Spelling suggestions: "subject:"particle swarm"" "subject:"particle awarm""
391 |
Νέες μέθοδοι εκμάθησης για ασαφή γνωστικά δίκτυα και εφαρμογές στην ιατρική και βιομηχανία / New learning techniques to train fuzzy cognitive maps and applications in medicine and industryΠαπαγεωργίου, Ελπινίκη 25 June 2007 (has links)
Αντικείµενο της διατριβής είναι η ανάπτυξη νέων µεθοδολογιών εκµάθησης και σύγκλισης των Ασαφών Γνωστικών ∆ικτύων που προτείνονται για τη βελτίωση και προσαρµογή της συµπεριφοράς τους, καθώς και για την αύξηση της απόδοσής τους, αναδεικνύοντάς τα σε αποτελεσµατικά δυναµικά συστήµατα µοντελοποίησης. Τα νέα βελτιωµένα Ασαφή Γνωστικά ∆ίκτυα, µέσω της εκµάθησης και προσαρµογής των βαρών τους, έχουν χρησιµοποιηθεί στην ιατρική σε θέµατα διάγνωσης και υποστήριξης στη λήψη απόφασης, καθώς και σε µοντέλα βιοµηχανικών συστηµάτων που αφορούν τον έλεγχο διαδικασιών, µε πολύ ικανοποιητικά αποτελέσµατα. Στη διατριβή αυτή παρουσιάζονται, αξιολογούνται και εφαρµόζονται δύο νέοι αλγόριθµοι εκµάθησης χωρίς επίβλεψη των Ασαφών Γνωστικών ∆ικτύων, οι αλγόριθµοι Active Hebbian Learning (AHL) και Nonlinear Hebbian Learning (NHL), βασισµένοι στον κλασσικό αλγόριθµό εκµάθησης χωρίς επίβλεψη τύπου Hebb των νευρωνικών δικτύων, καθώς και µια νέα προσέγγιση εκµάθησης των Ασαφών Γνωστικών ∆ικτύων βασισµένη στους εξελικτικούς αλγορίθµους και πιο συγκεκριµένα στον αλγόριθµο Βελτιστοποίησης µε Σµήνος Σωµατιδίων και στον ∆ιαφοροεξελικτικό αλγόριθµο. Οι προτεινόµενοι αλγόριθµοι AHL και NHL στηρίζουν νέες µεθοδολογίες εκµάθησης για τα ΑΓ∆ που βελτιώνουν τη λειτουργία, και την αξιοπιστία τους, και που παρέχουν στους εµπειρογνώµονες του εκάστοτε προβλήµατος που αναπτύσσουν το ΑΓ∆, την εκµάθηση των παραµέτρων για τη ρύθµιση των αιτιατών διασυνδέσεων µεταξύ των κόµβων. Αυτοί οι τύποι εκµάθησης που συνοδεύονται από την σωστή γνώση του εκάστοτε προβλήµατος-συστήµατος, συµβάλλουν στην αύξηση της απόδοσης των ΑΓ∆ και διευρύνουν τη χρήση τους. Επιπρόσθετα µε τους αλγορίθµους εκµάθησης χωρίς επίβλεψη τύπου Hebb για τα ΑΓ∆, αναπτύσσονται και προτείνονται νέες τεχνικές εκµάθησης των ΑΓ∆ βασισµένες στους εξελικτικούς αλγορίθµους. Πιο συγκεκριµένα, προτείνεται µια νέα µεθοδολογία για την εφαρµογή του εξελικτικού αλγορίθµου Βελτιστοποίησης µε Σµήνος Σωµατιδίων στην εκµάθηση των Ασαφών Γνωστικών ∆ικτύων και πιο συγκεκριµένα στον καθορισµό των βέλτιστων περιοχών τιµών των βαρών των Ασαφών Γνωστικών ∆ικτύων. Με τη µεθοδο αυτή λαµβάνεται υπόψη η γνώση των εµπειρογνωµόνων για τον σχεδιασµό του µοντέλου µε τη µορφή περιορισµών στους κόµβους που µας ενδιαφέρουν οι τιµές των καταστάσεών τους, που έχουν οριστοί ως κόµβοι έξοδοι του συστήµατος, και για τα βάρη λαµβάνονται υπόψη οι περιοχές των ασαφών συνόλων που έχουν συµφωνήσει όλοι οι εµπειρογνώµονες. Έτσι θέτoντας περιορισµούς σε όλα τα βάρη και στους κόµβους εξόδου και καθορίζοντας µια κατάλληλη αντικειµενική συνάρτηση για το εκάστοτε πρόβληµα, προκύπτουν κατάλληλοι πίνακες βαρών (appropriate weight matrices) που µπορούν να οδηγήσουν το σύστηµα σε επιθυµητές περιοχές λειτουργίας και ταυτόχρονα να ικανοποιούν τις ειδικές συνθήκες- περιορισµούς του προβλήµατος. Οι δύο νέες µέθοδοι εκµάθησης χωρίς επίβλεψη που έχουν προταθεί για τα ΑΓ∆ χρησιµοποιούνται και εφαρµόζονται µε επιτυχία σε δυο πολύπλοκα προβλήµατα από το χώρο της ιατρικής, στο πρόβληµα λήψης απόφασης στην ακτινοθεραπεία και στο πρόβληµα κατηγοριοποίησης των καρκινικών όγκων της ουροδόχου κύστης σε πραγµατικές κλινικές περιπτώσεις. Επίσης όλοι οι προτεινόµενοι αλγόριθµοι εφαρµόζονται σε µοντέλα βιοµηχανικών συστηµάτων που αφορούν τον έλεγχο διαδικασιών µε πολύ ικανοποιητικά αποτελέσµατα. Οι αλγόριθµοι αυτοί, όπως προκύπτει από την εφαρµογή τους σε συγκεκριµένα προβλήµατα, βελτιώνουν το µοντέλο του ΑΓ∆, συµβάλλουν σε ευφυέστερα συστήµατα και διευρύνουν τη δυνατότητα εφαρµογής τους σε πραγµατικά και πολύπλοκα προβλήµατα. Η κύρια συνεισφορά αυτής της διατριβής είναι η ανάπτυξη νέων µεθοδολογιών εκµάθησης και σύγκλισης των Ασαφών Γνωστικών ∆ικτύων προτείνοντας δυο νέους αλγορίθµους µη επιβλεπόµενης µάθησης