• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 285
  • 52
  • 23
  • 13
  • 9
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 1
  • Tagged with
  • 478
  • 298
  • 148
  • 101
  • 85
  • 72
  • 65
  • 56
  • 54
  • 44
  • 37
  • 36
  • 33
  • 31
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

The current water quality situation at clinics in the Limpopo Province and subsequent management suggestions / Jan Hendrik Stander

Stander, Jan Hendrik January 2010 (has links)
South Africa's water resources are, in global terms, scarce and extremely limited (DWAF, 2004). Groundwater is a valuable source of potable water in South Africa. It was found that most of the health facilities in the Limpopo Province depend on groundwater as sole source of potable water. Groundwater quality is to a great extent influenced by the dominant land use in the vicinity of an aquifer. It is therefore important to carefully manage possible pollution sources of anthropogenic origin. This may be seen as pro–active water quality management that may result in significant saving on water treatment. This aim of this study is to obtain a regional view of the water quality situation at clinics and other health facilities in the Limpopo Province. It was found that the general water quality at health facilities in the Province is questionable. It is of concern to note that 56% of health facilities use water that is unacceptable for human consumption. Water quality may be managed by introducing appropriate treatment options to treat the water to ideal water quality standards. This dissertation explores some treatment options used at health facilities in the Province. The efficiency of these treatment systems is also investigated. / Thesis (M.Sc. (Geography and Environmental Studies))--North-West University, Potchefstroom Campus, 2011.
262

Thermal fluid analysis of combined power and desalination concepts for a high temperature reactor / Ryno Nel

Nel, Ryno January 2011 (has links)
South Africa is on a path of dramatically increasing its energy supplying capabilties. Eskom (the main utility supplying electricity to the national grid) recently announced that future power station technologies will focus on renewable energy and nuclear power. This is done in an effort to reduce South Africa’s dependance on burning fossil-fuels and thereby decreasing CO2 emissions and other harmful gases. This, together with the fact that there are a lot of fresh water scarce areas especially along the Eastern Cape coast of South Africa, is what inspired this study. This study investigates the use of a 200 MWth High Temperature Reactor (HTR) for cogeneration purposes. Heat from the reactor is utilised for electricity generation (Rankine cycle) and process heat (desalination). Two desalination concepts were evaluated thermodynamically and economically, namely Multi-Effect Distillation (MED) and Reverse Osmosis (RO). Computer software, Engineering Equation Solver (EES), was used to simulate different cycle configurations, where the heat available in the condenser was increased successively. The coupling of the two desalination technologies with a HTR was compared and it was found that a RO plant produces nearly twice as much water while sending the same amount of electricity to the grid (compared to coupling with MED). Coupling options were investigated and each simulation model was optimised to deliver maximum output (power and water). The best configuration was found to be the coupling of a HTR with a RO plant producing 86.56 MW generator power. This is equal to 2077 MWh/day. Using 332 MWh/day for desalination through RO, delivers 73 833 m3/day fresh water and results in 1745 MWh/day sent to the grid. This scenario is the best option from a thermodynamic and economic point of view. From an investment point of view, it will produce an Internal Rate of Return (IRR) of 10.9 percent and the Net Present Value (NPV) is calculated to be R 2,486,958,689. The results and analysis for the different cycle configurations are presented in such a way that an easy comparison can be made. / Thesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2011
263

The Relationship Among Reasoning Ability, Gender And Students&#039 / Understanding Of Diffusion And Osmosis

