• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 285
  • 52
  • 23
  • 13
  • 9
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 1
  • Tagged with
  • 478
  • 298
  • 148
  • 101
  • 85
  • 72
  • 65
  • 56
  • 54
  • 44
  • 37
  • 36
  • 33
  • 31
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Investigation of Water Permeation through Molecular Sieve Particles in Thin Film Nanocomposite Membranes

January 2018 (has links)
abstract: Nanoporous materials, with pore sizes less than one nanometer, have been incorporated as filler materials into state-of-the-art polyamide-based thin-film composite membranes to create thin-film nanocomposite (TFN) membranes for reverse osmosis (RO) desalination. However, these TFN membranes have inconsistent changes in desalination performance as a result of filler incorporation. The nano-sized filler’s transport role for enhancing water permeability is unknown: specifically, there is debate around the individual transport contributions of the polymer, nanoporous particle, and polymer/particle interface. Limited studies exist on the pressure-driven water transport mechanism through nanoporous single-crystal nanoparticles. An understanding of the nanoporous particles water transport role in TFN membranes will provide a better physical insight on the improvement of desalination membranes. This dissertation investigates water permeation through single-crystal molecular sieve zeolite A particles in TFN membranes in four steps. First, the meta-analysis of nanoporous materials (e.g., zeolites, MOFs, and graphene-based materials) in TFN membranes demonstrated non-uniform water-salt permselectivity performance changes with nanoporous fillers. Second, a systematic study was performed investigating different sizes of non-porous (pore-closed) and nanoporous (pore-opened) zeolite particles incorporated into conventionally polymerized TFN membranes; however, the challenges of particle aggregation, non-uniform particle dispersion, and possible particle leaching from the membranes limit analysis. Third, to limit aggregation and improve dispersion on the membrane, a TFN-model membrane synthesis recipe was developed that immobilized the nanoparticles onto the support membranes surface before the polymerization reaction. Fourth, to quantify the possible water transport pathways in these membranes, two different resistance models were employed. The experimental results show that both TFN and TFN-model membranes with pore-opened particles have higher water permeance compared to those with pore-closed particles. Further analysis using the resistance in parallel and hybrid models yields that water permeability through the zeolite pores is smaller than that of the particle/polymer interface and higher than the water permeability of the pure polymer. Thus, nanoporous particles increase water permeability in TFN membranes primarily through increased water transport at particle/polymer interface. Because solute rejection is not significantly altered in our TFN and TFN-model systems, the results reveal that local changes in the polymer region at the polymer/particle interface yield high water permeability. / Dissertation/Thesis / Doctoral Dissertation Chemical Engineering 2018
242

A performance and energy evaluation of a fertiliser-drawn forward osmosis (FDFO) system

