• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 27
  • 27
  • 9
  • 8
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Animating Non-Rigid Bodies Using Motion Capture

Long, Jie 16 January 2013 (has links) (PDF)
Simulating the motion of a non-rigid body under external forces is a difficult problem because of the complexity and flexibility of the non-rigid geometry and its associated dynamics. Physically based animation of objects moving in the wind is computationally expensive, so simulation-based approaches oversimplify the model by ignoring important effects, such as tree's sheltering. Motion capture records actual responses of a non-rigid body to external forces and helps solve these problems. Mainly focusing on natural trees and ropes as instances of non-rigid bodies, we present a new approach to building motion for objects in wind using incomplete motion capture data from non-rigid bodies. The incomplete motion capture data are automatically labeled by a cluster-based algorithm while noises are removed. For places with no motion capture data, we estimate forces and motion by interpolating the motion capture data according to the object's characteristics. We discuss a physically or statistically based approach to animate the whole non-rigid object. Basing our work on the collected motion capture data and the estimated motions, we can produce visually plausible and scalable animations of non-rigid objects under external forces at interactive frame rates.
12

Erosion Corrosion and Synergistic Effects in Disturbed Liquid-Particle Flow

Malka, Ramakrishna 04 November 2005 (has links)
No description available.
13

Calorimetry at a future Linear Collider

Green, Steven January 2017 (has links)
This thesis describes the optimisation of the calorimeter design for collider experiments at the future Compact Linear Collider (CLIC) and the International Linear Collider (ILC). The detector design of these experiments is built around high-granularity Particle Flow Calorimetry that, in contrast to traditional calorimetry, uses the energy measurements for charged particles from the tracking detectors. This can only be realised if calorimetric energy deposits from charged particles can be separated from those of neutral particles. This is made possible with fine granularity calorimeters and sophisticated pattern recognition software, which is provided by the PandoraPFA algorithm. This thesis presents results on Particle Flow calorimetry performance for a number of detector configurations. To obtain these results a new calibration procedure was developed and applied to the detector simulation and reconstruction to ensure optimal performance was achieved for each detector configuration considered. This thesis also describes the development of a software compensation technique that vastly improves the intrinsic energy resolution of a Particle Flow Calorimetry detector. This technique is implemented within the PandoraPFA framework and demonstrates the gains that can be made by fully exploiting the information provided by the fine granularity calorimeters envisaged at a future linear collider. A study of the sensitivity of the CLIC experiment to anomalous gauge couplings that {affect} vector boson scattering processes is presented. These anomalous couplings provide insight into possible beyond standard model physics. This study, which utilises the excellent jet energy resolution from Particle Flow Calorimetry, was performed at centre-of-mass energies of 1.4 TeV and 3 TeV with integrated luminosities of 1.5$\text{ab}^{-1}$ and 2$\text{ab}^{-1}$ respectively. The precision achievable at CLIC is shown to be approximately one to two orders of magnitude better than that currently offered by the LHC. In addition, a study into various technology options for the CLIC vertex detector is described.
14

[en] NUMERICAL MODELLING OF PILE INSTALLATION AND PILE LOAD TEST USING DISCRETE ELEMENTS / [pt] MODELAGEM NUMÉRICA DO PROCESSO DE INSTALAÇÃO E PROVA DE CARGA EM ESTACAS USANDO ELEMENTOS DISCRETOS

