• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 6
  • 4
  • 1
  • Tagged with
  • 27
  • 14
  • 13
  • 11
  • 11
  • 9
  • 9
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Proceedings of the 4th Many-core Applications Research Community (MARC) Symposium

January 2012 (has links)
In continuation of a successful series of events, the 4th Many-core Applications Research Community (MARC) symposium took place at the HPI in Potsdam on December 8th and 9th 2011. Over 60 researchers from different fields presented their work on many-core hardware architectures, their programming models, and the resulting research questions for the upcoming generation of heterogeneous parallel systems.
12

Distributed computations in a dynamic, heterogeneous Grid environment

Dramlitsch, Thomas January 2002 (has links)
Die immer dichtere und schnellere Vernetzung von Rechnern und Rechenzentren über Hochgeschwindigkeitsnetzwerke ermöglicht eine neue Art des wissenschaftlich verteilten Rechnens, bei der geographisch weit auseinanderliegende Rechenkapazitäten zu einer Gesamtheit zusammengefasst werden können. Dieser so entstehende virtuelle Superrechner, der selbst aus mehreren Grossrechnern besteht, kann dazu genutzt werden Probleme zu berechnen, für die die einzelnen Grossrechner zu klein sind. Die Probleme, die numerisch mit heutigen Rechenkapazitäten nicht lösbar sind, erstrecken sich durch sämtliche Gebiete der heutigen Wissenschaft, angefangen von Astrophysik, Molekülphysik, Bioinformatik, Meteorologie, bis hin zur Zahlentheorie und Fluiddynamik um nur einige Gebiete zu nennen.<br /> <br /> Je nach Art der Problemstellung und des Lösungsverfahrens gestalten sich solche "Meta-Berechnungen" mehr oder weniger schwierig. Allgemein kann man sagen, dass solche Berechnungen um so schwerer und auch um so uneffizienter werden, je mehr Kommunikation zwischen den einzelnen Prozessen (oder Prozessoren) herrscht. Dies ist dadurch begründet, dass die Bandbreiten bzw. Latenzzeiten zwischen zwei Prozessoren auf demselben Grossrechner oder Cluster um zwei bis vier Grössenordnungen höher bzw. niedriger liegen als zwischen Prozessoren, welche hunderte von Kilometern entfernt liegen.<br /> <br /> Dennoch bricht nunmehr eine Zeit an, in der es möglich ist Berechnungen auf solch virtuellen Supercomputern auch mit kommunikationsintensiven Programmen durchzuführen. Eine grosse Klasse von kommunikations- und berechnungsintensiven Programmen ist diejenige, die die Lösung von Differentialgleichungen mithilfe von finiten Differenzen zum Inhalt hat. Gerade diese Klasse von Programmen und deren Betrieb in einem virtuellen Superrechner wird in dieser vorliegenden Dissertation behandelt. Methoden zur effizienteren Durchführung von solch verteilten Berechnungen werden entwickelt, analysiert und implementiert. Der Schwerpunkt liegt darin vorhandene, klassische Parallelisierungsalgorithmen zu analysieren und so zu erweitern, dass sie vorhandene Informationen (z.B. verfügbar durch das Globus Toolkit) über Maschinen und Netzwerke zur effizienteren Parallelisierung nutzen. Soweit wir wissen werden solche Zusatzinformationen kaum in relevanten Programmen genutzt, da der Grossteil aller Parallelisierungsalgorithmen implizit für die Ausführung auf Grossrechnern oder Clustern entwickelt wurde. / In order to face the rapidly increasing need for computational resources of various scientific and engineering applications one has to think of new ways to make more efficient use of the worlds current computational resources. In this respect, the growing speed of wide area networks made a new kind of distributed computing possible: Metacomputing or (distributed) Grid computing. This is a rather new and uncharted field in computational science. The rapidly increasing speed of networks even outperforms the average increase of processor speed: Processor speeds double on average each 18 month whereas network bandwidths double every 9 months. Due to this development of local and wide area networks Grid computing will certainly play a key role in the future of parallel computing.<br /> <br /> This type of distributed computing, however, distinguishes from the traditional parallel computing in many ways since it has to deal with many problems not occurring in classical parallel computing. Those problems are for example heterogeneity, authentication and slow networks to mention only a few. Some of those problems, e.g. the allocation of distributed resources along with the providing of information about these resources to the application have been already attacked by the Globus software.<br /> <br /> Unfortunately, as far as we know, hardly any application or middle-ware software takes advantage of this information, since most parallelizing algorithms for finite differencing codes are implicitly designed for single supercomputer or cluster execution. We show that although it is possible to apply classical parallelizing algorithms in a Grid environment, in most cases the observed efficiency of the executed code is very poor.<br /> <br /> In this work we are closing this gap. In our thesis, we will<br /> - show that an execution of classical parallel codes in Grid environments is possible but very slow<br /> - analyze this situation of bad performance, nail down bottlenecks in communication, remove unnecessary overhead and other reasons for low performance<br /> - develop new and advanced algorithms for parallelisation that are aware of a Grid environment in order to generelize the traditional parallelization schemes<br /> - implement and test these new methods, replace and compare with the classical ones - introduce dynamic strategies that automatically adapt the running code to the nature of the underlying Grid environment.<br /> <br /> The higher the performance one can achieve for a single application by manual tuning for a Grid environment, the lower the chance that those changes are widely applicable to other programs. In our analysis as well as in our implementation we tried to keep the balance between high performance and generality. None of our changes directly affect code on the application level which makes our algorithms applicable to a whole class of real world applications.<br /> <br /> The implementation of our work is done within the Cactus framework using the Globus toolkit, since we think that these are the most reliable and advanced programming frameworks for supporting computations in Grid environments. On the other hand, however, we tried to be as general as possible, i.e. all methods and algorithms discussed in this thesis are independent of Cactus or Globus.
13

