Spelling suggestions: "subject:"hydroxides""
1 |
Studies on the hydrolysis of iron (III) in the presence of growth modifiersReeves, N. J. January 1993 (has links)
No description available.
|
2 |
Mineral Magnetism of Environmental Reference Materials: Iron Oxyhydroxide NanoparticlesGonzalez Lucena, Fedora 30 September 2010 (has links)
Iron oxyhydroxides are ubiquitous in surface environments, playing a key role in many biogeochemical processes. Their characterization is made challenging by their nanophase nature. Magnetometry serves as a sensitive non-destructive characterization technique that can elucidate intrinsic physical properties, taking advantage of the superparamagnetic behaviour that nanoparticles may exhibit. In this work, synthetic analogues of common iron oxyhydroxide minerals (ferrihydrite, goethite, lepidocrocite, schwertmannite and akaganéite) are characterized using DC and AC magnetometry (cryogenic, room temperature), along with complementary analyses from Mössbauer spectroscopy (cryogenic, room temperature), powder X-ray diffraction and scanning electron microscopy. It was found that all of the iron oxyhydroxide mineral nanoparticles, including lepidocrocite, schwertmannite and akaganéite were superparamagnetic and therefore magnetically ordered at room temperature. Previous estimates of Néel temperatures for these three minerals are relatively low and are understood as misinterpreted magnetic blocking temperatures. This has important implications in environmental geoscience due to this mineral group’s potential as magnetic remanence carriers. Analysis of the data enabled the extraction of the intrinsic physical parameters of the nanoparticles, including magnetic sizes. The study also showed the possible effect on these parameters of crystal-chemical variations, due to elemental structural incorporation, providing a nanoscale mineralogical characterization of these iron oxyhydroxides. The analysis of the intrinsic parameters showed that all of the iron oxyhydroxide mineral nanoparticles considered here have a common magnetic moment formation mechanism associated with a random spatial distribution of
iv
uncompensated magnetic spins, and with different degrees of structural disorder and compositional stoichiometry variability, which give rise to relatively large intrinsic magnetization values. The elucidation of the magnetic nanostructure also contributes to the study of the surface region of the nanoparticles, which affects the particles’ reactivity in the environment.
|
3 |
Mineral Magnetism of Environmental Reference Materials: Iron Oxyhydroxide NanoparticlesGonzalez Lucena, Fedora 30 September 2010 (has links)
Iron oxyhydroxides are ubiquitous in surface environments, playing a key role in many biogeochemical processes. Their characterization is made challenging by their nanophase nature. Magnetometry serves as a sensitive non-destructive characterization technique that can elucidate intrinsic physical properties, taking advantage of the superparamagnetic behaviour that nanoparticles may exhibit. In this work, synthetic analogues of common iron oxyhydroxide minerals (ferrihydrite, goethite, lepidocrocite, schwertmannite and akaganéite) are characterized using DC and AC magnetometry (cryogenic, room temperature), along with complementary analyses from Mössbauer spectroscopy (cryogenic, room temperature), powder X-ray diffraction and scanning electron microscopy. It was found that all of the iron oxyhydroxide mineral nanoparticles, including lepidocrocite, schwertmannite and akaganéite were superparamagnetic and therefore magnetically ordered at room temperature. Previous estimates of Néel temperatures for these three minerals are relatively low and are understood as misinterpreted magnetic blocking temperatures. This has important implications in environmental geoscience due to this mineral group’s potential as magnetic remanence carriers. Analysis of the data enabled the extraction of the intrinsic physical parameters of the nanoparticles, including magnetic sizes. The study also showed the possible effect on these parameters of crystal-chemical variations, due to elemental structural incorporation, providing a nanoscale mineralogical characterization of these iron oxyhydroxides. The analysis of the intrinsic parameters showed that all of the iron oxyhydroxide mineral nanoparticles considered here have a common magnetic moment formation mechanism associated with a random spatial distribution of
iv
uncompensated magnetic spins, and with different degrees of structural disorder and compositional stoichiometry variability, which give rise to relatively large intrinsic magnetization values. The elucidation of the magnetic nanostructure also contributes to the study of the surface region of the nanoparticles, which affects the particles’ reactivity in the environment.