τύπου Hebb, τον αλγόριθµο Active Hebbian Learning και τον αλγόριθµο Nonlinear Hebbian Learning για την προσαρµογή των βαρών των διασυνδέσεων µεταξύ των κόµβων των Ασαφών Γνωστικών ∆ικτύων, καθώς και εξελικτικούς αλγορίθµους βελτιστοποιώντας συγκεκριµένες αντικειµενικές συναρτήσεις για κάθε εξεταζόµενο πρόβληµα. Τα νέα βελτιωµένα Ασαφή Γνωστικά ∆ίκτυα µέσω των αλγορίθµων προσαρµογής των βαρών τους έχουν χρησιµοποιηθεί για την ανάπτυξη ενός ∆ιεπίπεδου Ιεραρχικού Συστήµατος για την υποστήριξη λήψης απόφασης στην ακτινοθεραπεία, για την ανάπτυξη ενός διαγνωστικού εργαλείου για την κατηγοριοποίηση του βαθµού κακοήθειας των καρκινικών όγκων της ουροδόχου κύστης, καθώς και για την επίλυση βιοµηχανικών προβληµάτων για τον έλεγχο διαδικασιών. / The main contribution of this Dissertation is the development of new learning and convergence methodologies for Fuzzy Cognitive Maps that are proposed for the improvement and adaptation of their behaviour, as well as for the increase of their performance, electing them in effective dynamic systems of modelling. The new improved Fuzzy Cognitive Maps, via the learning and adaptation of their weights, have been used in medicine for diagnosis and decision-making, as well as to alleviate the problem of the potential uncontrollable convergence to undesired states in models of industrial process control systems, with very satisfactory results. In this Dissertation are presented, validated and implemented two new learning algorithms without supervision for Fuzzy Cognitive Maps, the algorithms Active Hebbian Learning (AHL) and Nonlinear Hebbian Learning (NHL), based on the classic unsupervised Hebb-type learning algorithm of neural networks, as well as a new approach of learning for Fuzzy Cognitive Maps based on the evolutionary algorithms and more specifically on the algorithm of Particles Swarm Optimization and on the Differential Evolution algorithm. The proposed algorithms AHL and NHL support new learning methodologies for FCMs that improve their operation, efficiency and reliability, and that provide in the experts of each problem that develop the FCM, the learning of parameters for the regulation (fine-tuning) of cause-effect relationships (weights) between the concepts. These types of learning that are accompanied with the right knowledge of each problem-system, contribute in the increase of performance of FCMs and extend their use. Additionally to the unsupervised learning algorithms of Hebb-type for the FCMs, are developed and proposed new learning techniques of FCMs based on the evolutionary algorithms. More specifically, it is proposed a new learning methodology for the application of evolutionary algorithm of Particle Swarm Optimisation in the adaptation of FCMs and more concretely in the determination of the optimal regions of weight values of FCMs. With this method it is taken into consideration the experts’ knowledge for the modelling with the form of restrictions in the concepts that interest us their values, and are defined as output concepts, and for weights are received the arithmetic values of the fuzzy regions that have agreed all the experts. Thus considering restrictions in all weights and in the output concepts and determining a suitable objective function for each problem, result appropriate weight matrices that can lead the system to desirable regions of operation and simultaneously satisfy specific conditions of problem. The first two proposed methods of unsupervised learning that have been suggested for the FCMs are used and applied with success in two complicated problems in medicine, in the problem of decision-making in the radiotherapy process and in the problem of tumor characterization for urinary bladder in real clinical cases. Also all the proposed algorithms are applied in models of industrial systems that concern the control of processes with very satisfactory results. These algorithms, as it results from their application in concrete problems, improve the model of FCMs, they contribute in more intelligent