• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 233
  • 62
  • 51
  • 40
  • 37
  • 8
  • 7
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 532
  • 86
  • 81
  • 80
  • 67
  • 63
  • 62
  • 60
  • 59
  • 54
  • 48
  • 46
  • 46
  • 44
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

THE DESIGN OF A SINGLE CARD TELEMETRY MODULE FOR SMART MUNITION TESTING

Oder, Stephen, Dearstine, Christina, Webb, Amy, Muir, John, Bahl, Inder, Burke, Larry, Stone, Weyant 10 1900 (has links)
International Telemetering Conference Proceedings / October 18-21, 2004 / Town & Country Resort, San Diego, California / M/A-COM, Inc. has developed a miniature Tactical Telemetry Module (TTM) for medium power (500 mW and 1 W) telemetry applications. The TTM demonstrates system integration of a multi-channel PCM encoder, lower S-band transmitter, and power regulation onto a single printed wiring board (PWB). The module is smaller than a standard business card and utilizes both COTS and M/A-COM proprietary technologies. The PCM encoder is designed for eight (8) analog inputs, eight (8) discrete inputs, and one (1) synchronous RS-422 serial interface. Data rates of 300 kbps to 6 Mbps are supported. The module incorporates a frequency programmable, phase-locked FM S-band transmitter. The transmitter utilizes M/A-COM’s new dual port VCO and high efficiency 500 mW and 1 W power amplifier MMIC’s. Additionally, switching power regulation circuits were implemented within the module to provide maximum operating efficiency. This paper reviews the design and manufacturing of the Tactical Telemetry Module (TTM) and its major components, and presents system performance data.
142

Investigating magnetism and superconductivity using high magnetic fields

Ghannadzadeh, Saman January 2014 (has links)
This thesis investigates a number of transition-metal coordination polymers and iron-pnictide superconductors through the use of high magnetic fields, low temperatures, and on occasion, high pressures. The thesis will begin by describing my development of the proximity detector dynamic susceptometer, a novel technique that can be used for magnetometery and transport measurements in high magnetic fields. This technique is highly compact and has no moving parts, making it suitable for use in pressure cells, hence opening the way for a variety of new experiments. Through high-field magnetometery and other measurements, I will demonstrate that the pressure can be used to directly control the magnetic properties of the polymeric magnet CuF<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>(pyrazine). In particular, I observe a transition from quasi-two-dimensional to quasi-one-dimensional antiferromagnetism at 9~kbar, driven by the rotation of the Jahn-Teller axis. I will then present a series of measurements on two coordination polymers, showing how a small chemical difference can lead to drastically different magnetic properties. I show that [Cu(pyrazine)H<sub>2</sub>O(glycine)<sub>2</sub>]ClO<sub>4</sub> is an excellent spin-chain, while the sister compound [Cu(pyrazine)(glycine)]ClO<sub>4</sub> is a dimerised material that shows a spin-gap and is disordered down to very low temperatures, but then undergoes a field-induced phase transition to an ordered phase. I will also describe a series of pulsed-field measurements of the upper critical field of the iron-based superconductors NaFe<sub>1-x</sub>Co<sub>x</sub>As across the whole of the doping phase diagram. It is shown that paramagnetic pair-breaking effects dominate the critical field when the field is parallel to the crystal planes. In the parent compound the paramagnetic limit is equal to that expected from BCS theory, but becomes significantly enhanced above the BCS limit upon doping. It is shown that the multi-band nature of the superconductivity leads to a convex curvature in the evolution of the critical field as the temperature is reduced.
143

Higher-order airy functions of the first kind and spectral properties of the massless relativistic quartic anharmonic oscillator

