1 |
Existence and Regularity of Solutions to Some Singular Parabolic SystemsSalmaniw, Yurij January 2018 (has links)
This thesis continues the work started with my previous supervisor, Dr. Shaohua Chen. In [15], the authors developed some tools that showed the boundedness or blowup of solutions to a semilinear parabolic system with homogeneous Neumann boundary conditions. This system, the so called ’Activator-Inhibitor Model’, is of interest as it is used to model biological processes and pattern formation. Similar tools were later adapted to deal with the same parabolic system in [3], in which the authors prove global boundedness of solutions under homogeneous Dirichlet conditions. This new problem is of mathematical interest as the solutions may grow singular near the boundary. Shortly after, a different system was considered in [4], where the authors proved global boundedness of solutions to a system featuring similar singular reaction terms. The goal of this thesis is twofold: first, the tools developed that allow us to tackle these sorts of problems will be demonstrated in detail to showcase its utility; the second is to then use these tools to generalize some of these previous results to a larger class of singular parabolic systems. In doing so, we expand the classical literature found in [14] and other notable works, where nonsingular equations are extensively treated. The motivation for the first should be clear. While there are numerous bodies of text treating nonsingular problems, there are no collections available dealing with these types of singularities exclusively. This is of practical use to other mathematicians studying partial differential equations. The motivation for the second is, perhaps, more practical. There are a growing number of models found in physics, chemistry and biology that may be generalized to a singular type system. Through allowing those individuals to treat these problems, we may gain valuable insights into the real world and how these processes behave. / Thesis / Master of Science (MSc)
|
2 |
Global existence and fast-reaction limit in reaction-diffusion systems with cross effects / Existence globale et limite de réaction rapide dans des systèmes de réaction-diffusion avec effets croisésRolland, Guillaume 07 December 2012 (has links)
Cette thèse est consacrée à l'étude de systèmes d'équations aux dérivées partielles paraboliques issus de modèles de cinétique chimique, de dynamique des populations et de la théorie de l'électromigration. On s'intéresse à des questions d'existence de solutions globales en temps, à l'unicité de solutions faibles, ainsi qu'à la limite de réaction rapide dans un système de réaction-diffusion. Dans un premier chapitre, on étudie deux systèmes aux diffusions croisées. On commence par s'intéresser à un modèle de dynamique des populations, où les effets croisés dans les interactions entre les différentes espèces sont modélisés par des opérateurs non locaux. Pour toute dimension d'espace, on prouve l'existence et l'unicité de solutions globales régulières. On s'intéresse ensuite à un système aux diffusions croisées qui apparait comme la limite de réaction rapide d'un système classique associé à la réaction chimique C1+C2=C3. On prouve alors la convergence lorsque k tend vers l'infini de la solution du système avec une vitesse de réaction finie k vers une solution globale du système limite. Le second chapitre contient de nouveaux résultats d'existence globale pour des systèmes de réaction-diffusion. Pour des réseaux de réactions chimiques élémentaires du type Ci+Cj=Ck qui suivent la loi d'Action de Masse, on montre l'existence et l'unicité de solutions globales fortes, pour des dimensions en espace N<6 dans le cas semi-linéaire et N<4 dans le cas quasi-linéaire. On montre aussi l'existence de solutions globales faibles pour une classe de systèmes paraboliques quasi-linéaires dont les non-linéarités sont au plus quadratiques et dont les données initiales sont seulement supposées positives et intégrables. Dans le dernier chapitre, on généralise un résultat d'existence globale de solutions fortes pour des systèmes de réaction-diffusion dont les non-linéarités ont une structure "triangulaire", pour lesquels on prend désormais en compte des termes d'advection et des coefficients de diffusion dépendant du temps et de la variable d'espace. Ce résultat est ensuite utilisé dans un argument de point fixe de Leray-Schauder pour prouver l'existence en toute dimension de solutions globales à un problème d'électromigration-diffusion. / This thesis is devoted to the study of parabolic systems of partial differential equations arising in mass action kinetics chemistry, population dynamics and electromigration theory. We are interested in the existence of global solutions, uniqueness of weak solutions, and in the fast-reaction limit in a reaction-diffusion system. In the first chapter, we study two cross-diffusion systems. We are first interested in a population dynamics model, where cross effects in the interactions between the different species are modeled by non-local operators. We prove the well-posedness of the corresponding system for any space dimension. We are then interested in a cross-diffusion system which arises as the fast-reaction limit system in a classical system for the chemical reaction C1+C2=C3. We prove the convergence when k goes to infinity of the solution of the system with finite reaction speed k to a global solution of the limit system. The second chapter contains new global existence results for some reaction-diffusion systems. For networks of elementary chemical reactions of the type Ci+Cj=Ck and under Mass Action Kinetics assumption, we prove the existence and uniqueness of global strong solutions, for space dimensions N<6 in the semi-linear case, and N<4 in the quasi-linear case. We also prove the existence of global weak solutions for a class of parabolic quasi-linear systems with at most quadratic non-linearities and with initial data that are only assumed to be nonnegative and integrable. In the last chapter, we generalize a global well-posedness result for reaction-diffusion systems whose nonlinearities have a "triangular" structure, for which we now take into account advection terms and time and space dependent diffusion coefficients. The latter result is then used in a Leray-Schauder fixed point argument to prove the existence of global solutions in a diffusion-electromigration system.
