• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 22
  • 7
  • Tagged with
  • 78
  • 78
  • 37
  • 31
  • 25
  • 24
  • 22
  • 19
  • 19
  • 15
  • 15
  • 15
  • 13
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Le contrôle non linéaire par réseaux de neurones formels: les perceptrons affines par morceaux

Lehalle, Charles-Albert 20 June 2005 (has links) (PDF)
Le but de ce travail est d'exposer de nouveaux résultats concernant l'utilisation d'une classe particulière de réseaux de neurones formels (les Perceptrons Affines Par morceaux: PAP) dans le cadre du contrôle optimal en boucle fermée. Les résultats principaux obtenus sont: plusieurs propriétés des PAP, concernant la nature des fonctions qu'ils peuvent émuler, un théorème constructif de représentation des fonctions continues affines par morceaux, qui permet de construire explicitement un PAP à partir d'une collection de fonctions affines, une série d'heuristiques pour l'apprentissage des paramètres d'un perceptron dans une boucle fermée et dans un cadre de contrôle optimal, des résultats théoriques concernant la stabilité de PAP utilisés comme contrôleurs. La dernière partie est consacrée des applications de ces résultats à la construction automatique de contrôleurs de la combustion de moteurs de voiture, qui ont donné lieu au dépot de deux brevets par Renault.
32

Sur la géométrie du groupe de Thompson

MARTIN, Xavier 10 June 2002 (has links) (PDF)
Au début des années 90, P. Greenberg entame une étude géométrique du groupe de Thompson $T$, dans le contexte des homéomorphismes du cercle projectifs par morceaux, appelé géométrie CPP. Nous reprenons cette étude en établissant un pont entre la géométrie CPP et l'espace de Teichmüller universel décoré de Penner. Ce dernier est muni d'un système de coordonnées affines global. A l'aide de ces coordonnées, nous montrons que l'espace des homéomorphismes du cercle normalisés, de classe CPP et à points de coupure rationnels est homéomorphe à une limite directe d'espaces euclidiens, donc contractile. Puis, nous analysons l'action du groupe sur cet espace, dans le système des coordonnées. Nous en déduisons un classifiant du groupe $T$, dans la géométrie CPP. En application, nous donnons une version géométrique d'un théorème de Ghys et Sergiescu reliant l'homologie de $T$ à celle de l'espace des lacets libres sur la sphère de dimension 3.
33

Modélisation dynamique de systèmes complexes pour le calcul de grandeurs fiabilistes et l'optimisation de la maintenance

Lair, William 18 November 2011 (has links) (PDF)
L'objectif de cette thèse est de proposer une méthode permettant d'optimiser la stratégie de maintenance d'un système multi-composants. Cette nouvelle stratégie doit être adaptée aux conditions d'utilisation et aux contraintes budgétaires et sécuritaires. Le vieillissement des composants et la complexité des stratégies de maintenance étudiées nous obligent à avoir recours à de nouveaux modèles probabilistes afin de répondre à la problématique. Nous utilisons un processus stochastique issu de la Fiabilité Dynamique nommé processus markovien déterministe par morceaux (Piecewise Deterministic Markov Process ou PDMP). L'évaluation des quantités d'intérêt (fiabilité, nombre moyen de pannes...) est ici réalisée à l'aide d'un algorithme déterministe de type volumes finis. L'utilisation de ce type d'algorithme, dans ce cadre d'application, présente des difficultés informatiques dues à la place mémoire. Nous proposons plusieurs méthodes pour repousser ces difficultés. L'optimisation d'un plan de maintenance est ensuite effectuée à l'aide d'un algorithme de recuit simulé. Cette méthodologie a été adaptée à deux systèmes ferroviaires utilisés par la SNCF, l'un issu de l'infrastructure, l'autre du matériel roulant.
34