Korkmaz, Oguz 01 September 2005 (has links) (PDF)
This study investigated the 9th grade students&#039 / achievement regarding diffusion and osmosis in relation to reasoning ability, prior knowledge and gender. A total of 397 ninth grade students participated in the study. The Test of logical thinking (TOLT) and the Diffusion and Osmosis Diagnostic Test (DODT) were administered to determine students&#039 / reasoning ability and achievement in diffusion and osmosis, respectively. DODT results showed that the range of correct answers for the first tier was 41 % to 91%. When both tiers were combined, the correct responses were reduced to a range of 21% to 61%. This result reveals that students have enough content knowledge but they don&rsquo / t know the underlying reason of their choice in diffusion and osmosis concepts. Pearson Product Moment correlations showed a statistically significant positive correlation between achievement and students&#039 / prior knowledge &amp / reasoning ability. MRC Analysis was conducted to determine the contribution of prior knowledge, reasoning ability and gender to the achievement. Prior knowledge and reasoning ability, but not gender, made a statistically significant contribution to the variation on achievement. Prior knowledge and reasoning ability together predicted 37 % of the variation on achievement. Stepwise multiple regression analysis was computed to determine the variables were best predicting students&rsquo / achievement. While prior knowledge explains 33 % of the variation in achievement, reasoning ability explains only 4 % of the variation in achievement. Results indicate that prior knowledge is a better predictor than reasoning ability in students&rsquo / achievement.
264

Treatment of Reverse Osmosis Concentrates from Recycled Water

Arseto Yekti Bagastyo Unknown Date (has links)
Water recycling by membrane treatment is widely accepted as a leading alternative water source. This separation process creates a concentrated stream (called concentrates), containing most of the pollutants in 10%-20% of the flow; and a treated water stream. As nitrogen is a major concern, environmental regulations have become more stringent, requiring additional treatment to meet effluent standards. Other concerns include organic contaminants and potential production of halogenated organics if disinfection of the reject was applied. One option to address the problem of dissolved organic nitrogen and carbon is advanced oxidation. This oxidation could lead to degradation of refractory organic materials, which are poorly removed in conventional treatment. This project aims to evaluate treatment extent and cost of alternatives for organic (particularly nitrogen) removal in reject water addressing the following research gaps: (i) identifying the key organic pollutants present in the concentrated stream, (ii) the effectiveness and optimisation of coagulation, ion exchange and advanced oxidation; (iii) apparent cost of the different treatment methods. The untreated reverse osmosis concentrates were collected from two treatment plants:- Luggage Point, and Bundamba, both near Brisbane, Queensland, Australia. The first contains more colourful of organics than the second plant. Stirred cell fractionation with ultrafiltration membranes was used to characterise the removed key pollutants, as it offers better accuracy and reproducibility compared to centrifugation fractionation. Fluorescence spectral was used to monitor and identify specific organic compounds. The largest fraction was smaller sized <1kDa. This is probably small humic substances and fulvic acids, as indicated by Excitation Emission Matrix (EEM) analysis. A smaller portion of soluble microbial products (SMPs) also contributes to the concentrates. Bundamba contains large non coloured organics including organic nitrogen with elevated ammonia-N. In contrast, Luggage Point has higher colour, inorganic carbon and conductivity with less ammonia-N. Advanced Oxidation Process (AOP) was the most effective treatment method (high removal of organics, e.g. 55% COD of initial), followed by magnetised ion exchange (MIEX) and coagulations. For UV/H2O2 AOP, the optimal operating condition 400mg.L-1 H2O2 and 3.1kWh.m-3 energy input resulted in organics removals up to 55% with complete decolourisation. The effective reduction was found in all size ranges, preferably in >1kDa. Low inorganic carbon and salinity in Bundamba may allow better overall oxidation rates. MIEX also performed better in Bundamba with organic removals up to 43% and 80% decolourisation at the optimum resin dose of 15mL.L-1. Removal was preferential in size range of >3kDa, with more proportional percentage for decolourisation. Similarly, ferric coagulation removed a wider size range of organics. Further, ferric achieved better organic removal in Luggage Point with up to 49%. At the same molar dose (1.5mM), ferric is superior to alum, especially in Bundamba where there were less hydrophobic compounds according to EEM. Alum is poor for treatment of high organics with less coloured water. MIEX with an operational cost (chemicals and power only) of $0.14-$0.20.m-3 treated water seemed to be the most effective treatment overall. The resin achieved better results with a slightly higher cost than coagulation, and had a lower environmental impact due to reduced sludge production. AOP offers better treatment, but at a higher cost ($0.47.m-3 treated). Combined alternatives may benefit the removal effectiveness. Furthermore, more specific identification of contaminants should be investigated separately to choose appropriate treatment for priority chemicals. Another issue is further investigation of costing, including capital, and full environmental impact of treatment.
265