Lambrechts, Rhynhardt January 2018 (has links)
Thesis (Master of Engineering in Chemical Engineering)--Cape Peninsula University of Technology, 2018. / Globally, water is considered an essential resource as it sustains human, animal and plant life. Water is not only essential for all forms of life but imperative for economic growth. The world’s population is increasing at a disquieting rate, which will result in an increased demand for fresh water and food security. The agricultural industry is the main consumer of global freshwater and utilises fertilisers in order to meet food demands. The demand for water in South Africa (SA) has increased considerably due to the rapid expansion of the agricultural industry, and of the municipal and industrial sectors. Agricultural developments in SA are affected greatly as the country is facing a current drought crisis as a result of low rainfall and large water demands. With an abundance of saline water globally, desalinisation will be a major contributor to solving the global freshwater crisis. With limited fresh water resources accompanied by the agricultural industry as a major consumer, alternative measures are required to desalinate water specifically for agricultural use. Forward osmosis (FO) is a membrane technology that gained interest over the past decade because it has several advantages over pressure-driven membrane processes such as reverse osmosis (RO). FO technology is based on the natural osmotic process which is driven by a concentration gradient between two solutions separated by a semi-permeable membrane. Naturally, water will permeate through the membrane from a solution of low solute concentration or low osmotic pressure (OP) known as a feed solution (FS) to a solution of a higher concentration or higher OP also known as a draw solution (DS). Whilst various research studies have contributed to several advances in FO, several process limitations such as reverse solute flux (RSF), concentration polarisation (CP) and membrane fouling remain problematic, hindering FO for large-scale applications. Further investigation is therefore warranted and crucial in order to understand how to mitigate these limitations to develop/improve future processes. The aim of this study was to evaluate a fertiliser-drawn forward osmosis (FDFO) system by investigating the effects of membrane orientation, system flow rate, DS concentration, and membrane fouling on an FDFO systems performance and energy consumption. The FS used was synthetic brackish water with a sodium chloride (NaCl) content of 5 g/L whereas a potassium chloride (KCl) synthetic fertiliser was used as a DS. The membrane utilised was a cellulose triacetate (CTA) membrane and was tested in forward osmosis mode (FO mode) and pressure retarded osmosis mode (PRO mode) whilst the system flow rate was adjusted between 100, 200 and 400 mL/min. Additionally, the DS concentration was altered from 0.5, 1 and 2 M KCl, respectively. Experiments were performed using a bench scale FO setup which comprised of an i) FO membrane cell, ii) a double head variable peristaltic pump for transporting FS and DS’s respectively, iii) a digital scale to measure the mass of the DS, iv) a magnetic stirrer to agitate the FS, v) two reservoirs for the FS and DS, respectively, vi) a digital multiparameter meter to determine FS electrical conductivity (EC) and vii) a digital electrical multimeter to measure system energy consumption. Each experiment comprised of seven steps i) pre-FDFO membrane control, ii) membrane cleaning, iii) FDFO experiment, iv) post-FDFO membrane control, v) membrane cleaning, vi) membrane damage dye identification and vii) membrane cleaning. Pre- and post-FDFO membrane control experiments operated for 5 h whilst each membrane cleaning procedure operated for 30 min. The FDFO experiment operated for 24 h whilst the membrane damage dye identification operated until a minimum of 10 mL water was recovered. The process parameter which largely contributed to a beneficial system performance and specific energy consumption (SEC) was the increase in DS concentration. Water fluxes increased approximately threefold from a DS concentration increase from 0.5 to 1 M, followed by an additional 30 to 50 % rise in water flux at a DS concentration increase 1 to 2 M. SEC decreased by 58 and 53 % for FO and PRO modes, respectively, with a DS concentration increase from 0.5 to 1 M. An additional 35 and 37 % SEC reduction for FO and PRO modes was obtained for a DS concentration increase from 1 to 2 M. Altering the membrane from FO to PRO did not contribute to a beneficial system performance nor did it improve SEC. However, at a DS concentration of 0,5 M, the PRO mode obtained a 5.3 % greater water recovery compared to the FO mode. Conversely, at a DS concentration of 1 and 2 M, the FO mode achieved 5.4 and 7.0 % greater water recoveries compared to the PRO mode. The increase in flow rate also did not increase system performance significantly, however, a fluctuation in system SEC was observed. Throughout the study, no membrane fouling was observed, however, possible minute traces of membrane fouling could be observed from the membrane surface electron microscope (SEM) images. Additionally, minor changes in post- FDFO membrane control water recovery results were noticed which support the possible occurrence of membrane fouling during the FDFO experiment.
243

Forward Osmosis Desalination Using Thermoresponsive Hydrogels as Draw Agents; An Experimental Study