systems and they extend their possibility of application in real and complex problems. The main contribution of the present Dissertation is to develop new learning and convergence methodologies for Fuzzy Cognitive Maps proposing two new unsupervised learning algorithms, the algorithm Active Hebbian Learning and the algorithm Nonlinear Hebbian Learning for the adaptation of weights of the interconnections between the concepts of Fuzzy Cognitive Maps, as well as Evolutionary Algorithms optimizing concrete objective functions for each examined problem. New improved Fuzzy Cognitive Maps via the algorithms of weight adaptation have been used for the development of an Integrated Two-level hierarchical System for the support of decision-making in the radiotherapy, for the development of a new diagnostic tool for tumour characterization of urinary bladder, as well as for the solution of industrial process control problems.
|
392 |
Sur l’ordonnancement d’ateliers job-shop flexibles et flow-shop en industries pharmaceutiques : optimisation par algorithmes génétiques et essaims particulaires / On flexible job-shop and pharmaceutical industries flow-shop schedulings by particle swarm and genetic algorithm optimizationBoukef, Hela 03 July 2009 (has links)
Pour la résolution de problèmes d’ordonnancement d’ateliers de type flow-shop en industries pharmaceutiques et d’ateliers de type job-shop flexible, deux méthodes d’optimisation ont été développées : une méthode utilisant les algorithmes génétiques dotés d’un nouveau codage proposé et une méthode d’optimisation par essaim particulaire modifiée pour être exploitée dans le cas discret. Les critères retenus dans le cas de lignes de conditionnement considérées sont la minimisation des coûts de production ainsi que des coûts de non utilisation des machines pour les problèmes multi-objectifs relatifs aux industries pharmaceutiques et la minimisation du Makespan pour les problèmes mono-objectif des ateliers job-shop flexibles.Ces méthodes ont été appliquées à divers exemples d’ateliers de complexités distinctes pour illustrer leur mise en œuvre. L’étude comparative des résultats ainsi obtenus a montré que la méthode basée sur l’optimisation par essaim particulaire est plus efficace que celle des algorithmes génétiques, en termes de rapidité de la convergence et de l’approche de la solution optimale / For flexible job-shop and pharmaceutical flow-shop scheduling problems resolution, two optimization methods are considered: a genetic algorithm one using a new proposed coding and a particle swarm optimization one modified in order to be used in discrete cases.The criteria retained for the considered packaging lines in pharmaceutical industries multi-objective problems are production cost minimization and total stopping cost minimization. For the flexible job-shop scheduling problems treated, the criterion taken into account is Makespan minimization.These two methods have been applied to various work-shops with distinct complexities to show their efficiency.After comparison of these methods, the obtained results allowed us to notice the efficiency of the based particle swarm optimization method in terms of convergence and reaching optimal solution
|
393 |
Algoritmos de inteligência computacional em instrumentação: uso de fusão de dados na avaliação de amostras biológicas e químicas / Computational intelligence algorithms for instrumentation: biological and chemical samples evaluation by using data fusionNegri, Lucas Hermann 24 February 2012 (has links)
Made available in DSpace on 2016-12-12T20:27:37Z (GMT). No. of bitstreams: 1
LUCAS HERMANN NEGRI.pdf: 2286573 bytes, checksum: 5c0e3c77c1d910bd47dd444753c142c4 (MD5)