Durugo, Samuel O. January 2014 (has links)
This thesis consists of two parts. In the first part, we study a class of special functions Aik (y), k = 2, 4, 6, ··· generalising the classical Airy function Ai(y) to higher orders and in the second part, we apply expressions and properties of Ai4(y) to spectral problem of a specific operator. The first part is however motivated by latter part. We establish regularity properties of Aik (y) and particularly show that Aik (y) is smooth, bounded, and extends to the complex plane as an entire function, and obtain pointwise bounds on Aik (y) for all k. Some analytic properties of Aik (y) are also derived allowing one to express Aik (y) as a finite sum of certain generalised hypergeometric functions. We further obtain full asymptotic expansions of Aik (y) and their first derivative Ai'(y) both for y > 0 and for y < 0. Using these expansions, we derive expressions for the negative real zeroes of Aik (y) and Ai'(y). Using expressions and properties of Ai4(y), we extensively study spectral properties of a non-local operator H whose physical interpretation is the massless relativistic quartic anharmonic oscillator in one dimension. Various spectral results for H are derived including estimates of eigenvalues, spectral gaps and trace formula, and a Weyl-type asymptotic relation. We study asymptotic behaviour, analyticity, and uniform boundedness properties of the eigenfunctions Ψn(x) of H. The Fourier transforms of these eigenfunctions are expressed in two terms, one involving Ai4(y) and another term derived from Ai4(y) denoted by Āi4(y). By investigating the small effect generated by Āi4(y) this work shows that eigenvalues λn of H are exponentially close, with increasing n Ε N, to the negative real zeroes of Ai4(y) and those of its first derivative Ai'4(y) arranged in alternating and increasing order of magnitude. The eigenfunctions Ψ(x) are also shown to be exponentially well-approximated by the inverse Fourier transform of Ai4(|y| - λn) in its normalised form.
144

A HIGHLY INTEGRATED TELEMETRY SYSTEM FOR THE EXCALIBUR PROJECTILE

Oder, Stephen, Dearstine, Christina, Muir, John, Semuskie, Stephen, Fratta, Ralph, DiCristina, Stephen 10 1900 (has links)
ITC/USA 2005 Conference Proceedings / The Forty-First Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2005 / Riviera Hotel & Convention Center, Las Vegas, Nevada / A miniature 1 Watt Tactical Telemetry Module (TTM) has been developed for the Excalibur projectile program. The TTM incorporates a multi-channel PCM encoder, lower S-band transmitter, and power regulation onto a single printed wiring board (PWB). The PCM encoder is designed for eight (8) analog inputs, four (4) discrete inputs, and one (1) synchronous RS-422 serial interface, with a total data rate of 1 Mbps. The module incorporates a digitally programmable, phase-locked FM S-band transmitter. The transmitter utilizes M/A-COM’s new dual port VCO and a high efficiency 2 W power amplifier MMIC. Additionally, switching power regulation circuits were implemented within the module to provide maximum operating efficiency. This paper reviews the environmental requirements of Excalibur, the design of the Excalibur TTM, and presents electrical and air-gun test data.
145

OPTIMIZATION OF A MINATURE TRANSMITTER MODULE FOR WIRELESS TELEMETRY APPLICATIONS

Osgood, Karina, Burke, Larry, Webb, Amy, Muir, John, Dearstine, Christina, Quaglietta, Anthony 10 1900 (has links)
International Telemetering Conference Proceedings / October 21, 2002 / Town & Country Hotel and Conference Center, San Diego, California / M/A-COM, Inc. has previously developed a highly integrated transmitter chip set for wireless telemetry applications for the military L and S band frequencies and the commercial 2.4GHz ISM band. The original chip set is comprised of a voltage controlled oscillator (VCO), a silicon phase locked loop (PLL), and a family of power amplifiers (PA's). Using these components, M/A-COM has produced a miniature IRIG-compliant transmitter module, which has been flight-tested by the U.S. Army’s Hardened Subminiature Telemetry and Sensor System (HSTSS) program. Since the initial offering, several product enhancements have been added. The module performance has been improved by tailoring the VCO specifically for direct frequency modulation applications. In addition to improving noise performance, these enhancements have produced improved modulation linearity, decreased lock time and increased carrier stability. Modulation rates in excess of 10Mbps have been demonstrated. High efficiency power amplifiers operating at 3V have also been added to the family of amplifiers (PAE > 50%). This greatly enhanced efficiency allows higher RF power output while maintaining the same miniature form factor for the transmitter. Further, M/A-COM has added a silicon-on-sapphire PLL to the chip set, which operates at frequencies up to 3.0GHz. This paper details the enhancements to the components within the chip set, and the improvement in performance of the transmitter module. Test data is presented for the transmitter modules and individual components.
146