A Unified Infrastructure for Monitoring and Tuning the Energy Efficiency of HPC Applications

Schöne, Robert 07 November 2017 (has links) (PDF)
High Performance Computing (HPC) has become an indispensable tool for the scientific community to perform simulations on models whose complexity would exceed the limits of a standard computer. An unfortunate trend concerning HPC systems is that their power consumption under high-demanding workloads increases. To counter this trend, hardware vendors have implemented power saving mechanisms in recent years, which has increased the variability in power demands of single nodes. These capabilities provide an opportunity to increase the energy efficiency of HPC applications. To utilize these hardware power saving mechanisms efficiently, their overhead must be analyzed. Furthermore, applications have to be examined for performance and energy efficiency issues, which can give hints for optimizations. This requires an infrastructure that is able to capture both, performance and power consumption information concurrently. The mechanisms that such an infrastructure would inherently support could further be used to implement a tool that is able to do both, measuring and tuning of energy efficiency. This thesis targets all steps in this process by making the following contributions: First, I provide a broad overview on different related fields. I list common performance measurement tools, power measurement infrastructures, hardware power saving capabilities, and tuning tools. Second, I lay out a model that can be used to define and describe energy efficiency tuning on program region scale. This model includes hardware and software dependent parameters. Hardware parameters include the runtime overhead and delay for switching power saving mechanisms as well as a contemplation of their scopes and the possible influence on application performance. Thus, in a third step, I present methods to evaluate common power saving mechanisms and list findings for different x86 processors. Software parameters include their performance and power consumption characteristics as well as the influence of power-saving mechanisms on these. To capture software parameters, an infrastructure for measuring performance and power consumption is necessary. With minor additions, the same infrastructure can later be used to tune software and hardware parameters. Thus, I lay out the structure for such an infrastructure and describe common components that are required for measuring and tuning. Based on that, I implement adequate interfaces that extend the functionality of contemporary performance measurement tools. Furthermore, I use these interfaces to conflate performance and power measurements and further process the gathered information for tuning. I conclude this work by demonstrating that the infrastructure can be used to manipulate power-saving mechanisms of contemporary x86 processors and increase the energy efficiency of HPC applications.
14