|
3 |
Contrôlabilité de systèmes de réaction-diffusion non linéaires / Controllability of nonlinear reaction-diffusion sytemsLe Balc'h, Kévin 26 June 2019 (has links)
Cette thèse est consacrée au contrôle de quelques équations aux dérivées partielles non linéaires. On s’intéresse notamment à des systèmes paraboliques de réaction-diffusion non linéaires issus de la cinétique chimique. L’objectif principal est de démontrer des résultats de contrôlabilité locale ou globale, en temps petit, ou en temps grand.Dans une première partie, on démontre un résultat de contrôlabilité locale à des états stationnaires positifs en temps petit, pour un système de réaction-diffusion non linéaire.Dans une deuxième partie, on résout une question de contrôlabilité globale à zéro en temps petit pour un système 2 × 2 de réaction-diffusion non linéaire avec un couplage impair.La troisième partie est consacrée au célèbre problème ouvert d’Enrique Fernández-Cara et d’Enrique Zuazua des années 2000 concernant la contrôlabilité globale à zéro de l’équation de la chaleur faiblement non linéaire. On démontre un résultat de contrôlabilité globale à états positifs en temps petit et un résultat de contrôlabilité globale à zéro en temps long.La dernière partie, rédigée en collaboration avec Karine Beauchard et Armand Koenig, est une incursion vers l’hyperbolique. On étudie des systèmes linéaires à coefficients constants, couplant une dynamique transport avec une dynamique parabolique. On identifie leur temps minimal de contrôle et l’influence de leur structure algébrique sur leurs propriétés de contrôle. / This thesis is devoted to the control of nonlinear partial differential equations. We are mostly interested in nonlinear parabolic reaction-diffusion systems in reaction kinetics. Our main goal is to prove local or global controllability results in small time or in large time.In a first part, we prove a local controllability result to nonnegative stationary states in small time, for a nonlinear reaction-diffusion system.In a second part, we solve a question concerning the global null-controllability in small time for a 2 × 2 nonlinear reaction-diffusion system with an odd coupling term.The third part focuses on the famous open problem due to Enrique Fernndez-Cara and Enrique Zuazua in 2000, concerning the global null-controllability of the weak semi-linear heat equation. We show that the equation is globally nonnegative controllable in small time and globally null-controllable in large time.The last part, which is a joint work with Karine Beauchard and Armand Koenig, enters the hyperbolic world. We study linear parabolic-transport systems with constant coeffcients. We identify their minimal time of control and the influence of their algebraic structure on the controllability properties.
|
4 |
A System of Non-linear Partial Differential Equations Modeling Chemotaxis with Sensitivity FunctionsPost, Katharina 03 September 1999 (has links)
Wir betrachten ein System nichtlinearer parabolischer partieller Differentialgleichungen zur Modellierung des biologischen Phänomens Chemotaxis, das unter anderem in Aggregationsprozessen in Lebenszyklen bestimmter Einzeller eine wichtige Rolle spielt. Unser Chemotaxismodell benutzt Sensitivitäts funktionen, die die vorkommenden biologischen Prozesse genauer spezifizieren. Trotz der durch die Sensitivitätsfunktionen eingebrachten, zusätzlichen Nichtlinearitäten in den Gleichungen erhalten wir zeitlich globale Existenz von Lösungen für verschiedene biologisch realistische Klassen von Sensitivitätsfunktionen und können unter unterschiedlichen Bedingungen an die Systemdaten Konvergenz der Lösungen zu trivialen und nicht-trivialen stationären Punkten beweisen. / We consider a system of non-linear parabolic partial differential equations modeling chemotaxis, a biological phenomenon which plays a crucial role in aggregation processes in the life cycle of certain unicellular organisms. Our chemotaxis model introduces sensitivity functions which help describe the biological processes more accurately. In spite of the additional non-linearities introduced by the sensitivity functions into the equations, we obtain global existence of solutions for different classes of biologically realistic sensitivity functions and can prove convergence of the solutions to trivial and non-trivial steady states.