Previous issue date: 2012-02-24 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This work presents computational methods to process data from electrical impedance spectroscopy and fiber Bragg grating interrogation in order to characterize the evaluated samples. Estimation and classification systems were developed, by using the signals isolatedly or simultaneously. A new method to adjust the parameters of functions that describes the electrical impedance spectra by using particle swarm optimization is proposed. Such method were also extended to correct distorted spectra. A benchmark for peak detection algorithms in fiber Bragg grating interrogation was performed, including the currently used algorithms as obtained from literature, where the accuracy, precision, and computational performance were evaluated. This comparative study was performed with both simulated and experimental data. It was perceived that there is no optimal algorithm when all aspects are taken into account, but it is possible to choose a suitable algorithm when one has the application requirements. A novel peak detection algorithm based on an artificial neural network is proposed, being recommended when the analyzed spectra have distortions or is not symmetrical. Artificial neural networks and support vector machines were employed with the data processing algorithms to classify or estimate sample characteristics in experiments with bovine meat, milk, and automotive fuel. The results have shown that the proposed data processing methods are useful to extract the data main information and that the employed data fusion schemes were useful, in its initial classification and estimation objectives. / Neste trabalho são apresentados métodos computacionais para o processamento de dados produzidos em sistemas de espectroscopia de impedância elétrica e sensoriamento a redes de Bragg em fibra óptica com o objetivo de inferir características das amostras analisadas. Sistemas de estimação e classificação foram desenvolvidos, utilizando os sinais isoladamente ou de forma conjunta com o objetivo de melhorar as respostas dos sistemas. Propõe-se o ajuste dos parâmetros de funções que modelam espectros de impedância elétrica por meio de um novo algoritmo de otimização por enxame de partículas, incluindo a sua utilização na correção de espectros com determinadas distorções. Um estudo comparativo foi realizado entre os métodos correntes utilizados na detecção de pico de sinais resultantes de sensores em fibras ópticas, onde avaliou-se a exatidão, precisão e desempenho computacional. Esta comparação foi feita utilizando dados simulados e experimentais, onde percebeu-se que não há algoritmo simultaneamente superior em todos os aspectos avaliados, mas que é possível escolher o ideal quando se têm os requisitos da aplicação. Um método de detecção de pico por meio de uma rede neural artificial foi proposto, sendo recomendado em situações onde o espectro analisado possui distorções ou não é simétrico. Redes neurais artificiais e máquinas de vetor de suporte foram utilizadas em conjunto com os algoritmos de processamento com o objetivo de classificar ou estimar alguma característica de amostras em experimentos que envolveram carnes bovinas, leite bovino e misturas de combustível automotivo. Mostra-se neste trabalho que os métodos de processamento propostos são úteis para a extração das características importantes dos dados e que os esquemas utilizados para a fusão destes dados foram úteis dentro dos seus objetivos iniciais de classificação e estimação.
|
394 |
Otimiza??o em comit?s de classificadores: uma abordagem baseada em filtro para sele??o de subconjuntos de atributosSantana, Laura Emmanuella Alves dos Santos 02 February 2012 (has links)
Made available in DSpace on 2014-12-17T15:46:59Z (GMT). No. of bitstreams: 1
LauraEASS_TESE.pdf: 2447411 bytes, checksum: 3e442431965058383423623bc7751de0 (MD5)
Previous issue date: 2012-02-02 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / Traditional applications of feature selection in areas such as data mining, machine learning
and pattern recognition aim to improve the accuracy and to reduce the computational
cost of the model. It is done through the removal of redundant, irrelevant or noisy data,
finding a representative subset of data that reduces its dimensionality without loss of performance.