January 2019 (has links)
abstract: Hydrogel polymers have been the subject of many studies, due to their fascinating ability to alternate between being hydrophilic and hydrophobic, upon the application of appropriate stimuli. In particular, thermo-responsive hydrogels such as N-Isopropylacrylamide (NIPAM), which possess a unique lower critical solution temperature (LCST) of 32°C, have been leveraged for membrane-based processes such as using NIPAM as a draw agent for forward osmosis (FO) desalination. The low LCST temperature of NIPAM ensures that fresh water can be recovered, at a modest energy cost as compared to other thermally based desalination processes which require water recovery at higher temperatures. This work studies by experimentation, key process parameters involved in desalination by FO using NIPAM and a copolymer of NIPAM and Sodium Acrylate (NIPAM-SA). It encompasses synthesis of the hydrogels, development of experiments to effectively characterize synthesized products, and the measuring of FO performance for the individual hydrogels. FO performance was measured using single layers of NIPAM and NIPAM-SA respectively. The values of permeation flux obtained were compared to relevant published literature and it was found to be within reasonable range. Furthermore, a conceptual design for future large-scale implementation of this technology is proposed. It is proposed that perhaps more effort should focus on physical processes that have the ability to increase the low permeation flux of hydrogel driven FO desalination systems, rather than development of novel classes of hydrogels / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2019
244

Membrane performance and build-up of solute during small scale reverse osmosis operation

Nasir, Subriyer January 2007 (has links)
Reverse Osmosis (RO) is widely accepted as an alternative method to produce freshwater from different feed water sources. This technology competitively substitutes the thermal processes in the near future because of several advantages particularly in energy saving. The success of RO operation will, however, depends largely on the overall membrane performance. Deposit or build-up of solute is one of the main reasons for membrane operation failure. Build-up of solute or deposit which is known as fouling and scaling will decrease the permeate flux and increase the energy consumption in particular after prolonged operation of RO. The thesis presents the experimental results obtained in a small-scale RO system. The aim of this study is to investigate the effect of sodium chloride and calcium carbonate on the membrane performance and subsequent build-up of solute on the membrane surface. The experiments were carried out in a small-scale of RO (2 m3/day capacity) with spiral wound membrane using simulated feed water, secondary effluent, and groundwater samples. The parameters chosen for the experiments are applied pressure (1250-4750 kPa), and concentration of sodium chloride (l00-5000 mg/L) and calcium carbonate (50-100 mg/L). / The results from feedwater runs indicated that initial sodium chloride and calcium carbonate in feed water and applied pressure affects the overall membrane performance. However, there is no significant effect on membrane performance for sodium chloride with concentration below 1200 mg/L and applied pressure lower than 2250 kPa. Applied pressure appears to have an impact on build-up of sodium and calcium on the membrane surface for pressures greater than 2750 kPa. For typical small-scale RO system used in this experiment, build-up of calcium will slightly decrease with given pressure caused by the characteristic of membrane that easily removes the divalent ions. The osmotic pressure of solution also strongly affects the permeate flow rate in particular for relatively higher sodium concentration (> 2500 mg/L). As a consequence of higher osmotic pressure, zero permeate flux is achieved when sodium chloride concentration was greater than 5000 mg/L and applied pressure lower than 1750 kPa. Results also indicated that fouling might pose a potential problem in small-scale RO operation. In order to investigate the membrane performance, experiments with secondary effluent samples were also performed. Results indicated that water recovery percentages and permeate flux also linearly increase with applied pressure. However, effectiveness of membrane decreases less than 98% otherwise build-up of solute tends to increase. It is suggested that lower values of the water recovery percentage (WRP) and permeate flux (Jw) are caused by the characteristic of secondary effluent that have high-suspended solids, organic carbon, and minerals. Further, the membrane performance also examined with ground water as feed water sample. / Results showed that both water recovery percentage and permeate flux linearly increased with operating pressure. However, intensive pretreatment are required as a result of higher concentration of humic acid and iron in raw feed. Percentages of ion rejection for sodium and calcium are greater than 98 and 99% respectively. The high ion rejections are mainly due to the characteristics of groundwater with low TDS and EC. Sodium and calcium build-up in a small-scale RO system considered appears to be affected by the applied pressure. Build-up of solute in small-scale of RO system has been predicted using the empirical model proposed in this work. Two ions namely sodium and calcium in feed water considered as predominant ions responsible for fouling and scaling on the membrane surface. Four main parameters namely, applied pressure (P), permeate flux (Jw), membrane resistance (Rm), and feed concentration (Cf) are considered which strongly affect the overall membrane performance. The empirical correlations derived from experimental observation among these parameters can be expressed as follows: In Md NaCI = O. 77 In P + 0.67 In Jw + 0.19 In Rm + 0.171n Cf In Md CaCO3= 0.96 In P + 0.75 In Jw + 0.2 In Rm - 0.07 In Cf / The empirical models proposed in this thesis may be useful for predicting the buildup of solute on the membrane surfaces. In the present work, an attempt has been made to estimate the energy consumption and unit cost for desalting of different feed water samples in a small-scale RO system. In RO plants, unit cost of water production from feed water is primarily governed by the energy required for pumping raw water. Estimates of specific energy consumption (SEC) for desalting of sodium chloride, combined sodium and calcium carbonate solutions were found to be in the range of 0.79 - 3.21 and 0.81 - 3.22 kwh/m3 respectively. For groundwater and secondary effluent, they are estimated to 0.63 - 1.71 and 0.79 - 2.02 kWh/m3 respectively. Moreover, energy consumption for different feed water samples was used to estimate the unit cost for water production. Estimation of unit costs for combined sodium chloride and calcium carbonate solution, groundwater, and secondary effluent runs are $2.06 - 3.22, $1.98 - 2.57 and $1.56- 2.66 respectively. In this work, unit cost is still higher due to greater energy consumption .by the pumping system which is required in a small-scale RO operation. Based on the experimental results, it appears that the characteristics of feed water samples affect the membrane performance and their effects must be taken into account in the design of RO units so as to reduce the unit cost for water production. / The findings from the present experimental and modelling work are of practical significance in not only providing the knowledge base in the area of desalination but also paves the way for developing tools for the prediction of build-up of solutes on membrane surface in full scale reverse osmosis operations.
245