Responsive Execution of Parallel Programs in Distributed Computing Environments

Karl, Holger 03 December 1999 (has links)
Vernetzte Standardarbeitsplatzrechner (sog. Cluster) sind eine attraktive Umgebung zur Ausf"uhrung paralleler Programme; f"ur einige Anwendungsgebiete bestehen jedoch noch immer ungel"oste Probleme. Ein solches Problem ist die Verl"asslichkeit und Rechtzeitigkeit der Programmausf"uhrung: In vielen Anwendungen ist es wichtig, sich auf die rechtzeitige Fertigstellung eines Programms verlassen zu k"onnen. Mechanismen zur Kombination dieser Eigenschaften f"ur parallele Programme in verteilten Rechenumgebungen sind das Hauptanliegen dieser Arbeit. Zur Behandlung dieses Anliegens ist eine gemeinsame Metrik f"ur Verl"asslichkeit und Rechtzeitigkeit notwendig. Eine solche Metrik ist die Responsivit"at, die f"ur die Bed"urfnisse dieser Arbeit verfeinert wird. Als Fallstudie werden Calypso und Charlotte, zwei Systeme zur parallelen Programmierung, im Hinblick auf Responsivit"at untersucht und auf mehreren Abstraktionsebenen werden Ansatzpunkte zur Verbesserung ihrer Responsivit"at identifiziert. L"osungen f"ur diese Ansatzpunkte werden zu allgemeineren Mechanismen f"ur (parallele) responsive Dienste erweitert. Im Einzelnen handelt es sich um 1. eine Analyse der Responsivit"at von Calypsos ``eager scheduling'' (ein Verfahren zur Lastbalancierung und Fehlermaskierung), 2. die Behebung eines ``single point of failure,'' zum einen durch eine Responsivit"atsanalyse von Checkpointing, zum anderen durch ein auf Standardschnittstellen basierendes System zur Replikation bestehender Software, 3. ein Verfahren zur garantierten Ressourcenzuteilung f"ur parallele Programme und 4.die Einbeziehung semantischer Information "uber das Kommunikationsmuster eines Programms in dessen Ausf"uhrung zur Verbesserung der Leistungsf"ahigkeit. Die vorgeschlagenen Mechanismen sind kombinierbar und f"ur den Einsatz in Standardsystemen geeignet. Analyse und Experimente zeigen, dass diese Mechanismen die Responsivit"at passender Anwendungen verbessern. / Clusters of standard workstations have been shown to be an attractive environment for parallel computing. However, there remain unsolved problems to make them suitable to some application scenarios. One of these problems is a dependable and timely program execution: There are many applications in which a program should be successfully completed at a predictable point of time. Mechanisms to combine the properties of both dependable and timely execution of parallel programs in distributed computing environments are the main objective of this dissertation. Addressing these properties requires a joint metric for dependability and timeliness. Responsiveness is such a metric; it is refined for the purposes of this work. As a case study, Calypso and Charlotte, two parallel programming systems, are analyzed and their shortcomings on several abstraction levels with regard to responsiveness are identified. Solutions for them are presented and generalized, resulting in widely applicable mechanisms for (parallel) responsive services. Specifically, these solutions are: 1) a responsiveness analysis of Calypso's eager scheduling (a mechanism for load balancing and fault masking), 2) ameliorating a single point of failure by a responsiveness analysis of checkpointing and by a standard interface-based system for replication of legacy software, 3) managing resources in a way suitable for parallel programs, and 4) using semantical information about the communication pattern of a program to improve its performance. All proposed mechanisms can be combined and are suitable for use in standard environments. It is shown by analysis and experiments that these mechanisms improve the responsiveness of eligible applications.
15

Visualisation interactive de données hétérogènes pour l'amélioration des dépenses énergétiques du bâtiment / Interactive visualisation of heterogenous data for building energy efficiency

