / Universality and orthogonality in reproducing Kernel Hilbert spacesBarbosa, Victor Simões 19 February 2013 (has links)
Neste trabalho analisamos o papel das funções layout de um núcleo positivo definido K sobre um espaço topológico de Hausdor E com relação a duas propriedades específicas: a universalidade de K e a ortogonalidade no espaço de Hilbert de reprodução de K a partir de suportes disjuntos. As funções layout sempre existem mas podem não ser únicas. De uma maneira geral, a função layout e uma aplicação que transfere, convenientemente, informações do espaço E para um espaço com produto interno de dimensão alta, onde métodos lineares podem ser usados. Tanto a universalidade quanto a ortogonalidade pressupõem a continuidade do núcleo. O primeiro conceito exige que para cada compacto não vazio X de E, o conjunto de \"seções\" {K(., y) : y \'PERTENCE\' X} seja total no espaço de todas as funções contínuas com domínio X, munido da topologia da convergência uniforme. Um dos resultados principais do trabalho caracteriza a universalidade de um núcleo K através de uma propriedade de universalidade semelhante da função layout. A ortogonalidade a partir de suportes disjuntos almeja então a ortogonalidade de quaisquer duas funções do espaço de Hilbert de reprodução de K quando seus suportes não se intersectam / We analyze the role of feature maps of a positive denite kernel K acting on a Hausdorff topological space E in two specific properties: the universality of K and the orthogonality in the reproducing kernel Hilbert space of K from disjoint supports. Feature maps always exist but may not be unique. A feature map may be interpreted as a kernel based procedure that maps the data from the original input space E into a potentially higher dimensional \"feature space\" in which linear methods may then be used. Both properties, universality and orthogonality from disjoint supports, make sense under continuity of the kernel. Universality of K is equivalent to the fundamentality of {K(. ; y) : y \'IT BELONGS\' X} in the space of all continuous functions on X, with the topology of uniform convergence, for all nonempty compact subsets X of E. One of the main results in this work is a characterization of the universality of K from a similar concept for the feature map. Orthogonality from disjoint supports seeks the orthogonality of any two functions in the reproducing kernel Hilbert space of K when the functions have disjoint supports
|
26 |
Universalidade e ortogonalidade em espaços de Hilbert de reprodução / Universality and orthogonality in reproducing Kernel Hilbert spacesVictor Simões Barbosa 19 February 2013 (has links)
Neste trabalho analisamos o papel das funções layout de um núcleo positivo definido K sobre um espaço topológico de Hausdor E com relação a duas propriedades específicas: a universalidade de K e a ortogonalidade no espaço de Hilbert de reprodução de K a partir de suportes disjuntos. As funções layout sempre existem mas podem não ser únicas. De uma maneira geral, a função layout e uma aplicação que transfere, convenientemente, informações do espaço E para um espaço com produto interno de dimensão alta, onde métodos lineares podem ser usados. Tanto a universalidade quanto a ortogonalidade pressupõem a continuidade do núcleo. O primeiro conceito exige que para cada compacto não vazio X de E, o conjunto de \"seções\" {K(., y) : y \'PERTENCE\' X} seja total no espaço de todas as funções contínuas com domínio X, munido da topologia da convergência uniforme. Um dos resultados principais do trabalho caracteriza a universalidade de um núcleo K através de uma propriedade de universalidade semelhante da função layout. A ortogonalidade a partir de suportes disjuntos almeja então a ortogonalidade de quaisquer duas funções do espaço de Hilbert de reprodução de K quando seus suportes não se intersectam / We analyze the role of feature maps of a positive denite kernel K acting on a Hausdorff topological space E in two specific properties: the universality of K and the orthogonality in the reproducing kernel Hilbert space of K from disjoint supports. Feature maps always exist but may not be unique. A feature map may be interpreted as a kernel based procedure that maps the data from the original input space E into a potentially higher dimensional \"feature space\" in which linear methods may then be used. Both properties, universality and orthogonality from disjoint supports, make sense under continuity of the kernel. Universality of K is equivalent to the fundamentality of {K(. ; y) : y \'IT BELONGS\' X} in the space of all continuous functions on X, with the topology of uniform convergence, for all nonempty compact subsets X of E. One of the main results in this work is a characterization of the universality of K from a similar concept for the feature map. Orthogonality from disjoint supports seeks the orthogonality of any two functions in the reproducing kernel Hilbert space of K when the functions have disjoint supports
