• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 1
  • Tagged with
  • 17
  • 17
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Parallel PDE solvers on cc-NUMA systems /

Nordén, Markus, January 2004 (has links)
Lic.-avh. Uppsala : Univ., 2004. / Härtill 4 uppsatser.
12

Stable high-order finite difference methods for aerodynamics /

Svärd, Magnus, January 2004 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2004. / Härtill 8 uppsatser.
13

Numerical computations with fundamental solutions /

Sundqvist, Per, January 2005 (has links)
Diss. (sammanfattning) Uppsala : Uppsala universitet, 2005. / Härtill 5 uppsatser.
14

A comparison of two multilevel Schur preconditioners for adaptive FEM

Karlsson, Christian January 2014 (has links)
There are several algorithms for solving the linear system of equations that arise from the finite element method with linear or near-linear computational complexity. One way is to find an approximation of the stiffness matrix that is such that it can be used in a preconditioned conjugate residual method, that is, a preconditioner to the stiffness matrix. We have studied two preconditioners for the conjugate residual method, both based on writing the stiffness matrix in block form, factorising it and then approximating the Schur complement block to get a preconditioner. We have studied the stationary reaction-diffusion-advection equation in two dimensions. The mesh is refined adaptively, giving a hierarchy of meshes. In the first method the Schur complement is approximated by the stiffness matrix at one coarser level of the mesh, in the second method it is approximated as the assembly of local Schur complements corresponding to macro triangles. For two levels the theoretical bound of the condition number is 1/(1-C²) for either method, where C is the Cauchy-Bunyakovsky-Schwarz constant. For multiple levels there is less theory. For the first method it is known that the condition number of the preconditioned stiffness matrix is O(l²), where l is the number of levels of the preconditioner, or, equivalently, the number mesh refinements. For the second method the asymptotic behaviour is not known theoretically. In neither case is the dependency of the condition number of C known. We have tested both methods on several problems and found the first method to always give a better condition number, except for very few levels. For all tested problems, using the first method it seems that the condition number is O(l), in fact it is typically not larger than Cl. For the second method the growth seems to be superlinear.
15

Conservative Discontinuous Cut Finite Element Methods: Convection-Diffusion Problems in Evolving Bulk-Interface Domains / Konservativa skurna finita elementmetoder: konvektions-diffusionsproblem i tidsberoende domäner

Myrbäck, Sebastian January 2022 (has links)
This work entails studying unfitted finite element discretizations for convection-diffusion equations in domains that evolve in time. In particular, these partial differential equations model the evolution of the concentration of soluble surfactants in bulk-interface domains. The work in this thesis docuses on developing numerical methods which conserve the modeled physical quantities. In this work, we propose cut finite element discretizations based on the Discontinuous Galerkin framework which are both locally and globally conservative. Local conservation is achieved on so-called macro elements, and we investigate macro element partitioning of the mesh for both stationary and time-dependent domains. Additionally, we develop globally conservative methods for time-dependent problems. We analyze the proposed methods by studying the convergence of the L2-error with respect to mesh size, condition numbers of the associated linear system matrices, and the conservation error. In numerical experiments for time-dependent problems, we show that the proposed methods have optimal convergence and that the developed macro element stabilization for time-dependent problems leads to increased accuracy while retaining stable condition numbers. Moreover, the measured conservation errors verify the global conservation of the proposed methods. / Detta arbete undersöker diskretiseringar av partiella differentialekvationer i tidsberoende domäner där beräkningsnätet inte behöver anpassas till domänens rörelse. I synnerhet betraktar vi partiella differentalekvationer som modellerar koncentrationen av lösliga ytaktiva ämnen, och skurna finita elementmetoder baserade på den Diskontinuerliga Galerkinmetoden som bevarar de modellerade fysikaliska storheterna. I detta arbete föreslås diskretiseringar som är både lokalt och globalt konservativa. Lokal konservering uppnås i så kallade makroelement, och vi undersöker makroelementpartitionering för både stationära och tidsberoende domäner. Även globalt konservativa metoder utvecklas för tidsberoende problem. De föreslagna metoderna analyseras med hjälp av numeriska exempel. Vi studerar konvergensen av L2-felet med avseende på nätstorlek, konditionstalen för de linjära systemmatriserna samt konserveringsfelet. Metoderna uppvisar optimal konvergens och makroelementstabilisering som utvecklas för tidsberoende problem leder till ökad noggrannhet, samtidigt som konditionstalen förblir stabila. Dessutom veritifierar de uppmättta konserveringsfelen den globala konserveringen hos de föreslagna metoderna.
16