A study of osmotic distillation in hollow fibre modul

Anh, Viet Bui, University of Western Sydney, Hawkesbury, College of Science, Technology and Environment, School of Science, Food and Horticulture January 2002 (has links)
Osmotic distillation is a process of removing water from an aqueous solution, driven by water vapour pressure gradient across a hydrophobic membrane. The process occurs at or below ambient temperature and under atmospheric pressure. This research project investigates the osmotic distillation process in hollow fibre modules using hollow fibres PP375, PV375 and PV660 supplied by Memcor Australia. Operating conditions such as temperature, feed concentration and brine cross flow velocity, but not the feed cross flow velocity, were found to have significant effect on the flux. Models for heat and mass transfers were used to study the polarisation phenomena in osmotic distillation. Temperature and concentration profiles at the membrane surfaces due to polarisation were quantified. Scholfield and Ordinary Diffusion models for flux prediction based on the bulk conditions were developed and validated. Models for water activity and viscosity of aqueous glucose and calcium chloride solutions were also developed and validated in this work. / Master of Science (Hons)
246

The study of pretreatment options for composite fouling of reverse osmosis membranes used in water treatment and production

Mustafa, Ghulam Mohammad, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Most common inorganic foulants in RO processes operating on brackish water are calcium carbonate, calcium sulphate and silica. However, silica fouling is the recovery limiting factor in RO system. Silica chemistry is complex and its degree of fouling strongly depends on the silica solubility and its polymerization under different operating conditions of RO process. In several studies carried out in batch and dynamic tests, the presence of polyvalent cations and supersaturation of silica in solutions were found to be the important factors (apart from pH and temperature) that affected the rate of silica polymerization and its induction period. Agitation did increased silica solubility; however, its effect was negligible in presence of polyvalent cations. Alkalization of water solution by coagulants particularly sodium hydroxide was found suitable for silica removal during pretreatment. The presence of magnesium in solution played a key role in silica removal mostly by the mechanism of adsorption to the metal hydroxide. The options of inline mixing (high agitation) for 5 to 10 minutes and microfiltration before RO were found suitable for silica pretreatment. During dynamic tests, the most dominant mechanism for salt deposition (mostly CaSO4) was particulate type in high concentration water solution; while crystallization fouling was the prevailing mechanism of deposition (mostly CaCO3 and silica) in low concentration solution. Silica showed significant effect on size and shape of inorganic salt crystals during coprecipitation. Moreover, the presence of common antiscalants promoted silica fouling. This important finding recommends an extra caution while using antiscalants in case feed water contains silica to a level that can attain saturation near membrane during RO process. A model was developed to predict the silica fouling index (SFI) based on the experimental data for induction period of silica polymerization. The model takes into account the effect of polyvalent cations and concentration polarization near membrane during RO process. It provides a conservative basis for predicting the maximum silica deposition in RO process at the normal operating conditions. A generalised correlation, which was developed for determination of the mass transfer coefficient in RO process, incorporated the effect of temperature change that is usually not considered in previous correlations. A correlation for reduction of silica content in feed water, down to a safe limit of 15 ppm for RO process, was also formulated and validated by the experimental results.
247