Quasi-Phasematched nonlinear processes in KTiOPO4 isomorphs

Fragemann, Anna January 2003 (has links)
<p>This thesis explores the use of nonlinear crystals from theKTiOPO<sub>4</sub>(KTP) family with the aim to extend the possibleapplications for laser sources and to gain more knowledge aboutthe material’s benefits and limits. The work focussed onoptical parametric oscillators (OPOs) and optical parametricamplifiers (OPAs), which employ second order nonlinearprocesses. Both devices transfer energy from a laser beam at aparticular wavelength to a different wavelength, which istuneable. In OPOs two new beams at different wavelengths aregenerated, whereas in OPAs an existing weak beam is amplified.The essential part of these devices, which enables theoccurrence of the energy conversion, is a nonlinear crystal. Inthis work the ferroelectric crystals KTP and RbTiOPO<sub>4</sub>(RTP) have been utilized.</p><p>By modifying the material’s structure,quasi-phasematching can be obtained, which is a crucialrequirement for achieving efficient energy conversion betweenthe incident and the generated waves. The fabrication ofquasi-phasematched crystals is dependent on the controlledreversion of the material’s spontaneous polarisation,which is accomplished by periodic electric field poling.</p><p>Nanosecond pulses of more than 200 kW were generated in the“eye-safe”region by employing a double pass OPA.Small signal gains exceeding 75 dB were obtained for anessentially diffraction limited beamwithout spectralbroadening of the seed. By subsequent signal coupling intofibres substantial broadening was accomplished. A systematicmeasurement series of several RTP crystals allowed us toaccurately determine the wavelength and temperature dispersionof the refractive index, which are two essential requirementsfor further employment of this material. The OPOs based on RTPwere widely tuneable by controlling the temperature. It wasalso concluded that RTP behaves similar to KTP in parametricdevices, thus being a material, which can sustain high powers,possesses large nonlinear coefficients and can operate in abroad wavelength region.Efficient Raman oscillation concurrent with parametricoscillation was observed and analysed in several KTP samples.This gave further insight into the processes taking placeinside the material when performing as a frequency converter,if the generated idler lies in the absorption band.This thesis also covers the investigation of afemtosecond optical parametric chirped pulse amplifier.Temporally stretched seed pulses were amplified to 85 µJ,resulting in a gain above 60 dB, and subsequent recompressionresulted in 270 fs pulses.</p><p><b>Keywords:</b>nonlinear optics, KTiOPO<sub>4</sub>, optical parametric oscillator, optical parametricamplifier, RbTiOPO<sub>4</sub>, quasi-phasematching, electric field poling,stimulated Raman scattering.</p>
147

Analysis and design on low-power multi-Gb/s serial links

Hu, Kangmin 06 July 2011 (has links)
High speed serial links are critical components for addressing the growing demand for I/O bandwidth in next-generation computing applications, such as many-core systems, backplane and optical data communications. Due to continued process scaling and circuit innovations, today's CMOS serial link transceivers can achieve tens of Gb/s per pin. However, most of their reported power efficiency improves much slower than the rise of data rate. Therefore, aggregate I/O power is increasing and will exceed the power budget if the trend for more off-chip bandwidth is sustained. In this work, a system level statistical analysis of serial links is first described, and compares the link performance of Non-Return-to-Zero (2-PAM) with higher-order modulation (duobinary) signaling schemes. This method enables fast and accurate BER distribution simulation of serial link transceivers that include channel and circuit imperfections, such as finite pulse rise/fall time, duty cycle variation, and both receiver and transmitter forwarded-clock jitter. Second, in order to address link power efficiency, two test chips have been implemented. The first one describes a quad-lane, 6.4-7.2 Gb/s serial link receiver prototype using a forwarded clock architecture. A novel phase deskew scheme using injection-locked ring oscillators (ILRO) is proposed that achieves greater than one UI of phase shift for multiple clock phases, eliminating phase rotation and interpolation required in conventional architectures. Each receiver, optimized for power efficiency, consists of a low-power linear equalizer, four offset-cancelled quantizers for 1:4 demultiplexing, and an injection-locked ring oscillator coupled to a low-voltage swing, global clock distribution. Measurement results show a 6.4-7.2Gb/s data rate with BER < 10⁻¹² across 14 cm of PCB, and an 8Gb/s data rate through 4cm of PCB. Designed in a 1.2V, 90nm CMOS process, the ILRO achieves a wide tuning range from 1.6-2.6GHz. The total area of each receiver is 0.0174mm², resulting in a measured power efficiency of 0.6mW/Gb/s. Improving upon the first test chip, a second test chip for 8Gb/s forwarded clock serial link receivers exploits a low-power super-harmonic injection-locked ring oscillator for symmetric multi-phase local clock generation and deskewing. Further power reduction is achieved by designing most of the receiver circuits in the near-threshold region (0.6V supply), with the exception of only the global clock buffer, test buffers and synthesized digital test circuits at nominal 1V supply. At the architectural level, a 1:10 direct demultiplexing rate is chosen to achieve low supply operation by exploiting high-parallelism. Fabricated in 65nm CMOS technology, two receiver prototypes are integrated in this test chip, one without and the other with front-end boot-strapped S/Hs. Including the amortized power of global clock distribution, the proposed serial link receivers consume 1.3mW and 2mW respectively at 8Gb/s input data rate, achieving a power efficiency of 0.163mW/Gb/s and 0.25mW/Gb/s. Measurement results show both receivers achieve BER < 10⁻¹² across a 20-cm FR4 PCB channel. / Graduation date: 2012
148

