• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 21
  • 21
  • 8
  • 8
  • 7
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Caractérisation du rôle de la protéine prion cellulaire et de ses formes pathologiques dans la régulation des ARNm et de la réponse au stress cellulaire

Beaudoin, Simon January 2013 (has links)
Certaines maladies neurodégénératives sont associées au mauvais repliement de la protéine prion (PrP[indice supérieur c]) et sont connues sous le nom de maladies à prion ou les encéphalopathies spongiformes transmissibles (ESTs). Récemment, il a été démontré que PrP[indice supérieur c] augmente l'efficacité des micro-ARN (miARN) via son interaction directe avec la protéine Argonaute 2 (Ago2) au niveau de la membrane des corps multivésiculaires (multivesicular bodies (MVBs)). Ago2 est une des protéines centrales du complexe RISC (RNA-induced silencing complex) qui est responsable de l'efficacité des ARNi. Certaines formes pathologiques de PrP[indice supérieur c] induisent l'activation de la réponse au stress eiF2a dépendante, une étape déterminante pour le développement de la pathologie. Cependant, l'activation de la réponse au stress eiF2a dépendante, favorise normalement la survie cellulaire via la formation de deux types de granules d'ARN, les granules de stress (GSs) et les P-Bodies. Aucune étude n'a investigué le rôle de ces deux types de granules d'ARN et de la régulation de l'efficacité des miARN par PrP[indice supérieur c] dans la neurotoxicité associée aux ESTs. Mon premier objectif est d'approfondir nos connaissances sur le nouveau rôle de PrP[indice supérieur c] dans la régulation du système miARN et de l'implication des miARN et du système endosomal dans les ESTs génétiques. Mon second objectif est d'investiguer le rôle des GSs et des P-Bodies, dans la neurotoxicité reliée aux ESTs et établir un lien entre la dérégulation de la réponse au stress et du système ARNi. PrP[indice supérieur c] augmente l'efficacité des miARN via l'interaction de sa région octapeptidique répété (OR, octapeptide repeat region) avec la protéine Ago2. L'effet d'un mutant cytoplasmique artificiel nommé CyPrP (connu comme agent neurotoxique potentiel) et de cinq mutants familiaux de PrP[indice supérieur c] sur le système endosomal et miARN a été caractérisé. Les mutants de PrP[indice supérieur c] affectent la maturation des MVBs et, conséquemment, induisent une délocalisation de GW182, une diminution l'efficacité des miARN et de la production des exosomes. Nous proposons que cette dérégulation de la voie endosomale et miARN par les mutants familiaux de PrP[indice supérieur c] contribue à la neurodégénérescence observée dans les ESTs. Les mutants de PrP[indice supérieur c] induisent également l'expression de la protéine PACT qui est responsable de l'activation de la kinase de stress PKR et de la phosphorylation d'eiF2a. Cependant, malgré la phosphorylation d'eiF2a, les mutants familiaux de PrP[indice supérieur c] et PrP[indice supérieur Sc] inhibent la formation des GSs et des P-Bodies augmentant la susceptibilité des cellules aux différents stress. L'inhibition des P-bodies par les mutants confirment également que les mutants de PrP[indice supérieur c] induisent une diminution de l'efficacité des miARN. Je propose que le maintien de l'activation de la voie PACT-PKR-eiF2a et l'inhibition des GSs et des P-Bodies contribuent à la dérégulation du système d'ARNi, à la susceptibilité des neurones et à la neurodégénérescence observée dans les ESTs. Une meilleure compréhension des mécanismes de neurotoxicité plus particulièrement de l'inhibition du système ARNi et de la réponse au stress par les formes mal repliées de PrP[indice supérieur c] peut mener au développement de médicaments afin de contrer l'évolution de la pathologie. [symboles non conformes]
12

Role of mRNA post-transcriptional metabolism in the regulation of Arabidopsis thalian dormancy / Rôle du métabolisme post-transcriptionnel des ARNm dans la régulation de la dormance des semences d'Arabidopsis thaliana