Lange, Benoît 07 November 2012 (has links)
De nos jours, l'économie d'énergie est devenue un enjeu crucial. Les bâtiments des différents pays ont été identifiés comme étant une source importante de perte énergétique. De ce constat a émergé le projet RIDER (Reasearch for IT Driven EneRgy efficiency). Ce projet a pour objectif de développer un système d'information innovant permettant d'optimiser la consommation énergétique d'un bâtiment ou d'un groupe de bâtiments. Ce système est basé sur des composants logiciels, notamment une solution générale de modélisation du bâtiment, une solution de fouille de données, une solution de visualisation. Chacun de ces composants est destiné à améliorer le modèle de données de RIDER. Dans ce manuscrit, nous nous intéressons à la partie visualisation et nous proposons donc une solution d'amélioration du modèle par cette méthode. Dans ces travaux, nous allons présenter les solutions que nous avons mises en place pour modéliser le bâtiment ; pour ce faire nous avons utilisé une solution à base de particules dont la valeur est interpolée par rapport aux différents capteurs du bâtiment. Nous présentons également les différentes solutions mises en place pour visualiser les données et les méthodes d'interactions pour améliorer le modèle du bâtiment. Enfin, notre dernière partie présente les résultats de notre solution au travers de deux jeux de données. / Energy efficiencies are became a major issue. Building from any country have been identified as gap of energy, building are not enough insulated and energy loss by this struc- ture represent a major part of energy expenditure. RIDER has emerged from this viewpoint, RIDER for Research for IT Driven EneRgy efficiency. This project has goal to develop a new kind of IT system to optimize energy consumption of buildings. This system is based on a component paradigm, which is composed by a pivot model, a data warehouse with a data mining approach and a visualization tool. These two last components are developed to improve content of pivot model.In this manuscript, our focus was on the visualization part of the project. This manuscript is composed in two parts: state of the arts and contributions. Basic notions, a visualization chapter and a visual analytics chapter compose the state of the art. In the contribution part, we present data model used in this project, visualization proposed and we conclude with two experimentations on real data.
16

A Unified Infrastructure for Monitoring and Tuning the Energy Efficiency of HPC Applications

Schöne, Robert 19 September 2017 (has links)
High Performance Computing (HPC) has become an indispensable tool for the scientific community to perform simulations on models whose complexity would exceed the limits of a standard computer. An unfortunate trend concerning HPC systems is that their power consumption under high-demanding workloads increases. To counter this trend, hardware vendors have implemented power saving mechanisms in recent years, which has increased the variability in power demands of single nodes. These capabilities provide an opportunity to increase the energy efficiency of HPC applications. To utilize these hardware power saving mechanisms efficiently, their overhead must be analyzed. Furthermore, applications have to be examined for performance and energy efficiency issues, which can give hints for optimizations. This requires an infrastructure that is able to capture both, performance and power consumption information concurrently. The mechanisms that such an infrastructure would inherently support could further be used to implement a tool that is able to do both, measuring and tuning of energy efficiency. This thesis targets all steps in this process by making the following contributions: First, I provide a broad overview on different related fields. I list common performance measurement tools, power measurement infrastructures, hardware power saving capabilities, and tuning tools. Second, I lay out a model that can be used to define and describe energy efficiency tuning on program region scale. This model includes hardware and software dependent parameters. Hardware parameters include the runtime overhead and delay for switching power saving mechanisms as well as a contemplation of their scopes and the possible influence on application performance. Thus, in a third step, I present methods to evaluate common power saving mechanisms and list findings for different x86 processors. Software parameters include their performance and power consumption characteristics as well as the influence of power-saving mechanisms on these. To capture software parameters, an infrastructure for measuring performance and power consumption is necessary. With minor additions, the same infrastructure can later be used to tune software and hardware parameters. Thus, I lay out the structure for such an infrastructure and describe common components that are required for measuring and tuning. Based on that, I implement adequate interfaces that extend the functionality of contemporary performance measurement tools. Furthermore, I use these interfaces to conflate performance and power measurements and further process the gathered information for tuning. I conclude this work by demonstrating that the infrastructure can be used to manipulate power-saving mechanisms of contemporary x86 processors and increase the energy efficiency of HPC applications.
17

pcApriori: Scalable apriori for multiprocessor systems

Schlegel, Benjamin, Kiefer, Tim, Kissinger, Thomas, Lehner, Wolfgang 16 September 2022 (has links)
Frequent-itemset mining is an important part of data mining. It is a computational and memory intensive task and has a large number of scientific and statistical application areas. In many of them, the datasets can easily grow up to tens or even several hundred gigabytes of data. Hence, efficient algorithms are required to process such amounts of data. In the recent years, there have been proposed many efficient sequential mining algorithms, which however cannot exploit current and future systems providing large degrees of parallelism. Contrary, the number of parallel frequent-itemset mining algorithms is rather small and most of them do not scale well as the number of threads is largely increased. In this paper, we present a highly-scalable mining algorithm that is based on the well-known Apriori algorithm; it is optimized for processing very large datasets on multiprocessor systems. The key idea of pcApriori is to employ a modified producer--consumer processing scheme, which partitions the data during processing and distributes it to the available threads. We conduct many experiments on large datasets. pcApriori scales almost linear on our test system comprising 32 cores.
18