With the development of research in ensemble of classifiers and the verification
that this type of model has better performance than the individual models, if the base
classifiers are diverse, comes a new field of application to the research of feature selection.
In this new field, it is desired to find diverse subsets of features for the construction of base
classifiers for the ensemble systems. This work proposes an approach that maximizes the
diversity of the ensembles by selecting subsets of features using a model independent of
the learning algorithm and with low computational cost. This is done using bio-inspired
metaheuristics with evaluation filter-based criteria / A aplica??o tradicional da sele??o de atributos em diversas ?reas como minera??o de
dados, aprendizado de m?quina e reconhecimento de padr?es visa melhorar a acur?cia
dos modelos constru?dos com a base de dados, ao retirar dados ruidosos, redundantes ou
irrelevantes, e diminuir o custo computacional do modelo, ao encontrar um subconjunto
representativo dos dados que diminua sua dimensionalidade sem perda de desempenho.
Com o desenvolvimento das pesquisas com comit?s de classificadores e a verifica??o de
que esse tipo de modelo possui melhor desempenho que os modelos individuais, dado que
os classificadores base sejam diversos, surge uma nova aplica??o ?s pesquisas com sele??o
de atributos, que ? a de encontrar subconjuntos diversos de atributos para a constru??o
dos classificadores base de comit?s de classificadores. O presente trabalho prop?e uma
abordagem que maximiza a diversidade de comit?s de classificadores atrav?s da sele??o de
subconjuntos de atributos utilizando um modelo independente do algoritmo de aprendizagem
e de baixo custo computacional. Isso ? feito utilizando metaheur?sticas bioinspiradas
com crit?rios de avalia??o baseados em filtro
|
395 |
Algor?tmo evolucion?rio para a distribui??o de produtos de petr?leo por redes de polidutosSouza, Thatiana Cunha Navarro de 02 March 2010 (has links)
Made available in DSpace on 2014-12-17T15:47:52Z (GMT). No. of bitstreams: 1
ThatianaCNS_DISSERT.pdf: 1637234 bytes, checksum: 8b38ce4a7a358efe654d9bb1c23c15bc (MD5)
Previous issue date: 2010-03-02 / The distribution of petroleum products through pipeline networks is an important problem that arises in production planning of refineries. It consists in determining what will be done in each production stage given a time horizon, concerning the distribution of products from source nodes to demand nodes, passing through intermediate nodes. Constraints concerning storage limits, delivering time, sources availability, limits on sending or receiving, among others, have to be satisfied. This problem can be viewed as a biobjective problem that aims at minimizing the time needed to for transporting the set of packages through the network and the successive transmission of different products in the same pipe is called fragmentation. This work are developed three algorithms that are applied to this problem: the first algorithm is discrete and is based on Particle Swarm Optimization (PSO), with local search procedures and path-relinking proposed as velocity operators, the second and the third algorithms deal of two versions based on the Non-dominated Sorting Genetic Algorithm II (NSGA-II). The proposed algorithms are compared to other approaches for the same problem, in terms of the solution quality and computational time spent, so that the efficiency of the developed methods can be evaluated / A distribui??o de produtos de petr?leo atrav?s de redes de polidutos ? um importante problema que se coloca no planejamento de produ??o das refinarias. Consiste em determinar o que ser? feito em cada est?gio de produ??o dado um determinado horizonte de tempo, no que respeita ? distribui??o de produtos de n?s fonte ? procura de n?s, passando por n?s intermedi?rios. Restri??es relativas a limites de armazenamento, tempo de