Basbouss-Serhal, Isabelle 26 June 2015 (has links)
Rôle du métabolisme post-transcriptionnel des ARNm dans la régulation de la dormance des semences d’Arabidopsis thaliana.Une étude physiologique nous a permis d'identifier l'influence de la température et de l'humidité relative (HR) lors du stockage des graines dormantes d’Arabidopsis. Après une levée de dormance atteinte en 7 semaines avec des cinétiques variables selon les conditions, on observe une induction de la dormance secondaire à faible HR et une perte progressive de la viabilité à forte HR. La levée et l’induction de la dormance sont associées à la régulation de gènes liés aux voies de l'acide abscissique et des gibbérellines. Nous avons étudié la dynamique d’association des ARNm aux polysomes et comparé la transcription et la traduction des graines dormantes et non dormantes au cours de l’imbibition. Nous montrons qu'il n'y a pas de corrélation entre transcriptome et traductome et que la régulation de la germination est principalement liée à la traduction. Ceci suppose un recrutement sélectif et dynamique des ARNm liés aux polysomes dans les graines dormantes et non dormantes. Certaines caractéristiques de la région 5'UTR des transcrits semble impliquées dans la sélection des ARNm traduits pendant la germination. Les phénotypes de mutants d’éléments du catabolisme des ARN montrent que la dormance est également associée à une dégradation sélective des ARNm. Les P-bodies (localisés dans des lignées YFP-DCP1) sont d’ailleurs en quantité plus importante dans les graines non-dormantes. La comparaison des transcriptomes des mutants vcs-8 et xrn4-5 a permis l'identification de plusieurs transcrits dégradés via VCS ou XRN4, dont le rôle sur la dormance a été confirmé par génétique inverse. Certains motifs spécifiques semblent être impliqués dans la sélection de transcrits pour leur dégradation. / Role of mRNA post-transcriptional metabolism in the regulation of Arabidopsis thaliana dormancy.A physiological study allowed us to reveal the effect of temperature and relative humidity (RH) during Arabidopsis seed storage. Seven weeks of after ripening lead to alleviation of dormancy with different kinetics according to the conditions. Longer storage induced an induction of secondary dormancy at low RH and progressive loss of viability at high RH. Dormancy release and induction of secondary dormancy were associated with induction or repression of key genes related to abscissic acid and gibberellins pathways. We have studied the dynamics of mRNAs association with polysomes and compared transcriptome and translatome of dormant and non-dormant seeds. There was no correlation between transcriptome and translatome and germination regulation is largely translational, implying a selective and dynamic recruitment of mRNAs to polysomes in both dormant and non-dormant seeds. Some identified 5'UTR features could play a role in this selective. Dormancy is also associated with mRNA decay as demonstrated by phenotyping mutants altered in mRNA metabolism. Moreover we have shown that P-bodies were more abundant in non-dormant seeds that in dormant ones. Transcriptome analysis of xrn4-5 and vcs-8 mutants allowed us to identify several transcripts degraded via VCS ou XRN4 proteins, having a role in dormancy. This role was confirmed by reverse genetics for some of them. Some specific motifs were identified as involved in mRNA decay selection.
13

Caractérisation des complexes contenant l'hélicase à motif DEAD DDX6 dans les cellules humaines / Characterization of the DEAD-box DDX6 containing complexes in human cells