|
5 |
Global existence and fast-reaction limit in reaction-diffusion systems with cross effectsRolland, Guillaume 07 December 2012 (has links) (PDF)
This thesis is devoted to the study of parabolic systems of partial differential equations arising in mass action kinetics chemistry, population dynamics and electromigration theory. We are interested in the existence of global solutions, uniqueness of weak solutions, and in the fast-reaction limit in a reaction-diffusion system. In the first chapter, we study two cross-diffusion systems. We are first interested in a population dynamics model, where cross effects in the interactions between the different species are modeled by non-local operators. We prove the well-posedness of the corresponding system for any space dimension. We are then interested in a cross-diffusion system which arises as the fast-reaction limit system in a classical system for the chemical reaction C1+C2=C3. We prove the convergence when k goes to infinity of the solution of the system with finite reaction speed k to a global solution of the limit system. The second chapter contains new global existence results for some reaction-diffusion systems. For networks of elementary chemical reactions of the type Ci+Cj=Ck and under Mass Action Kinetics assumption, we prove the existence and uniqueness of global strong solutions, for space dimensions N<6 in the semi-linear case, and N<4 in the quasi-linear case. We also prove the existence of global weak solutions for a class of parabolic quasi-linear systems with at most quadratic non-linearities and with initial data that are only assumed to be nonnegative and integrable. In the last chapter, we generalize a global well-posedness result for reaction-diffusion systems whose nonlinearities have a "triangular" structure, for which we now take into account advection terms and time and space dependent diffusion coefficients. The latter result is then used in a Leray-Schauder fixed point argument to prove the existence of global solutions in a diffusion-electromigration system.
|
6 |
Nonconvex Dynamical ProblemsRieger, Marc Oliver 28 November 2004 (has links) (PDF)
Many problems in continuum mechanics, especially in the theory of elastic materials, lead to nonlinear partial differential equations. The nonconvexity of their underlying energy potential is a challenge for mathematical analysis, since convexity plays an important role in the classical theories of existence and regularity. In the last years one main point of interest was to develop techniques to circumvent these difficulties. One approach was to use different notions of convexity like quasi-- or polyconvexity, but most of the work was done only for static (time independent) equations. In this thesis we want to make some contributions concerning existence, regularity and numerical approximation of nonconvex dynamical problems.
|
7 |
Resultados teÃricos de controlabilidade para algumas EDPs nÃo-lineares da fÃsica / Theoretical controllability results for some nonlinear PDEs from physicsIvaldo Tributino de Sousa 07 December 2015 (has links)
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / Esta tese trata do controle nulo local de um problema de fronteira-livre para a equaÃÃo do calor semilinear 1D com controles distribuÃdos (apoiado localmente no espaÃo) ou controles de fronteira (atuando em x = 0). provamos que, se o tempo final T à fixado e o estado inicial à suficientemente pequeno, existe controles que dirigem o estado exatamente para descansar no tempo t = T. AlÃm disso, analisamos a controlabilidade nulo de um sistema nÃo-linear 1D que modela a interaÃÃo de um fluido e sua fronteira. O fluido à governado pela equaÃÃo de Burgers viscosa e os controles distribuÃdos. Por Ãltimo, vamos lidar com o sistema de Navier-Stokes e Boussinesq 3D, definido em um cubo. Neste contexto, provamos um resultado sobre a sua controlabilidade aproximada global por meio de controles de fronteira que atuam em alguma parte da faces do cubo. / This Thesis deals with the local null control of a free-boundary problem for the 1D semilinear heat equation with distributed controls (locally supported in space) or boundary controls (acting at x = 0). we prove that, if the final time T is fixed and the initial state is sufficiently small, there exists controls that drive the state exactly to rest at time t = T. Furthermore, we analyze the null controllability of a 1D nonlinear system which models the interaction of a fluid and its boundary. The fluid is governed by the viscous Burgers equation and the distributed controls. Lastly, we deal with the 3D Navier-Stokes and Boussinesq system, posed in a cube. In this context, we prove a result concerning its global approximate controllability by means of boundary controls
which act in some part of cube faces.