|
27 |
Geometry of high dimensional Gaussian dataMossberg, Olof Samuel January 2024 (has links)
Collected data may simultaneously be of low sample size and high dimension. Such data exhibit some geometric regularities consisting of a single observation being a rotation on a sphere, and a pair of observations being orthogonal. This thesis investigates these geometric properties in some detail. Background is provided and various approaches to the result are discussed. An approach based on the mean value theorem is eventually chosen, being the only candidate investigated that gives explicit convergence bounds. The bounds are tested employing Monte Carlo simulation and found to be adequate. / Data som insamlas kan samtidigt ha en liten stickprovsstorlek men vara högdimensionell. Sådan data uppvisar vissa geometriska mönster som består av att en enskild observation är en rotation på en sfär, och att ett par av observationer är rätvinkliga. Den här uppsatsen undersöker dessa geometriska egenskaper mer detaljerat. En bakgrund ges och olika typer av angreppssätt diskuteras. Till slut väljs en metod som baseras på medelvärdessatsen eftersom detta är den enda av de undersökta metoderna som ger explicita konvergensgränser. Gränserna testas sedermera med Monte Carlo-simulering och visar sig stämma.
|
28 |
The Diamond Lemma for Power Series AlgebrasHellström, Lars January 2002 (has links)
<p>The main result in this thesis is the generalisation of Bergman's diamond lemma for ring theory to power series rings. This generalisation makes it possible to treat problems in which there arise infinite descending chains. Several results in the literature are shown to be special cases of this diamond lemma and examples are given of interesting problems which could not previously be treated. One of these examples provides a general construction of a normed skew field in which a custom commutation relation holds.</p><p>There is also a general result on the structure of totally ordered semigroups, demonstrating that all semigroups with an archimedean element has a (up to a scaling factor) unique order-preserving homomorphism to the real numbers. This helps analyse the concept of filtered structure. It is shown that whereas filtered structures can be used to induce pretty much any zero-dimensional linear topology, a real-valued norm suffices for the definition of those topologies that have a reasonable relation to the multiplication operation.</p><p>The thesis also contains elementary results on degree (as of polynomials) functions, norms on algebras (in particular ultranorms), (Birkhoff) orthogonality in modules, and construction of semigroup partial orders from ditto quasiorders.</p>
|
29 |
The Diamond Lemma for Power Series AlgebrasHellström, Lars January 2002 (has links)
The main result in this thesis is the generalisation of Bergman's diamond lemma for ring theory to power series rings. This generalisation makes it possible to treat problems in which there arise infinite descending chains. Several results in the literature are shown to be special cases of this diamond lemma and examples are given of interesting problems which could not previously be treated. One of these examples provides a general construction of a normed skew field in which a custom commutation relation holds. There is also a general result on the structure of totally ordered semigroups, demonstrating that all semigroups with an archimedean element has a (up to a scaling factor) unique order-preserving homomorphism to the real numbers. This helps analyse the concept of filtered structure. It is shown that whereas filtered structures can be used to induce pretty much any zero-dimensional linear topology, a real-valued norm suffices for the definition of those topologies that have a reasonable relation to the multiplication operation. The thesis also contains elementary results on degree (as of polynomials) functions, norms on algebras (in particular ultranorms), (Birkhoff) orthogonality in modules, and construction of semigroup partial orders from ditto quasiorders.
|
30 |
Elementos da análise funcional para o estudo da equação da corda vibranteGóis, Aédson Nascimento 26 August 2016 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, we are treated some elements of functional analysis such as Banach spaces,
inner product spaces and Hilbert spaces, also studied Fourier series and at the end briefly
consider the equation of the vibrating string. With this, you realize that you do not need
a lot of theory in order to get significant results. / Neste trabalho, são tratados alguns elementos da análise funcional como espaços de
Banach, espaços com produto interno e espaços de Hilbert, estudamos também séries
de Fourier e no final consideramos brevemente a equação da corda vibrante. Com isso,
percebe-se que não se precisa de muita teoria para conseguirmos resultados significativos.
|
Page generated in 0.042 seconds