Ayache Schillio, Jessica 08 September 2015 (has links)
Les P-bodies sont des granules cytoplasmiques de fonction inconnue. Ils sont néanmoins conservés de la levure à l’homme, suggérant un rôle important chez les eucaryotes. L’analyse de l’influence de l’expression de certaines protéines pouvant se localiser dans ces granules a permis de mettre en évidence le rôle crucial de DDX6 dans l’assemblage des P-bodies. En effet, l’inhibition de l’expression de DDX6 dans les cellules humaines empêche l’assemblage des P-bodies. L’étude de la protéine DDX6 semblait donc être un bon point de départ pour comprendre d’avantage le rôle des P-bodies. Cette hélicase à motif DEAD de 54 kDa interagit avec des protéines du complexe répression de la traduction CPEB chez le Xénope, mais également avec des protéines des complexes de dégradation 5’-3’ et 3’-5 ‘ des ARNm chez les mammifères, les levures et les drosophiles, ou encore avec les protéines Argonautes du complexe miRISC chez les mammifères. Nos travaux se sont donc intéressés à déterminer les principales fonctions de DDX6 dans les cellules humaines. Les complexes protéiques contenant DDX6 ont été purifiés à partir de lysats cytoplasmiques de cellules HEK293 transfectées avec un plasmide codant pour la protéine FLAG-DDX6-HA. Plus de 300 partenaires protéiques ont été identifiés en spectrométrie de masse. Trois complexes majeurs contenant DDX6 ont été mis en évidence : un complexe de répression « CPEB-like », le complexe de décoiffage des ARNm, et un complexe contenant les ataxin-2 et ataxin-2-like. Les protéines du cœur du complexe de jonction d’exons sont également en interaction avec DDX6, suggérant que DDX6 interagit avec des ARNm tout juste sortis du noyau. Enfin, le grand nombre et les hauts scores avec lesquels ont été identifiés les protéines ribosomales nous ont conduit à analyser la présence de DDX6 au niveau des polysomes. L’analyse de lysats cytoplasmiques sur gradient de sucrose nous a permis de mettre en évidence l’association d’une fraction de DDX6 aux polysomes. Toutes ces observations mettent en évidence le rôle multiple de DDX6 entre répression et dégradation des ARNm, dans les cellules humaines. L’hélicase pourrait permettre le recrutement du complexe de répression par des ARNm activement traduits. La fixation multiple de DDX6 à l’ARNm pourrait être un moyen de recruter simultanément les complexes de répression et de dégradation des ARNm sur un même ARNm. / P-bodies are cytoplasmic granules. Their function is unknown, but they are conserved from the yeast to humans, suggesting an important role through eukaryotes. The expression inhibition of several proteins localized in P-bodies leads to their disassembly. In most cases, a cellular stress induced by arsenite treatment causes P-body assembly, except in cells depleted for DDX6. Since this observation showed that DDX6 is necessary for P-body assembly, to study this protein is a good starting point to further understand the role of P-bodies. This 54 kDa DEAD-box helicase interacts with proteins of the CPEB repression complex in xenopus oocytes, but also with protein of the déadénylation and dacapping complex in yeasts, drosophila and mammals, and with proteins of the miRISC complex. Our project was to determine the DDX6 main protein partners in human cells. To do so, DDX6 containing complexes were purified using HEK293 cells transfected with a plasmid encoding for the FLAG-DDX6-HA. Over 300 partners were identified by mass spectrometry. Three main DDX6 containing complexes were highlighted in human cells: A “CPEB-like” repression complex, the decapping complex, and a complex containing ATXN2 and ATXN2L proteins. Exon junction complex core proteins were also identified as DDX6 partners, raising the possibility that DDX6 interacts with mRNA not yet translated. A large number of ribosomal proteins were also identified with high scores, suggesting that DDX6 interacts with actively translated mRNA. Analyze of cytoplasmic lysates on sucrose gradients showed that DDX6 is partially associated with polysomes. To conclude, these observations showed the multiple roles of DDX6 in human cell, between mRNA repression and degradation. The helicase could allow the recruitment of the repression complex on actively translated mRNA. In a nutshell, the multiple binding of DDX6 on one mRNA could be a way to enable the fixation of repression and degradation complexes at the same time, on the same mRNA.
14

Rescue of ALS Protein FUS Toxicity by TAF

Hayden, Elliott 05 June 2019 (has links)
No description available.
15

REGULATION, COMPOSITION AND FUNCTIONS OF RNP GRANULES IN QUIESCENT CELLS OF SACCHAROMYCES CEREVISIAE

Shah, Khyati H. January 2014 (has links)
No description available.
16

Study of molecules with nonsense mutation correction capacity / Etude des molécules avec une capacité de correction de mutation non-sens