Treatment of Reverse Osmosis Concentrates from Recycled Water

Arseto Yekti Bagastyo Unknown Date (has links)
Water recycling by membrane treatment is widely accepted as a leading alternative water source. This separation process creates a concentrated stream (called concentrates), containing most of the pollutants in 10%-20% of the flow; and a treated water stream. As nitrogen is a major concern, environmental regulations have become more stringent, requiring additional treatment to meet effluent standards. Other concerns include organic contaminants and potential production of halogenated organics if disinfection of the reject was applied. One option to address the problem of dissolved organic nitrogen and carbon is advanced oxidation. This oxidation could lead to degradation of refractory organic materials, which are poorly removed in conventional treatment. This project aims to evaluate treatment extent and cost of alternatives for organic (particularly nitrogen) removal in reject water addressing the following research gaps: (i) identifying the key organic pollutants present in the concentrated stream, (ii) the effectiveness and optimisation of coagulation, ion exchange and advanced oxidation; (iii) apparent cost of the different treatment methods. The untreated reverse osmosis concentrates were collected from two treatment plants:- Luggage Point, and Bundamba, both near Brisbane, Queensland, Australia. The first contains more colourful of organics than the second plant. Stirred cell fractionation with ultrafiltration membranes was used to characterise the removed key pollutants, as it offers better accuracy and reproducibility compared to centrifugation fractionation. Fluorescence spectral was used to monitor and identify specific organic compounds. The largest fraction was smaller sized <1kDa. This is probably small humic substances and fulvic acids, as indicated by Excitation Emission Matrix (EEM) analysis. A smaller portion of soluble microbial products (SMPs) also contributes to the concentrates. Bundamba contains large non coloured organics including organic nitrogen with elevated ammonia-N. In contrast, Luggage Point has higher colour, inorganic carbon and conductivity with less ammonia-N. Advanced Oxidation Process (AOP) was the most effective treatment method (high removal of organics, e.g. 55% COD of initial), followed by magnetised ion exchange (MIEX) and coagulations. For UV/H2O2 AOP, the optimal operating condition 400mg.L-1 H2O2 and 3.1kWh.m-3 energy input resulted in organics removals up to 55% with complete decolourisation. The effective reduction was found in all size ranges, preferably in >1kDa. Low inorganic carbon and salinity in Bundamba may allow better overall oxidation rates. MIEX also performed better in Bundamba with organic removals up to 43% and 80% decolourisation at the optimum resin dose of 15mL.L-1. Removal was preferential in size range of >3kDa, with more proportional percentage for decolourisation. Similarly, ferric coagulation removed a wider size range of organics. Further, ferric achieved better organic removal in Luggage Point with up to 49%. At the same molar dose (1.5mM), ferric is superior to alum, especially in Bundamba where there were less hydrophobic compounds according to EEM. Alum is poor for treatment of high organics with less coloured water. MIEX with an operational cost (chemicals and power only) of $0.14-$0.20.m-3 treated water seemed to be the most effective treatment overall. The resin achieved better results with a slightly higher cost than coagulation, and had a lower environmental impact due to reduced sludge production. AOP offers better treatment, but at a higher cost ($0.47.m-3 treated). Combined alternatives may benefit the removal effectiveness. Furthermore, more specific identification of contaminants should be investigated separately to choose appropriate treatment for priority chemicals. Another issue is further investigation of costing, including capital, and full environmental impact of treatment.
248