RICARDO GUREVITZ CUNHA ESPOSITO 14 June 2016 (has links)
[pt] As alterações no solo decorrentes de um elemento de fundação profunda e seus desempenhos sob a aplicação de carga axial são processos há muito tempo estudados na engenharia civil. Diversos fatores como, método de instalação utilizado, formato da estaca, interações solo-estrutura, mecanismos de transferências de carga, movimentação do solo e alterações na compressibilidade e tensões do solo adjacente, apresentam desafios importantes que ainda não foram totalmente compreendidos nos fenômenos de penetração e capacidade de suporte em estacas. Diversos avanços foram realizados ao longo das últimas décadas para se investigar estes comportamentos, a partir procedimentos experimentais e novas formas de instrumentação, assim como ferramentas numéricas sofisticadas com o emprego de complexos modelos constitutivos em elementos finitos. Apesar destes avanços, a modelagem numérica dos processos citados, com todas as suas complexidades, ainda encontra alguns desafios. Devido a facilidade em lidar com simulações de grandes deformações e de captar o comportamento dilatante e nãolinear de solos granulares, o Método dos Elementos Discretos apresenta uma excelente ferramenta para investigar estes processos, sem grandes complicações. O presente trabalho procurou avaliar os comportamentos obtidos a partir de diferentes processos de instalação da estaca e seus efeitos nos resultados da prova de carga estática em solos granulares. As alterações de tensão e deslocamento foram avaliadas nos diferentes modelos e discutindo sobre uma metodologia básica para obter correspondências qualitativas e quantitativas com os diferentes comportamentos de campo e laboratório. Para este estudo foram utilizados os programas PFC, na versão 2D, e o programa UDEC, da Itasca co. / [en] The disturbances experienced by the soil owing to the load applied to a deep foundation and its relative behavior consist of long time studied phenomena in civil engineering. Several factors such as the installation methods, the pile geometry, the interactions between soil and structure, the load-transfer mechanisms, the soil movements and the disturbances in the stress and compressibility fields present major challenges that have not yet been completely understood. Numerous advances have been observed throw-out the last decades, in order to investigate these behaviors starting from the different pile instrumentations, the use of calibration cameras and centrifuges and most recently the measurement of the stress and strain fields inside the soil mass in model tanks. Despite the advances the numerical modelling of those processes still faces major challenges. Due to simplified approach used by the Discrete Element Method to simulate large deformation and the dilant non-linear behavior of granular soils, it presents as an excellent tool to investigate these processes without further complications. The present work proposed to evaluate the different behaviors obtained with the variations of installation methods investigated as well as their effects in the results of the Pile Load Test. The disturbances were also evaluated in the different models considered and a basic method to achieve qualitative and quantitative comparisons was discussed. These studies were made possible with the help of the PFC2D and UDEC programs developed by Itasca co.
15

[en] MODELLING OF STEP-PATH TYPE FAILURE MECHANISMS IN FRACTURED ROCK SLOPE USING DISCRETE ELEMENTS / [pt] MODELAGEM DO MECANISMO DE RUPTURA TIPO STEP-PATH EM TALUDES ROCHOSOS FRATURADOS ATRAVÉS DO MÉTODO DOS ELEMENTOS DISCRETOS

LUIS ARNALDO MEJIA CAMONES 26 February 2018 (has links)
[pt] Diferentes mecanismos de ruptura são considerados no momento de avaliar a estabilidade de um maciço rochoso fraturado. Entre estes, os mecanismos de ruptura tipo planar, em cunha e tombamentos têm sido estudados intensivamente, existindo atualmente modelos matemáticos que permitem avaliá-los. Estes mecanismos de ruptura são restritos a taludes pequenos e com fraturas contínuas, nas quais o deslizamento ocorre ao longo destas descontinuidades. Em casos de taludes de grande altura ou quando a persistência das fraturas é pequena em relação à escala do talude, o fraturamento torna-se descontínuo. Neste caso, o mecanismo de ruptura mais provável é o tipo Step-Path, o qual, a superfície de ruptura é formada por fraturas que se propagam através da rocha intacta juntando-se entre elas. Este fenômeno de união de fraturas é chamado de coalescência. Análises de estabilidade, como os probabilísticos ou por equilíbrio limite, são usados atualmente para avaliar estes tipos de rupturas, não se tendo ainda o desenvolvimento de um modelo numérico que possa representá-lo e reforçar estas teorias. O presente trabalho avalia o uso do Método dos Elementos Discretos na modelagem do mecanismo de ruptura tipo step- path, realizando uma análise de estabilidade que permita comparar os seus resultados com o método de equilíbrio limite. Foi utilizado o programa PFC nas versões 2D e 3D, assim como o programa FracGen para a geração de fraturas tridimensionais. A análise tridimensional foi feita mediante um acoplamento PFC3D-FracGen. A pesquisa inclui a análise e modelagem dos fenômenos de coalescência em amostras, assim como a influência da anisotropia na resistência das rochas em ensaios triaxiais. / [en] Different failure mechanisms are considered when a fracturated rock mass is valued. Some of them are being subject of accurate study, like planar failure mechanism, wedges and toppling, which are currently valued by mathematical models. These failure mechanisms are restricted to small slopes and with continue fractures, where the sliding occurs along these discontinuities. To height slopes or when the fracture persistence is smaller than the slope scale, the fracturing becomes discontinuous. In this case, the most probable failure mechanism to happen is the step-path type, in which the failure surface is composed by fractures that propagate through the intact rock and that are joined together. This phenomenon of fracture union is known as coalescence. Stability analysis, like probability analysis or limit equilibrium analysis are currently utilized to evaluate this kind of failures, but its important to develop a numerical model to represent and reinforce these theories. This work aims to evaluate the use of Discrete Element Method to model step-path failure mechanism on a stability analysis and to compare the results with limit equilibrium method. The program used to simulate the slope is PFC (2D and 3D) and the program FracGen was used to generate three-dimensional fractures. Three-dimensional analysis was done by a coupling between PFC3D and FracGen. The research includes the analysis and modeling of coalescence phenomenon on rock samples, as well as the analysis of the anisotropy influence on rock strength obtained from triaxial tests.
16