entrega, disponibilidade de fontes, limites de envio ou recebimento, entre outros, t?m de ser satisfeitas. Este problema pode ser visto como um problema biobjetivo, que visa minimizar o tempo necess?rio para transportar o conjunto de pacotes atrav?s da rede e o envio sucessivo de produtos diferentes no mesmo duto que ? chamado de fragmenta??o. Neste trabalho, s?o desenvolvidos tr?s algoritmos que s?o aplicados a esse problema: o primeiro algoritmo ? discreto e baseia-se na Otimiza??o por Nuvem de Part?culas (PSO), com procedimentos de busca local e path-relinking propostos como operadores de velocidade, o segundo e o terceiro algoritmos tratam de duas vers?es baseadas no Non-dominated Sorting Genetic Algorithm II (NSGA-II). Os algoritmos propostos s?o comparados a outras abordagens para o mesmo problema, em termos de qualidade de solu??o e tempo computacional despendido, a fim de se avaliar a efici?ncia dos m?todos desenvolvidos
|
396 |
T?cnicas de computa??o natural para segmenta??o de imagens m?dicasSouza, Jackson Gomes de 28 September 2009 (has links)
Made available in DSpace on 2014-12-17T14:55:35Z (GMT). No. of bitstreams: 1
JacksonGS.pdf: 1963039 bytes, checksum: ed3464892d7bb73b5dcab563e42f0e01 (MD5)
Previous issue date: 2009-09-28 / Image segmentation is one of the image processing problems that deserves special attention from the scientific community. This work studies unsupervised methods to clustering and pattern recognition applicable to medical image segmentation. Natural Computing based methods have shown very attractive in such tasks and are studied here as a way to verify it's applicability in medical image segmentation. This work treats to implement the following methods: GKA (Genetic K-means Algorithm), GFCMA (Genetic FCM Algorithm), PSOKA (PSO and K-means based Clustering Algorithm) and PSOFCM (PSO and FCM based Clustering Algorithm). Besides, as a way to evaluate the results given by the algorithms, clustering validity indexes are used as quantitative measure. Visual and qualitative evaluations are realized also, mainly using data given by the BrainWeb brain simulator as ground truth / Segmenta??o de imagens ? um dos problemas de processamento de imagens que merece especial interesse da comunidade cient?fica. Neste trabalho, s?o estudado m?todos n?o-supervisionados para detec??o de algomerados (clustering) e reconhecimento de padr?es (pattern recognition) em segmenta??o de imagens m?dicas M?todos baseados em t?cnicas de computa??o natural t?m se mostrado bastante atrativos nestas tarefas e s?o estudados aqui como uma forma de verificar a sua aplicabilidade em segmenta??o de imagens m?dicas. Este trabalho trata de implementa os m?todos GKA (Genetic K-means Algorithm), GFCMA (Genetic FCM Algorithm) PSOKA (Algoritmo de clustering baseado em PSO (Particle Swarm Optimization) e K means) e PSOFCM (Algoritmo de clustering baseado em PSO e FCM (Fuzzy C Means)). Al?m disso, como forma de avaliar os resultados fornecidos pelos algoritmos s?o utilizados ?ndices de valida??o de clustering como forma de medida quantitativa Avalia??es visuais e qualitativas tamb?m s?o realizadas, principalmente utilizando dados do sistema BrainWeb, um gerador de imagens do c?rebro, como ground truth
|
397 |
Formação de grupos em MOOCs utilizando Particle Swarm Optimization / Forming of groups in MOOCs using Particle Swarm OptimizationUllmann, Matheus Rudolfo Diedrich 26 February 2016 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2016-06-01T10:57:51Z
No. of bitstreams: 2
Dissertação - Matheus Rudolfo Diedrich Ullmann - 2016.pdf: 1264745 bytes, checksum: 65f8378224bd7fd700216a920f2da7a0 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-06-01T11:00:53Z (GMT) No. of bitstreams: 2
Dissertação - Matheus Rudolfo Diedrich Ullmann - 2016.pdf: 1264745 bytes, checksum: 65f8378224bd7fd700216a920f2da7a0 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2016-06-01T11:00:53Z (GMT). No. of bitstreams: 2