Treatment of Arsenic Contaminated Groundwater using Oxidation and Membrane Filtration

Moore, Kenneth January 2005 (has links)
Arsenic is a known carcinogen, causing cancers of the skin, lungs, bladder and kidney. Current research suggests that drinking water is the most common pathway for long-term low dose exposure. Arsenic contaminated drinking water has caused serious health problems in many countries including: India, Bangladesh, Argentina, Chile, Taiwan, the United States and Canada. Nanofiltration (NF) is a promising technology for arsenic removal since it requires less energy than traditional reverse osmosis membranes. Several studies have shown that nanofiltration is capable of removing the oxidized form of arsenic [As(V)] while the reduced form of arsenic [As(III)] is poorly removed. To exploit this difference it has been suggested that a pretreatment step which oxidizes the As(III) to As(V) would improve the performance of membrane filtration, but this has never been demonstrated. The research had three objectives: The first was to investigate the ability of NF membranes to treat arsenic contaminated groundwater and evaluate the influence of the membrane type and operating conditions. Secondly, the effectiveness of a solid phase oxidizing media (MnO2) to oxidize arsenite to arsenate was investigated. Lastly, the MnO2 was combined with NF membrane filtration to determine the benefit, if any, of oxidizing the arsenic prior to membrane filtration. A pilot membrane system was installed to treat a naturally contaminated groundwater in Virden, Manitoba, Canada. The groundwater in Virden contains between 38 and 44 µg/L of arsenic, primarily made up of As(III), with little particulate arsenic. In the first experiment three Filmtec® membranes were investigated: NF270, NF90 and XLE. Under all conditions tested the NF90 and NF270 membranes provided insufficient treatment of Virden's groundwater to meet Canada's recommended Interim Maximum Acceptable Concentration (IMAC) of 25 µg/L. The XLE membrane provided better arsenic removal and under the conditions of 25 Lmh flux and 70% recovery produced treated water with a total arsenic concentration of 21 µg/L. The XLE membrane is therefore able to sufficiently treat Virden's ground water. However treatment with the XLE membrane alone is insufficient to meet the USEPA's regulation of 10 µg/L or Canada's proposed Maximum Allowable Concentration (MAC) of 5 µg/L. The effects of recovery and flux on total arsenic passage are consistent with accepted membrane theory. Increasing the flux increases the flow of pure water through the membrane; decreasing the overall passage of arsenic. Increasing the recovery increases the bulk concentration of arsenic, which leads to higher arsenic passage. The second experiment investigated the arsenic oxidation capabilities of manganese dioxide (MnO2) and the rate at which the oxidation occurs. The feed water contained primarily As(III), however, when filtered by MnO2 at an Empty Bed Contact Time (EBCT) of only 1 minute, the dominant form of arsenic was the oxidized form [As(V)]. At an EBCT of 2 minutes the oxidation was nearly complete with the majority of the arsenic in the As(V) form. Little arsenic was removed by the MnO2 filter. The third and final experiment investigated the benefit, if any, to combining the membrane filtration and MnO2 treatment investigated in the first and second experiments. The effect of MnO2 pretreatment was dramatic. In Experiment I, the NF270 and NF90 membranes were unable to remove any arsenic while the XLE removed, at best, approximately 50% of the arsenic. Once pretreated with MnO2 the passage of arsenic through all of the membranes dropped to less than 4 µg/L, corresponding to approximately 91% to 98% removal. The dramatic improvement in arsenic removal can be attributed to charge. All three membranes are negatively charged. Through a charge exclusion effect the rejection of negatively charged ions is enhanced. During the first experiment, As(III) (which is neutrally charged) was the dominant form of arsenic, and was uninfluenced by the negative charge of the membrane. Once oxidized to As(V), the arsenic had a charge of -2, and was electrostatically repelled by the membrane. This greatly improved the arsenic rejection characteristics of the membrane. Nanofiltration alone is not a suitable technology to remove arsenic contaminated waters where As(III) is the dominant species. When combined with MnO2 pre-oxidation, the arsenic rejection performance of nanofiltration is dramatically improved.
249