|
4 |
Mineral Magnetism of Environmental Reference Materials: Iron Oxyhydroxide NanoparticlesGonzalez Lucena, Fedora 30 September 2010 (has links)
Iron oxyhydroxides are ubiquitous in surface environments, playing a key role in many biogeochemical processes. Their characterization is made challenging by their nanophase nature. Magnetometry serves as a sensitive non-destructive characterization technique that can elucidate intrinsic physical properties, taking advantage of the superparamagnetic behaviour that nanoparticles may exhibit. In this work, synthetic analogues of common iron oxyhydroxide minerals (ferrihydrite, goethite, lepidocrocite, schwertmannite and akaganéite) are characterized using DC and AC magnetometry (cryogenic, room temperature), along with complementary analyses from Mössbauer spectroscopy (cryogenic, room temperature), powder X-ray diffraction and scanning electron microscopy. It was found that all of the iron oxyhydroxide mineral nanoparticles, including lepidocrocite, schwertmannite and akaganéite were superparamagnetic and therefore magnetically ordered at room temperature. Previous estimates of Néel temperatures for these three minerals are relatively low and are understood as misinterpreted magnetic blocking temperatures. This has important implications in environmental geoscience due to this mineral group’s potential as magnetic remanence carriers. Analysis of the data enabled the extraction of the intrinsic physical parameters of the nanoparticles, including magnetic sizes. The study also showed the possible effect on these parameters of crystal-chemical variations, due to elemental structural incorporation, providing a nanoscale mineralogical characterization of these iron oxyhydroxides. The analysis of the intrinsic parameters showed that all of the iron oxyhydroxide mineral nanoparticles considered here have a common magnetic moment formation mechanism associated with a random spatial distribution of
iv
uncompensated magnetic spins, and with different degrees of structural disorder and compositional stoichiometry variability, which give rise to relatively large intrinsic magnetization values. The elucidation of the magnetic nanostructure also contributes to the study of the surface region of the nanoparticles, which affects the particles’ reactivity in the environment.
|
5 |
Mineral Magnetism of Environmental Reference Materials: Iron Oxyhydroxide NanoparticlesGonzalez Lucena, Fedora January 2010 (has links)
Iron oxyhydroxides are ubiquitous in surface environments, playing a key role in many biogeochemical processes. Their characterization is made challenging by their nanophase nature. Magnetometry serves as a sensitive non-destructive characterization technique that can elucidate intrinsic physical properties, taking advantage of the superparamagnetic behaviour that nanoparticles may exhibit. In this work, synthetic analogues of common iron oxyhydroxide minerals (ferrihydrite, goethite, lepidocrocite, schwertmannite and akaganéite) are characterized using DC and AC magnetometry (cryogenic, room temperature), along with complementary analyses from Mössbauer spectroscopy (cryogenic, room temperature), powder X-ray diffraction and scanning electron microscopy. It was found that all of the iron oxyhydroxide mineral nanoparticles, including lepidocrocite, schwertmannite and akaganéite were superparamagnetic and therefore magnetically ordered at room temperature. Previous estimates of Néel temperatures for these three minerals are relatively low and are understood as misinterpreted magnetic blocking temperatures. This has important implications in environmental geoscience due to this mineral group’s potential as magnetic remanence carriers. Analysis of the data enabled the extraction of the intrinsic physical parameters of the nanoparticles, including magnetic sizes. The study also showed the possible effect on these parameters of crystal-chemical variations, due to elemental structural incorporation, providing a nanoscale mineralogical characterization of these iron oxyhydroxides. The analysis of the intrinsic parameters showed that all of the iron oxyhydroxide mineral nanoparticles considered here have a common magnetic moment formation mechanism associated with a random spatial distribution of
iv
uncompensated magnetic spins, and with different degrees of structural disorder and compositional stoichiometry variability, which give rise to relatively large intrinsic magnetization values. The elucidation of the magnetic nanostructure also contributes to the study of the surface region of the nanoparticles, which affects the particles’ reactivity in the environment.