Méthodes bayésiennes pour la prévision de consommation l'électricité

Launay, Tristan 12 December 2012 (has links) (PDF)
Dans ce manuscrit, nous développons des outils de statistique bayésienne pour la prévision de consommation d'électricité en France. Nous prouvons tout d'abord la normalité asymptotique de la loi a posteriori (théorème de Bernstein-von Mises) pour le modèle linéaire par morceaux de part chauffage et la consistance de l'estimateur de Bayes. Nous décrivons ensuite la construction d'une loi a priori informative afin d'améliorer la qualité des prévisions d'un modèle de grande dimension en situation d'historique court. A partir de deux exemples impliquant les clients non télérelevés de EDF, nous montrons notamment que la méthode proposée permet de rendre l'évaluation du modèle plus robuste vis-à-vis du manque de données. Nous proposons enfin un nouveau modèle dynamique, non-linéaire, pour prévoir la consommation d'électricité en ligne. Nous construisons un algorithme de filtrage particulaire afin d'estimer ce modèle et comparons les prévisions obtenues aux prévisions opérationnelles utilisées au sein d'EDF.
35

Estimation non paramétrique pour les processus markoviens déterministes par morceaux

Azaïs, Romain 01 July 2013 (has links) (PDF)
M.H.A. Davis a introduit les processus markoviens déterministes par morceaux (PDMP) comme une classe générale de modèles stochastiques non diffusifs, donnant lieu à des trajectoires déterministes ponctuées, à des instants aléatoires, par des sauts aléatoires. Dans cette thèse, nous présentons et analysons des estimateurs non paramétriques des lois conditionnelles des deux aléas intervenant dans la dynamique de tels processus. Plus précisément, dans le cadre d'une observation en temps long de la trajectoire d'un PDMP, nous présentons des estimateurs de la densité conditionnelle des temps inter-sauts et du noyau de Markov qui gouverne la loi des sauts. Nous établissons des résultats de convergence pour nos estimateurs. Des simulations numériques pour différentes applications illustrent nos résultats. Nous proposons également un estimateur du taux de saut pour des processus de renouvellement, ainsi qu'une méthode d'approximation numérique pour un modèle de régression semi-paramétrique.
36

Modélisation et estimation des processus de dégradation avec application en fiabilité des structures

Chiquet, Julien 21 June 2007 (has links) (PDF)
Nous décrivons le niveau de dégradation caractéristique d'une structure à l'aide d'un processus stochastique appelé processus de dégradation. La dynamique de ce processus est modélisée par un système différentiel à environnement markovien.<br /><br />Nous étudions la fiabilité du système en considérant la défaillance de la structure lorsque le processus de dégradation dépasse un seuil fixe. Nous obtenons la fiabilité théorique à l'aide de la théorie du renouvellement markovien.<br /><br />Puis, nous proposons une procédure d'estimation des paramètres des processus aléatoires du système différentiel. Les méthodes d'estimation et les résultats théoriques de la fiabilité, ainsi que les algorithmes de calcul associés, sont validés sur des données simulés.<br /><br />Notre méthode est appliquée à la modélisation d'un mécanisme réel de dégradation, la propagation des fissures, pour lequel nous disposons d'un jeu de données expérimental.
37

contribution à l'étude des processus Markoviens déterministes par morceaux. Etude d'un cas-test de la sûreté de fonctionnement et Problème d'arrêt optimal à horizon aléatoire

Gonzalez, Karen 03 December 2010 (has links) (PDF)
Les Processus Markoviens D eterministes par Morceaux (PDMP) ont et e introduits dans la litt erature par M.H.A Davis comme une classe g en erale de mod eles stochastiques. Les PDMP forment une famille de processus markoviens qui d ecrivent une trajectoire d eterministe ponctu ee par des sauts al eatoires. Dans une premi ere partie, les PDMP sont utilis es pour calculer des probabilit es d' ev enements redout es pour un cas-test de la abilit e dynamique (le r eservoir chau e) par deux m ethodes num eriques di erentes : la premi ere est bas ee sur la r esolution du syst eme di erentiel d ecrivant l' evolution physique du r eservoir et la seconde utilise le calcul de l'esp erance de la fonctionnelle d'un PDMP par un syst eme d' equations int egro-di erentielles. Dans la seconde partie, nous proposons une m ethode num erique pour approcher la fonction valeur du probl eme d'arr^et optimal pour un PDMP. Notre approche est bas ee sur la quanti cation de la position apr es saut et le temps inter-sauts de la chaî ne de Markov sous-jacente au PDMP, et la discr etisation en temps adapt ee a la trajectoire du processus. Ceci nous permet d'obtenir une vitesse de convergence de notre sch ema num erique et de calculer un temps d'arrêt epsilon-optimal.
38