The study of pretreatment options for composite fouling of reverse osmosis membranes used in water treatment and production

Mustafa, Ghulam Mohammad, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Most common inorganic foulants in RO processes operating on brackish water are calcium carbonate, calcium sulphate and silica. However, silica fouling is the recovery limiting factor in RO system. Silica chemistry is complex and its degree of fouling strongly depends on the silica solubility and its polymerization under different operating conditions of RO process. In several studies carried out in batch and dynamic tests, the presence of polyvalent cations and supersaturation of silica in solutions were found to be the important factors (apart from pH and temperature) that affected the rate of silica polymerization and its induction period. Agitation did increased silica solubility; however, its effect was negligible in presence of polyvalent cations. Alkalization of water solution by coagulants particularly sodium hydroxide was found suitable for silica removal during pretreatment. The presence of magnesium in solution played a key role in silica removal mostly by the mechanism of adsorption to the metal hydroxide. The options of inline mixing (high agitation) for 5 to 10 minutes and microfiltration before RO were found suitable for silica pretreatment. During dynamic tests, the most dominant mechanism for salt deposition (mostly CaSO4) was particulate type in high concentration water solution; while crystallization fouling was the prevailing mechanism of deposition (mostly CaCO3 and silica) in low concentration solution. Silica showed significant effect on size and shape of inorganic salt crystals during coprecipitation. Moreover, the presence of common antiscalants promoted silica fouling. This important finding recommends an extra caution while using antiscalants in case feed water contains silica to a level that can attain saturation near membrane during RO process. A model was developed to predict the silica fouling index (SFI) based on the experimental data for induction period of silica polymerization. The model takes into account the effect of polyvalent cations and concentration polarization near membrane during RO process. It provides a conservative basis for predicting the maximum silica deposition in RO process at the normal operating conditions. A generalised correlation, which was developed for determination of the mass transfer coefficient in RO process, incorporated the effect of temperature change that is usually not considered in previous correlations. A correlation for reduction of silica content in feed water, down to a safe limit of 15 ppm for RO process, was also formulated and validated by the experimental results.
266

Treatment of Reverse Osmosis Concentrates from Recycled Water

Arseto Yekti Bagastyo Unknown Date (has links)
Water recycling by membrane treatment is widely accepted as a leading alternative water source. This separation process creates a concentrated stream (called concentrates), containing most of the pollutants in 10%-20% of the flow; and a treated water stream. As nitrogen is a major concern, environmental regulations have become more stringent, requiring additional treatment to meet effluent standards. Other concerns include organic contaminants and potential production of halogenated organics if disinfection of the reject was applied. One option to address the problem of dissolved organic nitrogen and carbon is advanced oxidation. This oxidation could lead to degradation of refractory organic materials, which are poorly removed in conventional treatment. This project aims to evaluate treatment extent and cost of alternatives for organic (particularly nitrogen) removal in reject water addressing the following research gaps: (i) identifying the key organic pollutants present in the concentrated stream, (ii) the effectiveness and optimisation of coagulation, ion exchange and advanced oxidation; (iii) apparent cost of the different treatment methods. The untreated reverse osmosis concentrates were collected from two treatment plants:- Luggage Point, and Bundamba, both near Brisbane, Queensland, Australia. The first contains more colourful of organics than the second plant. Stirred cell fractionation with ultrafiltration membranes was used to characterise the removed key pollutants, as it offers better accuracy and reproducibility compared to centrifugation fractionation. Fluorescence spectral was used to monitor and identify specific organic compounds. The largest fraction was smaller sized <1kDa. This is probably small humic substances and fulvic acids, as indicated by Excitation Emission Matrix (EEM) analysis. A smaller portion of soluble microbial products (SMPs) also contributes to the concentrates. Bundamba contains large non coloured organics including organic nitrogen with elevated ammonia-N. In contrast, Luggage Point has higher colour, inorganic carbon and conductivity with less ammonia-N. Advanced Oxidation Process (AOP) was the most effective treatment method (high removal of organics, e.g. 55% COD of initial), followed by magnetised ion exchange (MIEX) and coagulations. For UV/H2O2 AOP, the optimal operating condition 400mg.L-1 H2O2 and 3.1kWh.m-3 energy input resulted in organics removals up to 55% with complete decolourisation. The effective reduction was found in all size ranges, preferably in >1kDa. Low inorganic carbon and salinity in Bundamba may allow better overall oxidation rates. MIEX also performed better in Bundamba with organic removals up to 43% and 80% decolourisation at the optimum resin dose of 15mL.L-1. Removal was preferential in size range of >3kDa, with more proportional percentage for decolourisation. Similarly, ferric coagulation removed a wider size range of organics. Further, ferric achieved better organic removal in Luggage Point with up to 49%. At the same molar dose (1.5mM), ferric is superior to alum, especially in Bundamba where there were less hydrophobic compounds according to EEM. Alum is poor for treatment of high organics with less coloured water. MIEX with an operational cost (chemicals and power only) of $0.14-$0.20.m-3 treated water seemed to be the most effective treatment overall. The resin achieved better results with a slightly higher cost than coagulation, and had a lower environmental impact due to reduced sludge production. AOP offers better treatment, but at a higher cost ($0.47.m-3 treated). Combined alternatives may benefit the removal effectiveness. Furthermore, more specific identification of contaminants should be investigated separately to choose appropriate treatment for priority chemicals. Another issue is further investigation of costing, including capital, and full environmental impact of treatment.
267