Parallel Computing of Particle Filtering Algorithms for Target Tracking Applications

Wu, Jiande 18 December 2014 (has links)
Particle filtering has been a very popular method to solve nonlinear/non-Gaussian state estimation problems for more than twenty years. Particle filters (PFs) have found lots of applications in areas that include nonlinear filtering of noisy signals and data, especially in target tracking. However, implementation of high dimensional PFs in real-time for large-scale problems is a very challenging computational task. Parallel & distributed (P&D) computing is a promising way to deal with the computational challenges of PF methods. The main goal of this dissertation is to develop, implement and evaluate computationally efficient PF algorithms for target tracking, and thereby bring them closer to practical applications. To reach this goal, a number of parallel PF algorithms is designed and implemented using different parallel hardware architectures such as Computer Cluster, Graphics Processing Unit (GPU), and Field-Programmable Gate Array (FPGA). Proposed is an improved PF implementation for computer cluster - the Particle Transfer Algorithm (PTA), which takes advantage of the cluster architecture and outperforms significantly existing algorithms. Also, a novel GPU PF algorithm implementation is designed which is highly efficient for GPU architectures. The proposed algorithm implementations on different parallel computing environments are applied and tested for target tracking problems, such as space object tracking, ground multitarget tracking using image sensor, UAV-multisensor tracking. Comprehensive performance evaluation and comparison of the algorithms for both tracking and computational capabilities is performed. It is demonstrated by the obtained simulation results that the proposed implementations help greatly overcome the computational issues of particle filtering for realistic practical problems.
17

Development of a Rock Expert System (RES) for Evaluating Rock Property Values and Utilization of Three Dimensional Particle Flow Code (PFC3D) to Investigate Rock Behavior

Ding, Xiaobin January 2013 (has links)
This research consists of two main parts: development of a rock expert system (RES) as an easy-to-use and effective tool for evaluating rock properties, and modification and utilization of the three-dimensional Particle Flow Code (PFC3D) to analyze rock behavior. Because of different reasons, it is often difficult to obtain the rock property values directly. As an alternative, typical values and empirical correlations are often used to evaluate the rock property values. However, the typical values and empirical correlations come in various forms and are scattered in different sources. It is often difficult, time-consuming or even impossible for an engineer to find appropriate information to estimate the required rock properties. So in the first part of the research, the RES was developed as an easy-to-use and effective tool for evaluating rock properties by conducting detailed review and evaluation of well determined values and empirical correlations of rock properties in the published literature, and developing a central database and data application tools. The study of RES demonstrates the storage of rock property values and correlations is strongly applicable and the web based data application tool is effective to use and easy expandable. Considering its granular nature, the discrete element method (DEM) has been widely adopted to analyze the mechanical behavior of rock. The Particle Flow Code (PFC) is one of the most popular DEM softwares. The basic idea of PFC is to treat rock as an assembly of bonded particles that follow the law of motion and consider the model behavior dominated by the formation and interaction of micro cracks developed within the particle-particle cement (bond). Unlike the continuum methods, PFC can deal with the natural process from micro cracking to macro failure, without predefining a failure criterion for the rock. However, there are still issues related to the application of PFC to analyze different rock problems. For example, so far, most of the studies use PFC2D although many of the problems are three dimensional and should be better simulated with PFC3D. It is also found that the simulations using the default PFC parallel bond model extremely underestimate the ratio of unconfined compressive strength to tensile strength (UCS/T). So in the second part of the research, the important aspects related to the application of PFC3D, including model scale, particle size distribution and contact model, were studied, a new contact model was developed for addressing the limitation of the default PFC3D on obtaining unrealistically low UCS/T ratios, and finally the new contact model was used to investigate rock fracture initiation and propagation.
18