Modèles stochastiques et méthodes numériques pour la fiabilité

Mercier, Sophie 21 November 2008 (has links) (PDF)
En premier lieu, nous proposons, étudions et optimisons différentes politiques de maintenance pour des systèmes réparables à dégradation markovienne ou semi-markovienne, dont les durées de réparation suivent des lois générales. <br /> Nous nous intéressons ensuite au remplacement préventif de composants devenus obsolescents, du fait de l'apparition de nouveaux composants plus performants. Le problème est ici de déterminer la stratégie optimale de remplacement des anciens composants par les nouveaux. Les résultats obtenus conduisent à des stratégies très différentes selon que les composants ont des taux de panne constants ou non.<br /> Les travaux suivants sont consacrés à l'évaluation numérique de différentes quantités fiabilistes, les unes liées à des sommes de variables aléatoires indépendantes, du type fonction de renouvellement par exemple, les autres liées à des systèmes markoviens ou semi-markoviens. Pour chacune de ces quantités, nous proposons des bornes simples et aisément calculables, dont la précision peut être ajustée en fonction d'un pas de temps. La convergence des bornes est par ailleurs démontrée, et des algorithmes de calcul proposés.<br /> Nous nous intéressons ensuite à des systèmes hybrides, issus de la fiabilité dynamique, dont l'évolution est modélisée à l'aide d'un processus de Markov déterministe par morceaux (PDMP). Pour de tels systèmes, les quantités fiabilistes usuelles ne sont généralement pas atteignables analytiquement et doivent être calculées numériquement. Ces quantités s'exprimant à l'aide des lois marginales du PDMP (les lois à t fixé), nous nous attachons plus spécifiquement à leur évaluation. Pour ce faire, nous commençons par les caractériser comme unique solution d'un système d'équations intégro-différentielles. Puis, partant de ces équations, nous proposons deux schémas de type volumes finis pour les évaluer, l'un explicite, l'autre implicite, dont nous démontrons la convergence. Nous étudions ensuite un cas-test issu de l'industrie gazière, que nous modélisons à l'aide d'un PDMP, et pour lequel nous calculons différentes quantités fiabilistes, d'une part par méthodes de volumes finis, d'autre part par simulations de Monte-Carlo. Nous nous intéressons aussi à des études de sensibilité : les caractéristiques d'un PDMP sont supposées dépendre d'une famille de paramètres et le problème est de comparer l'influence qu'ont ces différents paramètres sur un critère donné, à horizon fini ou infini. Cette étude est faite au travers des dérivées du critère d'étude par rapport aux paramètres, dont nous démontrons l'existence et que nous calculons.<br /> Enfin, nous présentons rapidement les travaux effectués par Margot Desgrouas lors de sa thèse consacrée au comportement asymptotique des PDMP, et nous donnons un aperçu de quelques travaux en cours et autres projets.
39

Étude multi-échelle de modèles probabilistes pour les systèmes excitables avec composante spatiale.