Dissertação - Matheus Rudolfo Diedrich Ullmann - 2016.pdf: 1264745 bytes, checksum: 65f8378224bd7fd700216a920f2da7a0 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2016-02-26 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The MassiveOpenOnlineCourses(MOOCs)areonlinecourseswithopenenrollment
that involvingahugeamountofstudentsfromdifferentlocations,withdifferentback-
grounds andinterests.Thelargenumberofstudentsimpliesahugeandunmanageable
number ofinteractions.Thisfact,alongwiththedifferentinterestsofstudents,resulting
in low-qualityinteractions.Duetothelargenumberofstudents,alsobecomesunviable
composition manuallylearninggroups.DuetothesecharacteristicspresentinMOOCs,
a methodforforminggroupswasdevelopedinthiswork,asanattempttoattendthedi-
chotomy existsbetweenthecollective,whichinvolvestheformationofanonlinelearning
community onamassivescale,andindividual,withdifferentinterests,priorknowledge
and expectationsanddifferentleadershipprofiles.Fortheformationofgroups,anadapta-
tion ofParticleSwarmOptimizationalgorithmwasproposedbasedonthreecriteria,kno-
wledge level,interestsandleadershipprofiles,formingthengroupswithdifferentlevels
of knowledge,similarinterestsanddistributedleadership,providingbetterinteractionand
knowledgeconstruction.Werecreatedtwovariationsoftheproblem,withfivestudents
and theothersix.Basedoncomputationaltests,thealgorithmdemonstratedthatableto
attend thegroupingcriteriainasatisfactorycomputingtimeandismoreefficientthanthe
model randomgroupsformation.Thetestsalsodemonstratedthatthealgorithmisrobust
taking intoaccountthevariousdatasetsanditerationsvariations.Toevaluatethequality
of interactionsandknowledgebuildingingroupsformedbythemethod,Acasestudy
wasconducted;andfortheanalysisofthecollecteddiscourses,itwastakenasthebasis
twomodelsofdiscourseanalysisfoundintheliterature.Theresultsofthecasestudy
demonstrated thatthegroupsformedbytheproposedmethodachievedthebestresultsin
the interactionsandknowledgeconstruction,whencomparedwithgroupsthatdonotuse
it. / Os Massive OpenOnlineCourses (MOOCs) sãocursos online com inscriçõesabertas
que envolvemumaenormequantidadedeestudantesdediferenteslocalidades,comdife-
rentes backgrounds e interesses.Ograndenúmerodealunosimplicaemumaenormee
não gerenciávelquantidadedeinterações.Estefato,juntamentecomosinteressesdife-
rentes dosalunos,resultaeminteraçõesdebaixaqualidade.Devidoàgrandequantidade
de alunos,tambémtorna-seinviávelacomposiçãodegruposdeaprendizagemdeforma
manual. DevidoàessascaracterísticaspresentesnosMOOCs,ummétodoparaformação
de gruposfoidesenvolvidonestetrabalho,comoumatentativaparaatenderadicoto-
mia queexisteentreocoletivo,queenvolveaformaçãodeumacomunidade online de
aprendizagem emumaescalamaciça,eoindividual,comdiferentesinteresses,conhe-
cimentos prévioseexpectativasecomdiferentesperfisdeliderança.Paraaformação
dos grupos,umaadaptaçãodoalgoritmo ParticleSwarmOptimization foi propostacom
base emtrêscritérios,níveldeconhecimento,interesseseperfisdeliderança,formando
então gruposcomníveisdeconhecimentodiferentes,interessessemelhanteseliderança
distribuída,proporcionandoumamelhorinteraçãoeconstruçãodeconhecimento.Foram
criadas duasvariaçõesdoproblema,umacomcincoalunoseoutracomseis.Combase
em testescomputacionais,oalgoritmodemonstrouqueconsegueatenderoscritériosde
agrupamento emumtempodecomputaçãosatisfatórioeémaiseficientequeomodelode
formação degruposaleatório.Ostestesdemonstraramtambémqueoalgoritmoérobusto
levandoemcontaosvariadosconjuntosdedadosevariaçõesdeiterações.Paraavaliara
qualidade dasinteraçõeseaconstruçãodeconhecimentonosgruposformadospelomé-
todo, umestudodecasofoirealizado;eparaaanálisedosdiscursoscoletados,tomou-se
como basedoismodelosdeanálisedediscursopresentesnaliteratura.Oresultadodo
estudo decasodemonstrouqueosgruposformadospelométodopropostoobtiveramos
melhores resultadosnasinteraçõeseconstruçãodoconhecimento,quandocomparados
com osgruposquenãooutilizaram.