Jia, Jieshuang 01 April 2015 (has links)
Les mutations non-sens représentent environ 10% des mutations trouvées dans les maladiesgénétiques héréditaires. Les ARNm portant une mutation non-sens sont dégradés par un mécanismeappelé nonsense-mediated mRNA decay (NMD) pour empêcher la synthèse de protéines tronquéesqui pourraient être toxiques ou non-fonctionnelles pour la cellule. Plusieurs stratégies ont étédéveloppées pour sauver une mutation non-sens. Dans notre laboratoire, nous étudions deux d'entreelles qui sont (i) l'inhibition du NMD et (ii) l'activation de la translecture du PTC qui est un mécanismeconduisant à l'incorporation d'un acide aminé à la position du PTC. Pour trouver de nouveauxmoyens thérapeutiques pour les maladies génétiques héréditaires, notre laboratoire a testédifférentes molécules par criblage, pour identifier celles qui ont la capacité d'inhiber le NMD. Chaquemolécule sélectionnée par le crible est étudiée afin de mesurer son efficacité d'inhibition du NMD etd'activation de la translecture. Nous avons ainsi montré que i'amlexanox non seulement inhibe NMDmais active également la translecture du PTC. Cependant, l'efficacité de I'amlexanox reste modeste.Nous avons donc recherché d'autres familles de molécules qui sont capables de sauver une mutationnon-sens et qui ont une efficacité de correction des mutations non sens meilleure ou démontrentune plus grande spécificité. Dans mon étude, j'ai trouvé deux familles de protéines particulières quesont les inducteurs d'apoptose et les inhibiteurs du cytosquelette. J'ai trouvé que les inducteursd'apoptose peuvent inhiber le NMD en activant les caspases qui clivent les facteurs du NMD (UPF1 etUPF2). J'ai aussi montré que les inhibiteurs du cytosquelette peuvent inhiber le NMD et que certainsd'entre eux peuvent activer la translecture de PTC en induisant les facteurs du NMD (UPF1 et / ouUPF3X) à se concentrer dans les P-bodies et/ou dans d'autres foyers cytoplasmiques. Les rendementsde ces molécules sur l'inhibition du NMD sont similaires ou meilleure que I'amlexanox. Les inducteursd'apoptose et les inhibiteurs du cytosquelette nous démontrent qu'il est possible de trouver desmolécules très différentes capables de corriger des mutations non sens avec une bonne efficacité. / Nonsense mutations represent approximately 10% of mutations found in the inherited geneticdiseases. mRNAs harboring a nonsense mutation are rapidly degraded by a quality-controlmechanism called nonsense-mediated mRNA decay (NMD) to prevent the synthesis of toxic or nonfunctionaltruncated proteins. Some stratégies have been developed to correct nonsense mutations.In our lab, we study 2 of them which are (i) the NMD inhibition and (ii) the PTC-readthroughactivation which is a mechanism leading to the incorporation of an amino-acid at the PTC position. Todesign new therapeutic tools for the inherited genetic diseases, our lab tested molecules byscreening to find ones with the capacity of NMD inhibition. For each molecules selected in thescreen, we measure the efficiency of NMD inhibition and PTC-readthrough activation of thesemolecules in cell lines harboring a nonsense mutation. We have shown that amlexanox not onlyinhibits NMD but also activâtes PTC readthrough. But the efficacy of amlexanox is still low. Wewanted to find other families of molecules capable of rescuing the expression of nonsense mutationcontainingmRNA with a higher efficacy or with some specificity. In my study, I found two spécialfamilies, one is the family of apoptosis inducers and the other is the family of cytoskeleton inhibitors.I found that apoptosis inducers can inhibit NMD by activating caspase pathway and cleave NMDfactors (UPF1 and UPF2). I also found that cytoskeleton inhibitors can inhibit NMD and some of themcan activate PTC-readthrough by inducing NMD factors (UPF1 or/and UPF3X) to concentrate in Pbodiesor in other cytoplasmic foci. The efficiencies of these molecules on NMD inhibition are similaror higher than amlexanox. Apoptosis inducers and cytoskeleton inhibitors demonstrated thatmolecules which can inhibit NMD or/and activate PTC-readthrough can be found and candemonstrate a higher correction of nonsense mutation efficiency than the existing molecules(ataluren or amlexanox for example).
17