Cascades hadroniques dans un calorimètre électromagnétique silicium-tungstène hautement granulaire et production des quarks top et bottom à l'ILC / Hadronic showers in a highly granular silicon-tungsten calorimeter and production of bottom and top quarks at the ILC

Bilokin, Sviatoslav 18 July 2017 (has links)
Cette thèse présente des études pour l’International Linear Collider (ILC), un collisionneur électron-positron linéaire avec une énergie nominale dans le centre de masse de 250 GeV à 500 GeV. Les données analysées ont été enregistrées avec le prototype physique CALICE d’un calorimètre électromagnétique silice-tungstène (Si-W ECAL) à FermiLab en 2008. Au cours de cette thèse, un algorithme de recherche de traces a été développé, qui trouve des traces secondaires dans les événements hadroniques enregistrés par le prototype Si-W ECAL. Cet algorithme révèle des détails sur les interactions hadroniques dans le volume du détecteur et les résultats sont comparés avec des simulations basées sur le GEANT4 toolkit. Les recherches indirectes de nouvelle physique nécessitent une haute précision sur les mesures des paramètres de Modèle Standard. Théories de la physique au-delà de Modèle Standard, comme théories de dimensions supplémentaires ou modèles composite, impliquent des modifications des couplages électrofaibles des quarks lourds, top et bottom. La deuxième partie de la thèse est une étude de simulation complète des algorithmes de vertexing dans l’environnement ILD et la reconstruction de la charge de quark b. La reconstruction de la charge du quark bottom est essentielle pour de nombreux canaux de physique à l’ILC, particulièrement, pour les réactions e⁺e⁻ → bb̄ et e⁺e⁻ → tt̄ . L’algorithme développé améliore la performance de reconstruction de la charge du quark bottom. Les méthodes de reconstruction de la charge du quark bottom sont appliquées à l’analyse du mécanisme de production tt̄ . Cela permet d’augmenter la statistique pour l’estimation du facteur de forme électrofaible du quark top par rapport à une étude antérieure et donc de diminuer les incertitudes statistiques correspondantes. Les résultats de l’étude du détecteur permettent d’estimer la précision de l’ILC sur les couplages et les facteurs de forme électrofaibles du quark bottom. L’ILC sera capable de résoudre l’anomalie du LEP dans le processus de production bb̄. La précision de l’ILC sur le couplage droite Z⁰bb̄, un candidat majeur pour les effets de la nouvelle physique, est calculée et est au moins 5 fois mieux que celle des expériences de LEP. / This thesis presents studies for the International Linear Collider (ILC),a linear electron-positron collider with a nominal center-of-mass energy of 500 GeV. Data are analysed that were recorded with the physics prototype of the CALICE silicon-tungsten electromagnetic calorimeter (Si-W ECAL) prototype at FermiLab in 2008. During this thesis, a track-finding algorithm was developed, which finds secondary tracks in hadronic events recorded by the Si-W ECAL physics prototype. This algorithm reveals details of hadronic interactions in the detector volume and the results are compared with simulations based on the geant4 toolkit.Indirect searches of New Physics require a high precision on the measurements of the Standard Model parameters. Many Beyond Standard Model theories, like extradimentional or composite models, imply modifications of electroweak couplings of the heavy quarks, top and bottom. The second part of the thesis is a full simulation study of vertexing algorithms in the ILD environment and the reconstruction of the b-quark charge. The b-quark charge reconstruction is essential for many physics channels at the ILC, particularly, for the e+ e− → bb̄ and the e+ e− → tt̄ channels. The developed algorithm improves the b-quark charge reconstruction performance.The b-quark charge reconstruction methods are applied to the tt̄ production process. This allows to increase statistics for the top quark electroweak form factor estimation w.r.t an earlier study and thus to decrease corresponding statistical uncertainties.The results of the detector study allow for an estimation of the ILC precision on the b-quark electroweak couplings and form factors. The ILC will be able to resolve the LEP anomaly in the bb̄ production process. The ILC precision on the right-handed Z⁰bb̄ coupling, a prime candidate for effects of new physics, is calculated to be at least 5 times better than theLEP experiments.
19