Effiziente parallele Sortier- und Datenumverteilungsverfahren für Partikelsimulationen auf Parallelrechnern mit verteiltem Speicher / Efficient Parallel Sorting and Data Redistribution Methods for Particle Codes on Distributed Memory Systems

Hofmann, Michael 16 April 2012 (has links) (PDF)
Partikelsimulationen repräsentieren eine Klasse von daten- und rechenintensiven Simulationsanwendungen, die in unterschiedlichen Bereichen der Wissenschaft und der industriellen Forschung zum Einsatz kommen. Der hohe Berechnungsaufwand der eingesetzten Lösungsmethoden und die großen Datenmengen, die zur Modellierung realistischer Probleme benötigt werden, machen die Nutzung paralleler Rechentechnik hierfür unverzichtbar. Parallelrechner mit verteiltem Speicher stellen dabei eine weit verbreitete Architektur dar, bei der eine Vielzahl an parallel arbeitenden Rechenknoten über ein Verbindungsnetzwerk miteinander Daten austauschen können. Die Berechnung von Wechselwirkungen zwischen Partikeln stellt oft den Hauptaufwand einer Partikelsimulation dar und wird mit Hilfe schneller Lösungsmethoden, wie dem Barnes-Hut-Algorithmus oder der Schnellen Multipolmethode, durchgeführt. Effiziente parallele Implementierungen dieser Algorithmen benötigen dabei eine Sortierung der Partikel nach ihren räumlichen Positionen. Die Sortierung ist sowohl notwendig, um einen effizienten Zugriff auf die Partikeldaten zu erhalten, als auch Teil von Optimierungen zur Erhöhung der Lokalität von Speicherzugriffen, zur Minimierung der Kommunikation und zur Verbesserung der Lastbalancierung paralleler Berechnungen. Die vorliegende Dissertation beschäftigt sich mit der Entwicklung eines effizienten parallelen Sortierverfahrens und der dafür benötigten Kommunikationsoperationen zur Datenumverteilung in Partikelsimulationen. Hierzu werden eine Vielzahl existierender paralleler Sortierverfahren für verteilten Speicher analysiert und mit den Anforderungen von Seiten der Partikelsimulationsanwendungen verglichen. Besondere Herausforderungen ergeben sich dabei hinsichtlich der Aufteilung der Partikeldaten auf verteilten Speicher, der Gewichtung zu sortierender Daten zur verbesserten Lastbalancierung, dem Umgang mit doppelten Schlüsselwerten sowie der Verfügbarkeit und Nutzung speichereffizienter Kommunikationsoperationen. Um diese Anforderungen zu erfüllen, wird ein neues paralleles Sortierverfahren entwickelt und in die betrachteten Anwendungsprogramme integriert. Darüber hinaus wird ein neuer In-place-Algorithmus für der MPI_Alltoallv-Kommunikationsoperation vorgestellt, mit dem der Speicherverbrauch für die notwendige Datenumverteilung innerhalb der parallelen Sortierung deutlich reduziert werden kann. Das Verhalten aller entwickelten Verfahren wird jeweils isoliert und im praxisrelevanten Einsatz innerhalb verschiedener Anwendungsprogramme und unter Verwendung unterschiedlicher, insbesondere auch hochskalierbarer Parallelrechner untersucht.
19

Towards Next Generation Sequential and Parallel SAT Solvers / Hin zur nächsten Generation Sequentieller und Paralleler SAT-Solver