Régulation du métabolisme des ARNm par les voies de signalisation MAPK et mTOR

Cargnello, Marie 03 1900 (has links)
Il est à ce jour bien établi que la régulation de l’expression génique dépend en grande partie des évènements post-transcriptionnels et que la traduction des ARNm tient un rôle de premier plan dans ces processus. Elle est particulièrement importante pour définir le protéome, maintenir l’homéostasie et contrôler la croissance et la prolifération cellulaire. De nombreuses pathologies humaines telles que le cancer découlent de dérèglements de la synthèse protéique. Ceci souligne l’importance d’une meilleure compréhension des mécanismes moléculaires contribuant au contrôle de la traduction des ARNm. Le facteur d’initiation eIF4E est essentiel à la traduction et son activité est régulée par ses partenaires protéiques dont font partie les protéines 4E-BP et 4E-T. Les voies de signalisation PI3K/mTOR et MAPK qui sont fortement impliquées dans l’étiologie du cancer, contrôlent la traduction en modulant l’activité d’eIF4E via l’inhibition des protéines 4E-BP et la localisation de 4E-T. Afin d’améliorer notre compréhension des mécanismes régulant la traduction des ARNm, nous avons utilisé plusieurs approches. Tout d’abord, nous avons caractérisé les mécanismes par lesquels le complexe mTORC1 est activé en réponse aux facteurs de croissance et avons déterminé que la kinase RSK, en aval de la voie Ras/ERK, contrôle directement l’activité de mTORC1 en phosphorylant Raptor, la sous-unité régulatrice du complexe mTORC1. Par ailleurs, nous nous sommes intéressés au rôle joué par mTORC1 dans l’initiation de la traduction. Pour cela, nous avons réalisé un criblage protéomique dans le but d’identifier de nouveaux facteurs sous le contrôle de mTORC1 qui participent activement à la traduction. Ces travaux ont ainsi permis l’identification de la protéine de liaison à l’ARN LARP1 comme effecteur majeur de la traduction des ARNm et de la croissance cellulaire en aval de mTORC1. Finalement, notre étude de l’effet du stress oxydant dans la répression de la traduction nous a permis de montrer que la kinase JNK contrôle la localisation du répresseur 4E-T au sein des P-bodies, qui sont des granules cytoplasmiques concentrant des ARNm non traduits et des facteurs de la dégradation des ARNm. Nos travaux ont donc abouti à la découverte de mécanismes moléculaires cruciaux impliqués dans la régulation de la traduction des ARNm et de la synthèse protéique. Ces derniers étant largement impliqués dans la prolifération cellulaire et la croissance tumorale, nos recherches ouvrent sur un champ d’investigation plus large pour le développement de nouvelles molécules anti-cancéreuses. / It is now well established that gene expression is predominantly regulated by post-transcriptional events and that mRNA translation plays an essential role in this process. Translation of mRNAs is especially important in defining the proteome, maintaining homeostasis and controlling cell growth and cell proliferation. Several human diseases such as cancer are associated with aberrant regulation of protein synthesis highlighting the need to better understand the molecular mechanisms contributing to translational control. The translation initiation factor eIF4E is a key component of the translational machinery whose activity is controlled by its partners, the 4E-BP and 4E-T proteins. The PI3K/mTOR and MAPK signaling pathways, which are strongly implicated in cancer etiology, control mRNA translation by modulating eIF4E activity through the inhibition of the 4E-BPs and the regulation of eIF4E localization by 4E-T. In order to better understand how mRNA translation is regulated we used several approaches. First, we characterized the mechanisms contributing to mTORC1 activation in response to growth factor. We found that the kinase RSK, that lies downstream of the Ras/ERK pathway, directly controls mTORC1 activity by phosphorylating Raptor, the regulatory sub-unit of the complex. This provides evidence of an additional mechanism by which MAPK pathway regulates mTORC1. We next performed a proteomic screen to identify novel mTOR-regulated factors that actively participate in translation. This approach led to the identification of several candidate proteins which included the RNA-binding protein LARP1 that we found to be a major effector of mTORC1-mediated mRNA translation, cell growth and proliferation. Finally we investigated the impact of oxidative stress on translation inhibition and found that the JNK kinase controls 4E-T localization in P-bodies that are cytoplasmic granules containing non-translating mRNAs and proteins from the mRNA decay and silencing machineries. Together this work provides important novel insights into the regulation of mRNA translation and protein synthesis that represent processes strongly connected to tumorigenesis and brings precious information on the mechanisms by which signaling pathways control cell growth and proliferation.
18

Elucidating the molecular mechanism that determines the specific localisation of gurken mRNA during Drosophila development