Experimental and numerical investigation of laser assisted milling of silicon nitride ceramics

Yang, Budong January 1900 (has links)
Doctor of Philosophy / Department of Industrial & Manufacturing Systems Engineering / Shuting Lei / This study experimentally and numerically investigates laser assisted milling (LAMill) of silicon nitride ceramics. Experiments are conducted to study the machinability of Si3N4 under LAMill. The effects of temperature on cutting forces, tool wear, surface integrity, edge chipping and material removal mechanisms are investigated. It is shown that when temperature increases, cutting force and tool wear are significantly decreased, surface integrity is improved, chip size is increased and material removal demonstrates more plastic characteristics. The mechanisms of edge chipping at elevated temperature are investigated theoretically and experimentally. When temperature is above the softening point and below the brittle/ductile transition temperature, the mechanism is mainly through softening. When temperature is above the brittle/ductile transition temperature, toughening mechanism contributes significantly to the reduced edge chipping. The coupled effect of softening and toughening mechanisms shows that temperature range between 1200 to 1400°C has the most significant effect to reduce edge chipping. Distinct element method (DEM) is applied to simulate the micro-mechanical behavior of Si3N4. First, quantitative relationships between particle level parameters and macro-properties of the bonded particle specimens are obtained, which builds a foundation for simulation of Si3N4. Then, extensive DEM simulations are conducted to model the material removal of machining Si3N4. The simulation results demonstrate that DEM can reproduce the conceptual material removal model summarized from experimental observations, including the initiation and propagation of cracks, chip formation process and material removal mechanisms. It is shown that material removal is mainly realized by propagation of lateral cracks in machining of silicon nitride. At the elevated temperature under laser assisted machining, lateral cracks are easier to propagate to form larger machined chips, there are fewer and smaller median cracks therefore less surface/subsurface damage, and crushing-type material removal is reduced. The material removal at elevated temperature demonstrates more plastic characteristics. The numerical results agree very well with experimental observations. It shows that DEM is a promising method to model the micro-mechanical process of machining Si3N4.
20

Mechanical, failure and flow properties of sands : micro-mechanical models

Manchanda, Ripudaman 12 July 2011 (has links)
This work explains the effect of failure on permeability anisotropy and dilation in sands. Shear failure is widely observed in field operations. There is incomplete understanding of the influence of shear failure in sand formations. Shear plane orientations are dependent on the stress anisotropy and that view is confirmed in this research. The effect of shear failure on the permeability is confirmed and calculated. Description of permeability anisotropy due to shear failure has also been discussed. In this work, three-dimensional discrete element modeling is used to model the behavior of uncemented and weakly cemented sand samples. Mechanical deformation data from experiments conducted on sand samples is used to calibrate the properties of the spherical particles in the simulations. Orientation of the failure planes (due to mechanical deformation) is analyzed both in an axi-symmetric stress regime (cylindrical specimen) and a non-axi-symmetric stress regime (right cuboidal specimen). Pore network fluid flow simulations are conducted before and after mechanical deformation to observe the effect of failure and stress anisotropy on the permeability and dilation of the granular specimen. A rolling resistance strategy is applied in the simulations, incorporating the stiffness of the specimens due to particle angularity, aiding in the calibration of the simulated samples against experimental data to derive optimum granular scale elastic and friction properties. A flexible membrane algorithm is applied on the lateral boundary of the simulation samples to implement the effect of a rubber/latex jacket. The effect of particle size distribution, stress anisotropy, and confining pressure on failure, permeability and dilation is studied. Using the calibrated micro-properties, simulations are extended to non-cylindrical specimen geometries to simulate field-like anisotropic stress regimes. The shear failure plane alignment is observed to be parallel to the maximum horizontal stress plane. Pore network fluid flow simulations confirm the increase in permeability due to shear failure and show a significantly greater permeability increase in the maximum horizontal stress direction. Using the flow simulations, anisotropy in the permeability field is observed by plotting the permeability ellipsoid. Samples with a small value of inter-granular cohesion depict greater shear failure, larger permeability increase and a greater permeability anisotropy than samples with a larger value of inter-granular cohesion. This is estimated by the number of micro-cracks observed. / text

Page generated in 0.0809 seconds