|
6 |
Charge Development at Iron Oxyhydroxide Surfaces : The Interplay between Surface Structure, Particle Morphology and Counterion IdentityKozin, Philipp A. January 2014 (has links)
Iron (oxyhydr)oxide (FeOOH) minerals play important roles in various natural, technological and societal settings. The widespread abundance of these minerals has prompted numerous studies on their surface reactivity in aqueous media. Surface charge development, one that namely takes place through the adsorption of potential determining ions (p.d.i.; H+, OH-) and coadsorption of counterions (e.g. Cl-, ClO4-, Na+), is particularly interesting in this regard. Mineral surface charge development is determined by numerous factors related to the interplay of mineral surface structure, particle morphology and counterion identity. In this thesis the interplay between these factors is resolved by monitoring charge development on submicron-sized synthetic iron oxyhydroxide particles of different structures and sizes in aqueous media with counteranions of contrasting charge-to-size ratio (i.e. NaCl, NaClO4). This work, which is summarized in an introductory chapter and detailed in five appendices, is focused on three types of synthetic lepidocrocite (ã- FeOOH) of different shapes and surface roughness, three types of goethite (á-FeOOH) of different levels of surface roughness, and finally akaganéite (â-FeOOH), a mineral representing unique ion exchange properties due to its hollandite-type structure. While charge development was chiefly monitored by high precisition potentiometric titrations, these efforts were supported by a range of techniques including electrolyte ion uptake by cryogenic X-ray photoelectron spectroscopy, particle imaging by (high resolution) transmission electron microscopy, porosity analysis by N2 adsorption/desorption, surface potential development by electrokinetics, as well as thermodynamic adsorption modeling. These efforts showed that lepidocrocite particles of contrasting morphology and surface roughness acquired highly comparable pH and ionic strength p.d.i. loadings. Equilibriation times required to develop these loadings were however altered when particles became aggregated by aging. Goethite particles of contrasting surface roughness also acquired incongruent p.d.i. loadings, which were predominantly explained by the different charge-neutralizing capabilities of these surfaces, some of which were related to pore size distributions controlling the entrance of ions of contrasting sizes. Such size exclusion effects were also noted for the case of akaganéite where its bulk 0.4×0.4 nm wide channels permitted chloride diffusion but blocked perchlorate. Charge development at goethite surfaces in binary mixtures of NaCl and NaClO4 solutions also showed that the larger size-to-charge ratio chloride ion exerted a strong effect on these results even when present as a minor species. Many of these aforementioned effects were also modeled using variable, counterion- and loading-specific, Stern layer capacitance values. The findings summarized in this thesis are providing a better understanding of surface processes occurring at iron oxyhydroxide surfaces. They should impact our ability in designing uses of such particles, for example, effective sorption in aquatic media, as well as to understand how they behave in natural systems.
|
7 |
Matériaux nanométriques à base de métaux 3d (Fe, Co, Ni) : Nouvelles voies de synthèse et caractérisations / Nanometric materials from 3d metals (Fe, Co, Ni) : New synthesis way and characterizationsBallot, Noémie 07 July 2014 (has links)
L’intérêt grandissant envers les nanomatériaux a base des métaux de transition 3d comme le cobalt, le nickel et le fer trouve son origine dans les propriétés intrinsèques de ces éléments (forte aimantation du fer et constante magnétocristalline élevée du cobalt) combinées aux propriétés particulières offertes par la taille nanométrique et l’anisotropie de ces alliages. Parmi les nombreuses voies de synthèse dites de chimie douce, le procède polyol permet l’élaboration de plusieurs classes de matériaux inorganiques a l’état finement divises (oxydes, hydroxydes et métaux) grâce aux réactions de réduction et d’hydrolyse qui peuvent être conduites et contrôlées dans les milieux polyols. Le premier axe de ce travail a