Enhancement of membrane surface characteristics to improve membrane performance and durability in the treatment of municipal MBR effluent

Kasongo Wa Kasongo, Godwill January 2018 (has links)
Thesis (Master of Engineering in Chemical Engineering))--Cape Peninsula University of Technology, 2018. / Fresh, clean water has always been critical for the world's social development. Supply of water can be reinforced through recycling and reuse; and secondary treatment of municipal wastewater effluent with a membrane bioreactor (MBR) followed by a reverse osmosis (RO) process, has emerged as a crucial treatment process for water reuse. However, fouling of RO membranes in such process is unavoidable. This leads to poor performance, increase in operational cost and degradation of the membrane material, which reduces the membrane life span. Various researches have been conducted to provide an understanding of the mechanism of fouling, and methods have been developed to minimize it. In this research, the effect of surface modification to minimise fouling on a thin film composite polyamide RO membrane was investigated. This study was divided into three parts, namely: membrane modification, biofouling and filtration using RO. Two modifying agents, PVA and DMAEMA, were used as grafting solutions. Escherichia coli (E. coli) were used as the biofoulant to study the ant-biofouling properties of the membranes. A make-up synthetic MBR secondary effluent feed was used in a bench scale RO process. During the membrane modification process, the membrane was treated using two different approaches. Firstly, the covalent attachment of polyvinyl alcohol (PVA) through Glutaraldehyde (GA) onto the surface and secondly the redox initiated grafting of dimethyl amino ethyl methacrylate (DMAEMA PVA and DMAEMA grafting solutions were applied at four different concentrations). The PVA and DMAEMA modifying agents were successfully grafted onto the membrane top layers and were confirmed by the functional groups, present, using the Attenuated Total Reflectance–Fourier Transform Infrared spectroscopy (ATR-FTIR) spectra. The morphology of the membrane surfaces was investigated using Scanning Electron Microscopy (SEM), before and after treatment. SEM analysis showed better membrane structures with PVA grafting compared to DMAEMA.
268

O efeito da remoção do gás carbônico na qualidade do permeado de um sistema de membranas de ultrafiltração/osmose inversa.