Assessing Innovative Technologies for Nitrate Removal from Drinking Water

Shams, Shoeleh 21 January 2010 (has links)
Several health problems may be caused by excess nitrate in drinking water, the most important of which being methemoglobinemia, a potentially fatal disorder, in infants under six months of age. Many different parts of the world have been facing the problem of nitrate contaminated surface and groundwaters due in large part to excessive use of nitrate-based chemical fertilizers. In the Region of Waterloo, Ontario, Canada some groundwater sources have nitrate concentrations approaching the Health Canada and Ontario Ministry of the Environment maximum acceptable concentration (MAC) of 10 mg NO3--N/L. Finding a practical and economical way to reduce nitrate concentrations in representative groundwater in the Region of Waterloo was the overall objective of this research. To achieve this goal, nitrate removal technologies including biological denitrification, ion exchange (IX), reverse osmosis (RO), electrodialysis (ED), and chemical denitrification were reviewed and compared. IX and RO were found to be the most promising technologies for nitrate removal. They have also been approved by the United States Environmental Protection Agency (USEPA) as Best Available Technologies (BAT). To investigate the feasibility of IX and RO for nitrate removal from representative groundwater in the Region of Waterloo, bench-scale experiments were conducted and compared. These technologies could be considered for application at full- or point-of-use (POU)-scale. Decision support assistance for the selection of the appropriate technology for different technical and economical conditions is provided as an outcome of this work. Two nitrate-selective ion exchange resins (Dowex™ NSR-1 and Purolite® A-520E), two non-selective resins (Purolite® A-300E and Amberlite® IRA400 Cl), and a commercially-available RO POU device (Culligan® Aqua-Cleer® model RO30), which included a particle filter and a carbon block, were tested with deionized water and real groundwater.* IX results confirmed that production time before resin exhaustion was influenced by operating conditions, specifically bed depth as would be expected. It was also confirmed that the presence of competing anions (sulfate, chloride) and alkalinity adversely affected performance, with sulfate being the main competitor for nitrate removal. The extent of these effects was quantified for the conditions tested. At the end of the runs, the non-selective resins were prone to potential nitrate displacement and release into product water and are therefore not recommended. The nitrate-selective resins did not release previously adsorbed nitrate as their capacity became exhausted. Purolite® A-520E was identified as the best alternative amongst the four resins for removing nitrate from the representative groundwater source. The RO unit removed roughly 80% of the nitrate from groundwater. Background ions didn’t appear to compete with each other for removal by RO units, so RO might be a more appropriate technology than IX for nitrate removal from waters with high concentrations of sulfate or TDS. Since RO removes other background ions as well as nitrate, the product water of RO is low in alkalinity and can potentially be corrosive, if water from a small full-scale system is pumped through a communal distribution system. Post-treatment including pH adjustment, addition of caustic soda, and/or corrosion inhibitors may be required. While the carbon block did not play a substantial role with respect to removal of nitrate in the groundwater tested, a potential issue was identified when running RO systems without the carbon block. In deionized water (and presumably in very low alkalinity real waters) it was noted that RO nitrate removal efficiency dropped substantially as the alkalinity of the influent water approached zero. With respect to the scale of application of IX and RO devices, IX can be applied at full-scale without requiring large amounts of space. However, if feed water contains high concentrations of sulfate or TDS, nitrate leakage happens sooner and regeneration would be needed at more frequent intervals. Also, chloride concentrations in IX product water might exceed aesthetic objectives (AO) and should be monitored in cases of high feed water TDS. POU IX devices are not recommended when feed water nitrate concentration is high due to potential nitrate leakage into the product water when the resin is nearing exhaustion which increases public health risk. Issues associated with RO application at full-scale are high energy demand, low recovery, high costs, need of pre-treatment (fouling control), and post-treatment (corrosion control). On the other hand, POU RO devices may be acceptable since low recovery is of less importance in a household system, and product water corrosivity is less relevant. POU RO devices are preferable to POU IX units due to their lower risk of nitrate leakage into treated water. * Mention of trade names or commercial products does not constitute endorsement or recommendation for use.
250