Simulering av vattenburen golvvärme med finita elementmetoden : värmeavgivning vid olika mönster för rörläggning / Simulation of Hydronic Underfloor Heating With the Finite Element Method : Heat Release From Different Heating Pipe Patterns in Construction

Nyberg, Joakim January 2023 (has links)
This report formulates the boundary conditions and discretization method for conducting a simulation of heat with liquids and solids through the finite element method. It introduces the reader to the movement that is due today with optimization of heat transport and mitigation generally described as the fourth generation of district heating. It presents the scope: calculating the heat release from pipes in hydronic underfloor heating, and presents the belonging question: how does heat release from different heating pipe patterns affect the body’s heat transfer? Simulation of the work is conducted with the delimitations of using a single boundary slip condition addressing friction and only using water as pipe flow medium. It focuses on the pattern’s ability to affect the heat to the body, of which characteristically manifests a square concrete slab in the running simulations. By using different cases, it analyses how patterns using the same length of pipes emit their average heat to the covering top surface differently, both as the heating level alternates, and duration for response changes. This meanwhile they are affected by analog boundary temperature conditions.    A sensitivity analysis is done answering how the various patterns tested are affected by change of propagation speed for the flowing medium, showing that a spiral formed pattern with evenly spread piping is the least affected. The results show that the pattern with alternating pipe spacing gives the best average heat emission in the simulated cases. It also concludes that minor changes in the pattern area will have profound effect on the average transferred heat from the body’s top surface.
17

Grey-box modelling of distributed parameter systems / Hybridmodellering av distribuerade parametersystem

Barkman, Patrik January 2018 (has links)
Grey-box models are constructed by combining model components that are derived from first principles with components that are identified empirically from data. In this thesis a grey-box modelling method for describing distributed parameter systems is presented. The method combines partial differential equations with a multi-layer perceptron network in order to incorporate prior knowledge about the system while identifying unknown dynamics from data. A gradient-based optimization scheme which relies on the reverse mode of automatic differentiation is used to train the network. The method is presented in the context of modelling the dynamics of a chemical reaction in a fluid. Lastly, the grey-box modelling method is evaluated on a one-dimensional and two-dimensional instance of the reaction system. The results indicate that the grey-box model was able to accurately capture the dynamics of the reaction system and identify the underlying reaction. / Hybridmodeller konstrueras genom att kombinera modellkomponenter som härleds från grundläggande principer med modelkomponenter som bestäms empiriskt från data. I den här uppsatsen presenteras en metod för att beskriva distribuerade parametersystem genom hybridmodellering. Metoden kombinerar partiella differentialekvationer med ett neuronnätverk för att inkorporera tidigare känd kunskap om systemet samt identifiera okänd dynamik från data. Neuronnätverket tränas genom en gradientbaserad optimeringsmetod som använder sig av bakåt-läget av automatisk differentiering. För att demonstrera metoden används den för att modellera kemiska reaktioner i en fluid. Metoden appliceras slutligen på ett en-dimensionellt och ett två-dimensionellt exempel av reaktions-systemet. Resultaten indikerar att hybridmodellen lyckades återskapa beteendet hos systemet med god precision samt identifiera den underliggande reaktionen.

Page generated in 0.1324 seconds