MEDEIROS, Ademir Morais de. 18 October 2018 (has links)
Submitted by Maria Medeiros (maria.dilva1@ufcg.edu.br) on 2018-10-18T12:30:31Z No. of bitstreams: 1 ADEMIR MORAIS DE MEDEIROS - DISSERTAÇÃO (PPGEQ) 2017.pdf: 3204134 bytes, checksum: c8135684c13cdcbef03ebfe63c7a1c99 (MD5) / Made available in DSpace on 2018-10-18T12:30:31Z (GMT). No. of bitstreams: 1 ADEMIR MORAIS DE MEDEIROS - DISSERTAÇÃO (PPGEQ) 2017.pdf: 3204134 bytes, checksum: c8135684c13cdcbef03ebfe63c7a1c99 (MD5) Previous issue date: 2017-10-30 / Capes / A dessalinização é um processo bastante difundido e utilizado no mundo para o tratamento de águas de diversas fontes hídricas as quais necessitam de tratamento para tornar-se potável e assim promover a segurança hídrica e a manutenção da vida, embora pouco utilizada na proporção necessária, a dessalinização de águas no Nordeste Brasileiro vem se tornando uma técnica bastante requisitada devido sua eficiência no tratamento de águas. O objetivo desta pesquisa foi avaliar a qualidade do permeado de um sistema hibrido de membranas para fins de dessalinização de águas salobras com a remoção do gás carbônico por uma torre de resfriamento, avaliando o desempenho do processo de separação por membrana para tratamento de águas através de estudo avaliativo dos dados reais com os simulados ambos para o permeado da OI. Os dados teóricos são os resultados obtidos a partir de análises reais realizadas nas águas do presente trabalho, inseridos no SOFWARE ROSA® 8.0.3 e realizada as simulações. No presente trabalho utilizou-se a membrana polimérica de Osmose Inversa (BW30 4040) na simulação e nos experimentos de bancadas. A partir da simulação foi possível ajustar as pressões de operação para os seguintes valores: 6, 9, 11, e 13 bar, para água de superfície e 13 e 15 bar para água de poço. Avaliou-se a rejeição de sais (%RS) obtendo valores próximos de 98 % para o permeado. Estudou-se por meio de uma torre de resfriamento como um pós-tratamento, a remoção de CO2 que apresentou como efeito, a diminuição do pH do permeado. Verificou-se através de análises que após a torre de ocorreu uma remoção parcial média de dióxido de carbono de cerca 75 %. / Desalination is a widely used process in the world for the treatment of water from a variety of water sources, which requires treatment to become potable and thus promote water safety and life-support, although little used in the necessary proportion, to desalination of water in the Brazilian Northeast has become a highly requested technique due to its efficiency in water treatment. The objective of this research was to evaluate the permeate quality of a hybrid membrane system for desalination of brackish water with the removal of carbon dioxide by a cooling tower, evaluating the performance of the membrane separation process for water treatment through evaluation of the real data with the simulated ones for the RO permeate. Theoretical data are the results obtained from real analyzes performed in the waters of the present work, inserted in SOFWARE ROSA® 8.0.3 and the simulations were performed. In the present work the polymer membrane of Reverse Osmosis (BW304040) was used in the simulation and bench experiments. From the simulation it was possible to adjust the operating pressures to the following values: 6 bar 9 bar, 11bar, and 13 bar for surface water and 13 bar and 15 bar for well water. The salt rejection (% SR) was evaluated, obtaining values close to 98% for the permeate. It was studied by means of a cooling tower as a post-treatment, the removal of CO2 that had as effect, the decrease of the pH of the permeate. It was verified through analyzes that after the tower a mean partial removal of carbon dioxide of about 75% occurred.
269

Desempenho de um sistema de dessalinização via osmose inversa usando energia não-convencional, sem a utilização de acumuladores.