consisté à tirer profit de l’état finement divise des oxydes et hydroxydes élabores en milieu polyol pour l’obtention de métaux et alliages correspondants, au moyen d’une réduction ménagée a l’état solide sous flux d’hydrogène. Il a alors été possible d’aboutir a des particules de CoFe2, CoFe, NiFe, Ni3Fe et Fe ferromagnétiques avec une température de blocage supérieure a 300 K. Le deuxième axe de travail a trait a l’élaboration d’objets anisotropes. Pour ce faire, une nouvelle approche est proposée : la synthèse en milieu polyol assistée par l’application d’un champ magnétique. Ce type de synthèse mené a des nanofils d’akaganeite β-FeOOH et a des nanoparticules d’oxydes spinelles. Une réduction relativement douce (300 °C) des nanofils d’akaganeite permet de l’obtention de phases spinelles de même morphologie et avec des propriétés magnétiques en accord avec la composition chimique et le caractère nanométrique des particules (comportement superparamagnétique avec une température de blocage proche de 300 K, Ms élevée et Hc dépendant de la nature de l’élément M se trouvant dans le spinelle MFe2O4 : élevé dans le cas du cobalt et faible dans le cas du fer et du nickel). / The growing interest in nanomaterials based on 3d transition metals such as cobalt, iron and nickel finds its origin in the intrinsic properties of these elements (high magnetization of iron and high magnetocristalline constant of cobalt) combined with particular property due to nanometric size and anisotropy of these alloys. Among the numerous synthetic routes, the polyol method which belongs to the chimie douce routes allows the elaboration of several finely divided inorganic materials (oxides, hydroxides, metals) by means of reduction or forced hydrolysis reactions conducted in polyol medium. The main first contribution of this work was to take advantage of these finely divided oxides and hydroxides elaborated in polyol medium to obtain metals and alloys, through a controlled reduction in solid form under hydrogen flow. Ferromagnetic particles of CoFe2, CoFe, NiFe, Ni3Fe and Fe with a blocking temperature above 300 K were obtained. The second main contribution of this work relates elaboration of anisotropic objects. Further, a new approach is proposed: forced hydrolysis in polyol medium assisted by applying a magnetic field. This type of synthesis leads to akaganeite β7&eOOH nanowires and spinel oxides nanoparticles. A relative mild reduction (300 °C) of akaganeite nanowires allows to obtain spinels phase with same morphology and magnetic properties in agreement with the chemical composition and the particles nanoscale (superparamagnetic behavior with blocking temperaturenear 300 K, high Ms and Hc dependent on the nature of the M element in the spinel MFe2O4, high in the case of cobalt and low for nickel and iron).
|
8 |
Posouzení metody sekvenční extrakce pro arsen v důlních odpadech / Evaluation of sequential extraction for speciation of arsenic in mining wastesGrösslová, Zuzana January 2013 (has links)
ii SUMMARY This master thesis deals with selectivity assessment of an arsenic sequential extraction procedure for evaluating mobility in mine wastes. A modified sequential extraction procedure was designed on the basis of preliminary tests of extraction efficiency and selectivity for the synthetic As mineral phases (scorodite, amorphous iron arsenate, schwertmannite, goethite, jarosite) and five natural samples (Kaňk, Dlouhá Ves, Giftkies, Roudný) that were previously characterized for As concentration and speciation. The modified sequential extraction has five steps. The first leaching step was performed in nitrogen-purged deionized H2O for 10 hours; next step involved 0.01M NH4H2PO4 leaching for 16 hours. Phases in the third step were dissolved with 0.2M Tamm`s reagent in darkness for 2 hours. The fourth step was represented by 0.2M of Tamm`s reagent heated in water bath at 80řC for 4 hours. Strong acid solutions HCl/KClO3/HNO3 were used to leach sulphide phases in the last step. The testing of the sequential extraction procedure using model mixtures showed a good discrimination of several fractions: adsorbed arsenic, arsenic associated with poorly crystalline oxyhydroxide, hydroxosulfate and arsenate phases (amorphous iron arsenate, schwertmannite, ferrihydrite), arsenic associated with crystalline...