Manthey, Norbert 08 January 2015 (has links) (PDF)
This thesis focuses on improving the SAT solving technology. The improvements focus on two major subjects: sequential SAT solving and parallel SAT solving. To better understand sequential SAT algorithms, the abstract reduction system Generic CDCL is introduced. With Generic CDCL, the soundness of solving techniques can be modeled. Next, the conflict driven clause learning algorithm is extended with the three techniques local look-ahead, local probing and all UIP learning that allow more global reasoning during search. These techniques improve the performance of the sequential SAT solver Riss. Then, the formula simplification techniques bounded variable addition, covered literal elimination and an advanced cardinality constraint extraction are introduced. By using these techniques, the reasoning of the overall SAT solving tool chain becomes stronger than plain resolution. When using these three techniques in the formula simplification tool Coprocessor before using Riss to solve a formula, the performance can be improved further. Due to the increasing number of cores in CPUs, the scalable parallel SAT solving approach iterative partitioning has been implemented in Pcasso for the multi-core architecture. Related work on parallel SAT solving has been studied to extract main ideas that can improve Pcasso. Besides parallel formula simplification with bounded variable elimination, the major extension is the extended clause sharing level based clause tagging, which builds the basis for conflict driven node killing. The latter allows to better identify unsatisfiable search space partitions. Another improvement is to combine scattering and look-ahead as a superior search space partitioning function. In combination with Coprocessor, the introduced extensions increase the performance of the parallel solver Pcasso. The implemented system turns out to be scalable for the multi-core architecture. Hence iterative partitioning is interesting for future parallel SAT solvers. The implemented solvers participated in international SAT competitions. In 2013 and 2014 Pcasso showed a good performance. Riss in combination with Copro- cessor won several first, second and third prices, including two Kurt-Gödel-Medals. Hence, the introduced algorithms improved modern SAT solving technology.
20

Effiziente parallele Sortier- und Datenumverteilungsverfahren für Partikelsimulationen auf Parallelrechnern mit verteiltem Speicher

Hofmann, Michael 09 March 2012 (has links)
Partikelsimulationen repräsentieren eine Klasse von daten- und rechenintensiven Simulationsanwendungen, die in unterschiedlichen Bereichen der Wissenschaft und der industriellen Forschung zum Einsatz kommen. Der hohe Berechnungsaufwand der eingesetzten Lösungsmethoden und die großen Datenmengen, die zur Modellierung realistischer Probleme benötigt werden, machen die Nutzung paralleler Rechentechnik hierfür unverzichtbar. Parallelrechner mit verteiltem Speicher stellen dabei eine weit verbreitete Architektur dar, bei der eine Vielzahl an parallel arbeitenden Rechenknoten über ein Verbindungsnetzwerk miteinander Daten austauschen können. Die Berechnung von Wechselwirkungen zwischen Partikeln stellt oft den Hauptaufwand einer Partikelsimulation dar und wird mit Hilfe schneller Lösungsmethoden, wie dem Barnes-Hut-Algorithmus oder der Schnellen Multipolmethode, durchgeführt. Effiziente parallele Implementierungen dieser Algorithmen benötigen dabei eine Sortierung der Partikel nach ihren räumlichen Positionen. Die Sortierung ist sowohl notwendig, um einen effizienten Zugriff auf die Partikeldaten zu erhalten, als auch Teil von Optimierungen zur Erhöhung der Lokalität von Speicherzugriffen, zur Minimierung der Kommunikation und zur Verbesserung der Lastbalancierung paralleler Berechnungen. Die vorliegende Dissertation beschäftigt sich mit der Entwicklung eines effizienten parallelen Sortierverfahrens und der dafür benötigten Kommunikationsoperationen zur Datenumverteilung in Partikelsimulationen. Hierzu werden eine Vielzahl existierender paralleler Sortierverfahren für verteilten Speicher analysiert und mit den Anforderungen von Seiten der Partikelsimulationsanwendungen verglichen. Besondere Herausforderungen ergeben sich dabei hinsichtlich der Aufteilung der Partikeldaten auf verteilten Speicher, der Gewichtung zu sortierender Daten zur verbesserten Lastbalancierung, dem Umgang mit doppelten Schlüsselwerten sowie der Verfügbarkeit und Nutzung speichereffizienter Kommunikationsoperationen. Um diese Anforderungen zu erfüllen, wird ein neues paralleles Sortierverfahren entwickelt und in die betrachteten Anwendungsprogramme integriert. Darüber hinaus wird ein neuer In-place-Algorithmus für der MPI_Alltoallv-Kommunikationsoperation vorgestellt, mit dem der Speicherverbrauch für die notwendige Datenumverteilung innerhalb der parallelen Sortierung deutlich reduziert werden kann. Das Verhalten aller entwickelten Verfahren wird jeweils isoliert und im praxisrelevanten Einsatz innerhalb verschiedener Anwendungsprogramme und unter Verwendung unterschiedlicher, insbesondere auch hochskalierbarer Parallelrechner untersucht.

Page generated in 0.0756 seconds