OLIVEIRA, Arleide Ricarte de. 14 September 2018 (has links)
Submitted by Maria Medeiros (maria.dilva1@ufcg.edu.br) on 2018-09-14T11:45:03Z No. of bitstreams: 1 ARLEIDE RICARTE DE OLIVEIRA - TESE (PPGEP) 2007.pdf: 4819651 bytes, checksum: 1cc38913961211c387807eb81998c764 (MD5) / Made available in DSpace on 2018-09-14T11:45:03Z (GMT). No. of bitstreams: 1 ARLEIDE RICARTE DE OLIVEIRA - TESE (PPGEP) 2007.pdf: 4819651 bytes, checksum: 1cc38913961211c387807eb81998c764 (MD5) Previous issue date: 2007-08-31 / Capes / A falta de água potável em algumas localidades do mundo, mais precisamente no semi-árido, é um problema de caráter secular, agravado pela poluição, distribuição irregular e existência de águas subterrâneas de utilização bastante limitada por causa dos altos índices de salinidade. Por outro lado, essas regiões possuem um grande potencial de irradiação solar que favorece a utilização de painéis fotovoltaicos, principalmente em locais distante da rede elétrica. Visando melhorar a qualidade de vida e minimizar o problema da falta de água potável nessas regiões, esse trabalho tem como objetivo estudar o desempenho de um protótipo de equipamento para fins de dessalinizar águas salobras via osmose inversa, fazendo uso de um gerador fotovoltaico com a utilização de um circuito eletrônico, no qual substitui acumuladores de carga (baterias). Com o uso do circuito eletrônico foi possível produzir água potável sem a necessidade da utilização de acumuladores de carga (baterias) e sem danificar o motor-bomba. A ausência do banco de baterias proporciona uma redução dos custos e da necessidade de manutenção; mas o sistema torna-se subordinado às condições instantâneas da radiação solar e da temperatura ambiente. Esse sistema foi instalado no Laboratório de Referência em Dessalinização (LABDES), na Universidade Federal de Campina Grande. O desempenho do sistema foi avaliado com soluções de cloreto de sódio com concentração de 1.000 mg/L e 2.500 mg/L e água de poço com concentração de 3.800 mg/L. As variáveis de medidas, como: tensão, corrente, vazão e pressão foram obtidas em tempo real no Software Data Aquisition, através de sensores elétricos. A partir desses dados foram avaliados os seguintes parâmetros: potência elétrica, vazão do permeado e do concentrado, recuperação e consumo de energia por m3 de água produzida. As condições meteorológicas e as concentrações da água de alimentação influenciam diretamente na pressão, e consequentemente na produção de água. Mesmo com a grande variação de tensão em função da irradiação solar, o sistema mostrou condições técnicas de produzir 0,25 m3/h de água dessalinizada. A pressão máxima obtida foi de 8,2 kgf/cm2. O balanço econômico, que representa o custo-benefício de implantação, operacional e manutenção para atender comunidades isoladas, mostrou que o menor custo de água dessalinizada é obtido quando o sistema de dessalinização é instalado em localidade na qual já possui o poço tubular e um local para servir de abrigo para o sistema de dessalinização. Para essas localidades é viável o uso de painéis fotovoltaicos. / The lack of drinking water in some places of the world, more precisely in the semi-arid region of Brazil, is an old problem, worsened by the pollution, irregular distribution and high salinity of underground waters. On the other hand, those areas possess a great solar irradiation rate that favors the use of photovoltaic panels, mainly where the electric net is not available. Seeking to improve the life quality and to minimize the problem of the lack of drinking water in those areas, the objective of this work is to study and evaluate an osmosis reverse desalination system, using photovoltaic solar energy coupled to an electronic circuit. This electronic circuit replaces the use of batteries without damaging the motor-bomb. The absence of batteries provides a reduction of the cost and maintenance need; but the system is subordinated to the instantaneous conditions of the solar radiation. This system was installed at the Reference Laboratory of Desalination (LABDES) in the Federal University of Campina Grande. The system was evaluated with sodium chloride solutions of 1,000 and 2,500 mg/L NaCl concentrations, and a well water of 3,800 mg/L TDS concentration. The meteorological conditions and the concentrations of the feeding water influence directly the applied pressure and consequently the permeate production. Even with the intermittent energy delivered by the solar photovoltaic panels, the desalination system showed good technical conditions to produce 0.25 m3/h of potable water. The economical statements , that the implantation cost-benefit represents, operational and maintenance to take care of isolated communities, showed that the lesser desalinizaded water cost is gotten when the desalination system is installed in locality in which already possesss the well and a place to serve of shelter for the desalination system. For these localities the use of photovoltaics panels is viable.
270

Desalcoolização de cerveja : avaliação da remoção de etanol de soluções aquosas por osmose direta