|
9 |
Exfoliation et réempilement d'oxydes lamellaires à base de manganèse et de cobalt pour électrodes de supercondensateurs / Exfoliation and restacking of manganese and cobalt based lamellar oxides for supercapacitor electrodesTang, Celine 01 December 2017 (has links)
La forte progression démographique mondiale induit une demande d’énergietoujours en hausse. Ceci se traduit par un fort développement de nouvelles énergiesrenouvelables qui nécessitent, de par leur nature intermittente, des dispositifs de stockagede l’énergie. Parmi eux les supercondensateurs permettent un stockage électrostatique decharges (supercondensateurs à base de carbones activés), mais certains systèmes, ditspseudocapacitifs, font en outre intervenir des réactions redox rapides de surface.L’association des deux systèmes permettent d’accéder à des propriétés intéressantes, enparticulier pour le système MnO2/carbone activé. Cependant, les oxydes de manganèse sontd’excellents matériaux pseudocapacitifs mais assez peu conducteurs électroniques.L’objectif de ce travail est d’améliorer cette conductivité en les associant avec des oxydes decobalt conducteurs. Pour cela, une approche « architecturale » de synthèse de matériaux aété choisie. En partant d’oxydes de Mn et de Co lamellaires, ceux-ci sont exfoliés pourobtenir des nanofeuillets de nature différente. S’ensuit une étape de réempilement pouraboutir à un matériau lamellaire alterné. L’analyse structurale et morphologique desmatériaux prouve que des nanocomposites très finement divisés sont obtenus. Lespropriétés électrochimiques obtenues pour ces nanocomposites s’avèrent meilleures quecelles des matériaux initiaux, tant en densité d’énergie qu’en puissance. Cette stratégieoriginale est prometteuse et ouvre la voie à des réempilements de différente nature,notamment le graphène. / The ever increasing demand of renewable energies imposes, due to theirintermittent nature, the development of performant energy storage devices. Supercapacitorsare reliable devices that offer a high power density and numerous investigations are focusingon increasing their energy densities. In particular, asymmetric "metal oxides / activatedcarbons" supercapacitors are possible candidates. The MnO2/carbon system is the mostinvestigated system, due to its capability to work in aqueous medium at potentials up to 2 V,as well as to the low cost and environmental friendliness of manganese. Nevertheless, thissystem suffers from the poor electronic conductivity of manganese. This work reports anoriginal strategy for novel electrode materials involving exfoliation and restacking processesof lamellar “building blocks”: lamellar manganese oxides for their pseudocapacitiveproperties and lamellar cobalt oxyhydroxides for their high electronic conductivity. Thematerial engineering strategy focuses on the exfoliation of the lamellar materials intooligolamellae. The obtained suspensions are then restacked through various strategies andnew well defined mixed oxides are obtained. After structural and morphologicalcharacterization, it is clear that these nanocomposites present an intimate mix of the twoinitial phases. The electrochemical responses are hereby enhanced, proving the intertwinedrelationship between structure, morphology and properties. Furthermore, this architecturalapproach of building novel electrode materials is original and efficient and can easily betransposed to other “building blocks”, including graphene.
|
10 |
The Chemistry of Metal Oxyhydroxides and their 3D Porous Hybrid Materials for the Capture, Transport and Degradation of Toxic ChemicalsDevulapalli, Venkata Swaroopa Datta, 0000-0003-1860-9888 January 2023 (has links)
Growing concerns regarding chemical weapons and toxic chemicals require the development and testing of robust materials and methods to capture and destroy these harmful chemicals. This dissertation discusses the fundamental properties (e.g., structure, stability and activity) of metal oxyhydroxide based 3-dimensional porous materials, such as metal organic frameworks (MOFs), and covalent organic frameworks (COFs), and their applications for gas capture and degradation, especially for toxic gases and chemical warfare agent simulants. We report and verify that the active sites in UiO-67 MOFs are the metal nodes (oxyhydroxides) and developed a paradigm which correlates the activities of the MOFs, the metal oxyhydroxides and their precursors. This new understanding can help researchers choose the optimum metal for the intended applications by avoiding the tedious and time-consuming procedures of MOF synthesis and purification. In addition, to characterize and understand the structures of active sites in UiO-67 MOFs, temperature programmed desorption mass spectrometry (TPD-MS) and in situ Fourier-transform infrared (FTIR) spectroscopy were performed under ultra-high vacuum (UHV) and revealed unconventional binding sites and assisted in the successful characterization of missing linker defects. Here, our research helped in identification of a new class of binding sites, via NH-π interactions, in UiO-67 MOFs will assist researchers working in the areas of gas storage/release in developing better materials. This study should facilitate the structural understanding of MOFs, their important attributes such as defects and their chemistry in the presence of toxic gases. After successful identification of active species in MOFs, with the ultimate goal of isolating andii
depositing the active sites on porous carbonaceous materials, e.g., COFs, we have engineered a facile technique to synthesize robust nanoparticle-COF and evaluated the reasons for its improved catalytic properties over other materials. The discoveries and their implications discussed in this thesis address fundamental knowledge gaps and should aid the rational design of superior materials for in operando applications. / Chemistry
|
Page generated in 0.0621 seconds