Genadot, Alexandre 04 November 2013 (has links) (PDF)
L'objet de cette thèse est l'étude mathématique de modèles probabilistes pour la génération et la propagation d'un potentiel d'action dans les neurones et plus généralement de modèles aléatoires pour les systèmes excitables. En effet, nous souhaitons étudier l'influence du bruit sur certains systèmes excitables multi-échelles possédant une composante spatiale, que ce soit le bruit contenu intrinsèquement dans le système ou le bruit provenant du milieu. Ci-dessous, nous décrivons d'abord le contenu mathématique de la thèse. Nous abordons ensuite la situation physiologique décrite par les modèles que nous considérons. Pour étudier le bruit intrinsèque, nous considérons des processus de Markov déterministes par morceaux à valeurs dans des espaces de Hilbert ("Hilbert-valued PDMP"). Nous nous sommes intéressés à l'aspect multi-échelles de ces processus et à leur comportement en temps long. Dans un premier temps, nous étudions le cas où la composante rapide est une composante discrète du PDMP. Nous démontrons un théorème limite lorsque la composante rapide est infiniment accélérée. Ainsi, nous obtenons la convergence d'une classe de "Hilbert-valued PDMP" contenant plusieurs échelles de temps vers des modèles dits moyennés qui sont, dans certains cas, aussi des PDMP. Nous étudions ensuite les fluctuations du modèle multi-échelles autour du modèle moyenné en montrant que celles-ci sont gaussiennes à travers la preuve d'un théorème de type "central limit". Dans un deuxième temps, nous abordons le cas où la composante rapide est elle-même un PDMP. Cela requiert de connaître la mesure invariante d'un PDMP à valeurs dans un espace de Hilbert. Nous montrons, sous certaines conditions, qu'il existe une unique mesure invariante et la convergence exponentielle du processus vers cette mesure. Pour des PDMP dits diagonaux, la mesure invariante est explicitée. Ces résultats nous permettent d'obtenir un théorème de moyennisation pour des PDMP "rapides" couplés à des chaînes de Markov à temps continu "lentes". Pour étudier le bruit externe, nous considérons des systèmes d'équations aux dérivées partielles stochastiques (EDPS) conduites par des bruits colorés. Sur des domaines bornés de $\mathbb{R}^2$ ou $\mathbb{R}^3$, nous menons l'analyse numérique d'un schéma de type différences finies en temps et éléments finis en espace. Pour une classe d'EDPS linéaires, nous étudions l'erreur de convergence forte de notre schéma. Nous prouvons que l'ordre de convergence forte est deux fois moindre que l'ordre de convergence faible. Par des simulations, nous montrons l'émergence de phénomènes d'ondes ré-entrantes dues à la présence du bruit dans des domaines de dimension deux pour les modèles de Barkley et Mitchell-Schaeffer.
40

Analyse et optimisation de la fiabilité d'un équipement opto-électrique équipé de HUMS

Baysse, Camille 07 November 2013 (has links) (PDF)
Dans le cadre de l'optimisation de la fiabilité, Thales Optronique intègre désormais dans ses équipements, des systèmes d'observation de leur état de fonctionnement. Cette fonction est réalisée par des HUMS (Health & Usage Monitoring System). L'objectif de cette thèse est de mettre en place dans le HUMS, un programme capable d'évaluer l'état du système, de détecter les dérives de fonctionnement, d'optimiser les opérations de maintenance et d'évaluer les risques d'échec d'une mission, en combinant les procédés de traitement des données opérationnelles (collectées sur chaque appareil grâce au HUMS) et prévisionnelles (issues des analyses de fiabilité et des coûts de maintenance, de réparation et d'immobilisation). Trois algorithmes ont été développés. Le premier, basé sur un modèle de chaînes de Markov cachées, permet à partir de données opérationnelles, d'estimer à chaque instant l'état du système, et ainsi, de détecter un mode de fonctionnement dégradé de l'équipement (diagnostic). Le deuxième algorithme permet de proposer une stratégie de maintenance optimale et dynamique. Il consiste à rechercher le meilleur instant pour réaliser une maintenance, en fonction de l'état estimé de l'équipement. Cet algorithme s'appuie sur une modélisation du système, par un processus Markovien déterministe par morceaux (noté PDMP) et sur l'utilisation du principe d'arrêt optimal. La date de maintenance est déterminée à partir des données opérationnelles, prévisionnelles et de l'état estimé du système (pronostic). Quant au troisième algorithme, il consiste à déterminer un risque d'échec de mission et permet de comparer les risques encourus suivant la politique de maintenance choisie.Ce travail de recherche, développé à partir d'outils sophistiqués de probabilités théoriques et numériques, a permis de définir un protocole de maintenance conditionnelle à l'état estimé du système, afin d'améliorer la stratégie de maintenance, la disponibilité des équipements au meilleur coût, la satisfaction des clients et de réduire les coûts d'exploitation.

Page generated in 0.0447 seconds