Winnerless competition in neural dynamics : cluster synchronisation of coupled oscillators

Wordsworth, John January 2009 (has links)
Systems of globally coupled phase oscillators can have robust attractors that are heteroclinic networks. Such a heteroclinic network is generated, where the phases cluster into three groups, within a specific regime of parameters when the phase oscillators are globally coupled using the function $g(\varphi) = -\sin(\varphi + \alpha) + r \sin(2\varphi + \beta)$. The resulting network switches between 30 partially synchronised states for a system of $N=5$ oscillators. Considering the states that are visited and the time spent at those states a spatio-temporal code can be generated for a given navigation around the network. We explore this phenomenon further by investigating the effect that noise has on the system, how this system can be used to generate a spatio-temporal code derived from specific inputs and how observation of a spatio-temporal code can be used to determine the inputs that were presented to the system to generate a given coding. We show that it is possible to find chaotic attractors for certain parameters and that it is possible to detail a genetic algorithm that can find the parameters required to generate a specific spatio-temporal code, even in the presence of noise. In closing we briefly explore the dynamics where $N&gt;5$ and discuss this work in relation to winnerless competition.
149

Analysis of Polarizability Measurements Made with Atom Interferometry

Gregoire, Maxwell, Brooks, Nathan, Trubko, Raisa, Cronin, Alexander 06 July 2016 (has links)
We present revised measurements of the static electric dipole polarizabilities of K, Rb, and Cs based on atom interferometer experiments presented in [Phys. Rev. A 2015, 92, 052513] but now re-analyzed with new calibrations for the magnitude and geometry of the applied electric field gradient. The resulting polarizability values did not change, but the uncertainties were significantly reduced. Then, we interpret several measurements of alkali metal atomic polarizabilities in terms of atomic oscillator strengths f(ik), Einstein coefficients A(ik), state lifetimes tau(k), transition dipole matrix elements D-ik, line strengths S-ik, and van der Waals C-6 coefficients. Finally, we combine atom interferometer measurements of polarizabilities with independent measurements of lifetimes and C-6 values in order to quantify the residual contribution to polarizability due to all atomic transitions other than the principal ns-np(J) transitions for alkali metal atoms.
150

Compact high-repetition-rate terahertz source based on difference frequency generation from an efficient 2-μm dual-wavelength KTP OPO

Mei, Jialin, Zhong, Kai, Wang, Maorong, Liu, Pengxiang, Xu, Degang, Wang, Yuye, Shi, Wei, Yao, Jianquan, Norwood, Robert A., Peyghambarian, Nasser 03 November 2016 (has links)
A compact optical terahertz (THz) source was demonstrated based on an efficient high-repetition-rate doubly resonant optical parametric oscillator (OPO) around 2 mu m with two type-II phase-matched KTP crystals in the walk-off compensated configuration. The KTP OPO was intracavity pumped by an acousto-optical (AO) Q-switched Nd:YVO4 laser and emitted two tunable wavelengths near degeneracy. The tuning range extended continuously from 2.068 mu m to 2.191 mu m with a maximum output power of 3.29 W at 24 kHz, corresponding to an optical-optical conversion efficiency (from 808 nm to 2 mu m) of 20.69%. The stable pulsed dual-wavelength operation provided an ideal pump source for generating terahertz wave of micro-watt level by the difference frequency generation (DFG) method. A 7.84-mm-long periodically inverted quasi-phase-matched (QPM) GaAs crystal with 6 periods was used to generate a terahertz wave, the maximum voltage of 180 mV at 1.244 THz was acquired by a 4.2-K Si bolometer, corresponding to average output power of 0.6 mu W and DFG conversion efficiency of 4.32x10(-7). The acceptance bandwidth was found to be larger than 0.35 THz (FWHM). As to the 15-mm-long GaSe crystal used in the type-II collinear DFG, a tunable THz source ranging from 0.503 THz to 3.63 THz with the maximum output voltage of 268 mV at 1.65 THz had been achieved, and the corresponding average output power and DFG conversion efficiency were 0.9 mu W and 5.86x10(-7) respectively. This provides a potential practical palm-top tunable THz sources for portable applications.

Page generated in 0.0598 seconds