Rening av avloppsvatten med anaerob membranbioreaktor och omvänd osmos / Wastewater treatment with anaerobic membrane bioreactor and reverse osmosis

Grundestam, Jonas January 2006 (has links)
This master's theses was carried out on assignment from Stockholm Vatten AB as a part of a project developing new waste water treatment techniques. The goal of the theisis has been to evaluate an anaerobic membrane bioreactor for treatment of waste water from Hammarby Sjöstad. The bioreactor has not been heated and the main interest has been to study the gas production, power consumption and the reduction of organic matter and nutrients. The system has been completed with a reverse osmosis unit and a total of four batch runs have been made with good results. The use of reverse osmosis allows nutrient in the waste water to be reintroduced into circulation as the reverse osmosis concentrate can be used as crop nutrient. The membrane unit is of VSEP ("Vibratory Shear Enhanced Processing") type and an extensive membrane test has been conducted. This so called L-test helped determine the most suitable type of membrane for the system to allow a higher ±ux and thus lower power consumption. The L-test gave good results and a new membrane with a poresize diameter of 0,45 μm was used. The organic load on the bioreactor has been more or less constant, around 0,7 kg COD/day, during the seven weeks of testing. The reduction over the entire system including reverse osmosis has been large, around 99 % regarding organic matter and phosporus and 93 % for nitrogen, making the system suitable for waste water treatment except for high power consumption, around 2 kWh/m3. The production of methanegas has worked although it has been quite low, with average values of 0,13 m3 CH4/kg reduced COD. / Examensarbetet är utfört på uppdrag av Stockholm Vatten AB som en del av det pilotprojekt som utvärderar nya tekniker för avloppsvattenrening för Hammarby Sjöstad. Målsättningen med studien har varit att utvärdera ett system bestående av en anaerob membranbioreaktor för behandling av avloppsvatten från Hammarby Sjöstad. Bioreaktorn har inte varit uppvärmd och det som har studerats är reningseffekten, biogasproduktionen samt energiåtgången. Systemet har även innefattat en omvänd osmosanläggning och totalt har fyra försök med denna gjorts med goda resultat. Analyser har koncentrerats till att utvärdera reduktion av organiskt material över membranbioreaktorn och av närsalter och metaller över omvänd osmos anläggningen. Bakgrunden till att använda omvänd osmos är att öka återföringen av näringsämnen från avloppsvatten. Resultatet av försöken med omvänd osmos gav ett koncentrat med högt näringsinnehåll och låg halt av tungmetaller vilket ger möjligheten att sprida det på åkermark. Membranenheten är av typen VSEP ("Vibratory Shear Enhanced Processing") och ett membrantest har även utfötts för att finna det membran som passar systemet bäst med avseende på flöde och energiförbrukning. Det så kallade L-testet var omfattande och gav en klar bild över vad som skulle vara det bästa membranet. Det membran som visade sig passa systemet bäst var ett membran med en porstorlek på 0,45 μm. Belastningen av organiskt material på reaktorn under försöksperiodens sju veckor har varit mer eller mindre konstant och låg, cirka 0,7 kg COD/dygn. Reduktionen över hela systemet inklusive omvänd osmosanläggningen med avseende på organiskt material och fosfor har varit mycket hög, omkring 99 %. Reduktionen av kväve var som högst 93 %. Gasproduktionen har fungerat och har i genomsnitt varit omkring 0,13 m3 CH4/kg reducerad COD. Energiförbrukningen för systemet i motsvarande fullskala blev omkring 2 kwh/m3.

Page generated in 0.0915 seconds