|
8 |
Contrôlabilité de quelques systèmes gouvernés par des équations paraboliques / Controllability of some systems governed by parabolic equationsDuprez, Michel 26 November 2015 (has links)
Cette thèse est consacrée à l'étude de la contrôlabilité approchée et à zéro des systèmes paraboliques linéaires sur un domaine non vide borné Ω de (), contrôlés par moins de forces que d'équations. Les contrôles seront localisés sur un ouvert de Ω ou sur son bord. Nous étudierons deux problèmes différents. Le premier consiste à contrôler une des équations indirectement à l'aide d'un opérateur de couplage d'ordre un. Nous obtenons alors des résultats pour plusieurs classes d'opérateurs et de systèmes. La deuxième question que nous étudierons est de savoir s'il est possible de contrôler seulement certaines composantes de la solution du système. Nous donnons une condition nécessaire et suffisante lorsque les coefficients de couplage sont constants ou dépendent du temps et étudions un système simplifié quand ils dépendent de l'espace. Nous terminerons en détaillant un schéma numérique avec lequel nous fournirons des perspectives quant à quelques problèmes qui restent ouverts en contrôlabilité partielle des systèmes paraboliques linéaires. / This thesis is devoted to the study of the approximate and null controllability of linear parabolic systems on a nonempty bounded domain Ω of(), controlled by less controls than equations. The controls will be localized in an open set of Ω or on its boundary. We will study two different problems. The first of them involves controlling one of the equations indirectly with a coupling operator of order one. We obtain some results for different class of operators and systems. The second question we will study is to know if it is possible to control only some components of the solution of the system. We give a necessary and sufficient condition when the coupling coefficients are constant or time depending and study a simplified system when they are space dependent. We will finish by giving details on a numerical scheme with which we provide perspectives concerning some open problems in partial controllability of linear parabolic systems.
|
9 |
Nonconvex Dynamical ProblemsRieger, Marc Oliver 28 November 2004 (has links)
Many problems in continuum mechanics, especially in the theory of elastic materials, lead to nonlinear partial differential equations. The nonconvexity of their underlying energy potential is a challenge for mathematical analysis, since convexity plays an important role in the classical theories of existence and regularity. In the last years one main point of interest was to develop techniques to circumvent these difficulties. One approach was to use different notions of convexity like quasi-- or polyconvexity, but most of the work was done only for static (time independent) equations. In this thesis we want to make some contributions concerning existence, regularity and numerical approximation of nonconvex dynamical problems.
|
10 |
Contrôlabilité de systèmes paraboliques linéaires couplés / Controllability of coupled linear parabolic systemsOlive, Guillaume 14 November 2013 (has links)
Dans cette thèse on s'intéresse à la contrôlabilité de deux classes de systèmes paraboliques linéaires.On caractérise dans un premier temps la contrôlabilité à zéro de systèmes à coefficients constants en dimension 1 lorsque les contrôles agissent sur différentes parties du domaine ou de sa frontière.On regarde ensuite avec le théorème de Fattorini la contrôlabilité frontière approchée de ces systèmes en dimension quelconque.On obtient notamment que les systèmes de 2 équations sont toujours contrôlables dans un rectangle si la zone de contrôle contient 2 directions.Dans un autre travail sur les systèmes à coefficients constants, on obtient une estimation du coût du contrôle frontière à zéro en dimension 1.On utilise ce résultat pour montrer que la contrôlabilité frontière à zéro dans des domaines cylindrique est réduite à la contrôlabilité frontière à zéro en dimension 1.On étudie ensuite la contrôlabilité approchée de systèmes en cascade avec un couplage d'ordre 1.On prouve que la contrôlabilité interne avec un couplage constant à toujours lieu, quel que soit la dimension et la zone de contrôle.On établit d'autre part une caractérisation de la contrôlabilité frontière en dimension 1 avec un couplage variable.Enfin, dans une dernière partie on s'intéresse à la contrôlabilité interne approchée de systèmes en cascade à coefficients variables en dimension 1.On montre qu'on est ramené à établir une caractérisation de la propriété de continuation unique pour une équation elliptique non-homogène.A l'aide de la caractérisation alors obtenue on montre en particulier comment la géométrie de la zone de contrôle peut influencer la contrôlabilité des systèmes. / This thesis focuses on the controllability of two classes of linear parabolic systems.We start with a caracterization of the null-controllability of systems with constant coefficients in dimension 1 where the controls are acting on different parts of the domain or its boundary.With the help of the theorem of Fattorini we then look at the boundary approximate controllability of these systems in any dimension.We show that a system of 2 equations is always approximately controllable on a rectangle if we assume that the control domain contains 2 directions.In another work on the systems with constant coefficients, we obtain an estimate of the boundary null-control cost in dimension 1.We then use this result to show that the boundary null-controllability in cylindrical domains is reduced to the boundary null-controllability in dimension 1.We then study the approximate controllability of cascade systems with a first order coupling term.We prove the distributed controllability when the coupling is constant, whatever the dimension and control domain are.On the other hand, we establish a caracterisation of the boundary controllability in dimension 1 for space-dependent couplings.Last, we investigate the distributed approximate controllability of cascade systems with space-dependent coefficients in dimension 1.Using the theorem of Fattorini and the structure of the systems under study we are lead to characterize the unique continuation property for a non-homogeneous elliptic equation.With the help of the caracterization then obtained we show in particular how the geometry of the control domain can affect the controllability properties of systems.
|
Page generated in 0.0849 seconds