Ambrosi, Alan January 2016 (has links)
O consumo de cervejas não alcoólicas tem aumentado nos últimos anos devido, principalmente, às novas e restritivas leis de trânsito, às preocupações com a saúde ou por razões religiosas. Entre as estratégias de produção das cervejas não alcoólicas ou com baixo teor de álcool estão os processos de separação por membranas, alternativas de grande interesse na remoção do etanol de cervejas tradicionais, pois não promovem impacto térmico no produto. A osmose direta é uma técnica de membranas que tem passado por avanços significativos na última década, apresentando potencial de aplicação na remoção de etanol de soluções aquosas e, consequentemente, na obtenção de cervejas não alcoólicas. No entanto, até o momento, nenhum estudo relacionado à sua utilização na remoção de compostos orgânicos voláteis, como o etanol de soluções aquosas ou bebidas, é encontrado na literatura. Neste contexto, o objetivo deste trabalho é avaliar a viabilidade da utilização da técnica de osmose direta para a esse fim. Em um primeiro momento, membranas comerciais de osmose direta foram caracterizadas de acordo com suas propriedades morfológicas, químicas e de desempenho hidráulico para que pudessem ser comparadas no restante do trabalho, que foi dividido em diversos estudos. Estes estudos avaliaram os efeitos de variáveis de operação sobre o desempenho do processo de remoção de etanol de soluções aquosas: a velocidade de escoamento, a temperatura, a concentração e o tipo do agente osmótico, o pH da solução osmótica e o tipo de membrana. Finalmente, um estudo efetivo sobre a desalcoolização completa de cerveja comercial foi realizado para suportar a aplicabilidade da técnica de OD. Os resultados mostraram que os parâmetros estudados possuem influência sobre as variáveis de resposta do processo, como fluxo permeado total, fluxo inverso de soluto e fluxo de etanol e que estes podem ser otimizados para aumentar o desempenho na desalcoolização. As características da cerveja sem álcool obtida no último estudo foram diferentes daquelas da cerveja tradicional com álcool e alguns motivos como elevado tempo de operação, baixa seletividade da membrana para compostos de aroma e alto fluxo inverso do agente osmótico foram responsáveis pelas alterações. O trabalho demonstrou que é possível utilizar a osmose direta para a remoção de etanol de soluções aquosas e, consequentemente, para a desalcoolização de cervejas. / The consumption of non-alcoholic beer has increased in the last years mainly due to the stricter traffic laws, to personal health concerns or even due to religious reasons. Among the strategies for production of non-alcoholic or low alcohol beers are the membrane separation processes. Membrane-based processes are alternatives of great interest for removing the ethanol from beer because low operating temperatures can be used, avoiding the thermal impact caused on the product by traditional thermal technologies. Forward osmosis (FO) is a membrane technology that has been significantly improved in the last decade, presenting a potential of application to ethanol removal from aqueous solutions and, consequently, for producing non-alcoholic beers. However, until now, no study related to the removal of ethanol from aqueous solutions or beverages using FO is found in the literature. In this context, the main objective of this doctorate thesis is to evaluate the possibility of using the forward osmosis technology for ethanol removal from beer and other aqueous solutions. Initially, commercial forward osmosis membranes were characterized according to morphological and chemical properties and to their hydraulic performance in order to be compared in the following work, which was divided in several studies. These studies evaluated the effects of operating parameters, such as the crossflow velocity, the osmotic solution temperature, concentration and pH, the osmotic agent characteristics, and the membrane characteristics on the performance of ethanol removal from aqueous solutions process. Finally, an effective study about beer dealcoholization was performed to support the applicability of the forward osmosis. Results showed that the studied parameters have influence on response variables such as total permeate flux, reverse solute flux and ethanol flux, and that these parameters can be optimized to enhance the dealcoholization performance. The characteristics of the dealcoholized beer obtained in the last study were different from that of traditional beer in the beginning of dealcoholization process and some reasons such as the prolonged experiment time, the low selectivity of the membrane to flavor compounds and high reverse osmotic agent flux were responsible for these significant changes. This thesis demonstrated that it is possible to take advantage of the forward osmosis technology to remove ethanol from aqueous solutions and consequently dealcoholize beer.

Page generated in 0.0481 seconds