|
398 |
Modélisation multi-physique par modèles à constantes localisées ; application à une machine synchrone à aimants permanents en vue de son dimensionnement. / Multi-Physical modelling lumped models; application to a synchronous machine with permanent magnets for the sizingBracikowski, Nicolas 04 December 2012 (has links)
Afin de définir une conception optimale d’un système électromécanique, celui-ci doit intégrer des contraintes toujours plus drastiques et de nombreux phénomènes physiques issus de : l’électromagnétique, l’aérothermique, l’électronique, la mécanique et l’acoustique. L’originalité de cette thèse est de proposer une modélisation multi-physique pour la conception reposant sur des modèles à constantes localisées : solution intermédiaire entre la modélisation analytique et numérique. Ces différents modèles permettront l’étude et la conception sous contraintes d’une machine synchrone à aimants permanents dédiée pour la traction ferroviaire. Les résultats de simulations seront comparés à des résultats éléments finis mais aussi à des essais expérimentaux. Ce modèle multi-physique est entièrement paramétré afin d’être associé à des outils d’optimisation. On utilisera ici une optimisation par essaim de particules pour chercher des compromis entre différents objectifs sous forme de Front de Pareto. Dans ce papier, nous ciblerons les objectifs suivants : le couple d’origine électromagnétique et le bruit d’origine électromagnétique. Finalement une étude de sensibilité valide la robustesse de la conception retenue quand celle-ci est soumise aux contraintes de fabrication. L’objectif étant de poser les bases d’un outil d’aide à la décision pour le choix d’une machine électrique / In order to perform an optimal design of electromechanical system, the designer must take into account ever more stringent constraints and many physical phenomena from electric, magnetic, aeraulic, thermic, electronic, mechanic and acoustic. The originality of this thesis is to put forward a multi-physic design based on lumped models: halfway between analytical and numerical modeling. These models allow sizing a permanent magnet synchronous machine under constraints for rail traction. The results are validated with finite element simulations and experimental analysis. The multi-physic modeling is fully automated, parameterized, in order to combine the model with the optimization tool. We used here particle swarm optimization to search compromises between several objectives (Pareto Front). In this paper, we focus on electromagnetic torque and electromagnetic noise. Finally a sensitive study validates the robustness of selected design when it is subjected to manufacturing constraints. The aim of this work is to propose a decision tool to size electrical machines
|
399 |
Návrh autopilota a letových řídících módů v prostředí Simulink / Development of Autopilot and Flight Director Modes inside a Simulink EnvironmentNovák, Jiří January 2020 (has links)
Tato diplomová práce je zaměřena na vývoj simulačního prostředí v Matlab/Simulink zvoleného letadla ve známém letovém režimu. Pozice a orientace letadla pohybujícího se ve vzduchu je popsána pohybovými rovnicemi se šesti stup\v{n}i volnosti. Soustava translačních, rotačních a kinematických rovnic tvoří soustavu devíti nelineárních diferenciálních rovnic prvního řádu. Tyto rovnice lze linearizovat okolo nějakého rovnovážného stavu, který budeme nazývat letovým režimem. Součástí simulačního prostředí je řídící systém letadla založený na PID regulaci. Základem je návrh autopilota, který řídí úhel podélného sklonu a úhel příčného náklonu. Součástí návrhu jsou takzvané „flight director\textquotedblright \phantom{s}m\'dy jako udržení výšky, volba kursu, regulace vertikální rychlosti, změna výšky, zachycení požadované výšky a navigační m\'{o}d založený na nelineárním navigačním zákonu. Optimalizace regulátorů za použití PSO algoritmu a Pareto optimalitě je využita pro nastavení parametrů PID regulátoru. Simulační prostředí je vizualizováno v softwaru FlightGear.
|
400 |
Registrace ultrazvukových sekvencí s využitím evolučních algoritmů / Image registration of ultrasound sequences using evolutionary algorithmsHnízdilová, Bohdana January 2021 (has links)
This master´s thesis deals with the registration of ultrasound sequences using evolutionary algorithms. The theoretical part of the thesis describes the process of image registration and its optimalization using genetic and metaheuristic algorithms. The thesis also presents problems that may occur during the registration of ultrasonographic images and various approaches to their registration. In the practical part of the work, several optimization methods for the registration of a number of sequences were implemented and compared.
|
Page generated in 0.0967 seconds