Gill, Kirsty January 2017 (has links)
mRNA localisation is a widely used mechanism for achieving temporal-spatial restriction of protein expression and is essential during development to establish cell polarity. mRNA localisation is particularly well studied in the Drosophila egg chamber where gurken mRNA is localised to the dorsal-anterior corner of the oocyte in a Dynein-dependent process that establishes the anterior-posterior and dorsal-ventral axes of the future embryo. An RNA stem-loop called the gurken localisation signal is necessary and sufficient to drive gurken localisation through interactions with a specific complement of protein factors. However, the exact RNA sequence and structural features required to promote each stage of gurken localisation are unknown. Using a live-cell injection assay I have dissected regions of the mRNA signal that are responsible for driving gurken transport and anchoring through their association with Egalitarian, Me31B and Squid proteins. I show the structure of an AU-rich stem and a purine stack are essential for gurken transport, and demonstrate that the size of the internal loop between these stems is important. These features of the localisation signal are essential for recruitment of Egalitarian, which links the mRNA to the Dynein transport machinery. I also show that these mRNA sequence and structural elements are present in several other Dynein-transported mRNAs. The bulge at the distal end of the gurken localisation signal is important for anchoring grk at the dorsal-anterior of the oocyte, possibly through Squid binding, and the proximal third of the signal is essential for recruitment of the translation component Me31B. These studies indicate that the role of the gurken localisation signal in controlling gurken transport, anchoring and translation can be mapped to distinct regions of the signal and provide insights into how the signal carries out these numerous functions at a molecular level. Determining the molecular interactions involved in mRNA localisation improves our understanding of how specificity is generated to direct different mRNAs to distinct regions of the cell to restrict protein expression.
19

Využití fluorescenční mikroskopie pro bližší popis dynamiky proteinů ALBA u Arabidopsis thaliana / Dynamics of ALBA proteins in Arabidopsis thaliana evaluated by fluorescence microscopy

Popelářová, Anna January 2021 (has links)
ALBA proteins were discovered in Archaea more than 30 years ago. They were gradually identified to be well conserved in Eucaryotes as well. A functional dimeric form of these proteins with DNA and RNA-binding capability was claimed in both mentioned domains of organisms. However, their roles diversified during evolution and vary in between organisms. In Archaea, ALBAs are involved in the genome organization and RNA-protein interactions. In Eukaryotes, there are presented two different subfamilies of ALBA proteins - Rpp20 and Rpp25 subfamily. A sole protein from each subfamily was identified in some organisms though they were multiplied in plants, respectively. These proteins can interact with each other and participate in ontogenetic development and stress responses. According to several studies, ALBA proteins were found to be involved in DNA stability maintenance or pre-rRNA splicing in the nucleus of Arabidopsis thaliana. However, they have been shown to play a role in the cellular metabolism and stress responses in cytoplasm. Six ALBA proteins were identified in the genome of A. thaliana, three from each subfamily. In this study, all heterodimeric protein- protein interactions were investigated by the bimolecular fluorescence complementation (BiFC) assay which revealed positive results in...
20

Nekanonické lidské translační iniciační faktory z rodiny 4E v RNA granulích i mimo ně / Noncanonical human eIF4Es in and out of the RNA granules

Frydrýšková, Klára January 2020 (has links)
Eukaryotic translation initiation factor eIF4E1 (eIF4E1) plays a pivotal role in the control of cap-dependent translation initiation, occurs in P- bodies and is important for the formation of stress granules (SG). Human cells encompass two other non-canonical translation initiation factors capable of cap binding although with a lower affinity for the cap: eIF4E2 and eIF4E3. Here, I investigated the ability of individual eIF4E family members and their variants to localize to SGs and P-bodies in stress-free, arsenite and heat shock conditions. Under all tested conditions, both eIF4E1 and eIF4E2 proteins and all their variants localized to P-bodies unlike eIF4E3 protein variants. Under both arsenite and heat stress conditions all tested variants of eIF4E1 and the variant eIF4E3-A localized to SGs albeit with different abilities. Protein eIF4E2 and all its investigated variants localized specifically to a major part of heat stress-induced stress granules. Further analysis showed that approximately 75% of heat stress-induced stress granules contain all three eIF4Es, while in 25% of them eIF4E2 is missing. Large ribosomal subunit protein L22 was found specifically enriched in arsenite induced SGs. Heat stress-induced re- localization of several proteins typical for P-bodies such as eIF4E2, DCP-1, AGO-2...

Page generated in 0.0303 seconds