• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 22
  • 9
  • 3
  • 1
  • 1
  • Tagged with
  • 74
  • 74
  • 16
  • 15
  • 14
  • 12
  • 11
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Estudo de propriedades físico-químicas de metalofármacos de dirutênio com anti-inflamatórios não esteroides / Study of physico-chemical properties of diruthenium metallodrugs with non-steroidal anti-inflammatory drugs

Costa, Iguatinã de Melo 08 May 2014 (has links)
Complexos de rutênio, em razão da menor toxicidade e por poderem exibir atividade citotóxica ou antimetastática, tem sido considerados como alternativas potencialmente promissoras aos complexos de platina para tratamento de câncer. Nosso grupo de pesquisa tem investigado a interação de íons metálicos com fármacos anti-inflamatórios não esteroides (FAINEs) e já obteve sucesso na preparação de metalofármacos de dirutênio(II,III)-FAINEs, os quais se mostraram promissores com relação à atividade frente a modelos de glioma. Com a finalidade de contribuir para o entendimento das propriedades físico-químicas desses complexos, o presente trabalho teve como principal objetivo analisar propriedades consideradas particularmente essenciais a um potencial candidato a fármaco, tais como, estabilidade no estado sólido, lipofilicidade, solubilidade aquosa e dissolução intrínseca. Um complexo inédito de fórmula [Ru2Cl(feno)4], em que feno = fenoprofenato, foi sintetizado e caracterizado por meio de análise elementar, espectroscopia eletrônica, espectroscopia vibracional, difratometria de raios X, análise térmica e espectrometria de massas. Os complexos já testados anteriormente para atividade biológica, [Ru2Cl(ibp)4], ibp = ibuprofenato, e [Ru2(cet)4Cl], cet = cetoprofenato, foram analisados quanto à estabilidade no estado sólido por meio da determinação isotérmica de variação de massa. As lipofilicidades desses dois complexos, juntamente com a dos fármacos de origem e a do precursor sintético [Ru2(O2CH3)4Cl], foram avaliadas pelo método shake flask, e suas solubilidade aquosas foram investigadas em presença de co-solventes alcoólicos. Investigou-se ainda a velocidade de dissolução intrínseca do [Ru2Cl(ibp)4] que se encontra em estágio avançado de estudos biológicos. Os resultados obtidos trazem novas informações sobre o comportamento térmico dos complexos e sobre suas características biofarmacêutica. / Ruthenium complexes, mainly due to the lower toxicity and the cytotoxic and anti-metastatic activities, have been considered as potentially promising alternatives to platinum drugs for cancer treatment. Our research group has investigated the interactions of diruthenium metal cores with anti-inflammatory non-steroidal drugs (NSAIDs) and succeeded in preparing diruthenium(II,III)-NSAIDs metallodrugs which show promising activity against glioma models. With the aim of elucidating the physico-chemical properties of these complexes, the major objective of the present work was to investigate properties which are considered as essential for a potential candidate to drug, e.g., stability in the solid state, lipophilicity, aqueous solubility and intrinsic dissolution. A new complex of formula [Ru2Cl(feno)4], where feno = fenoprofen, was synthesized and characterized by elemental analysis, electronic spectroscopy, vibrational spectroscopy, X-rays difractommetry, thermal analysis and mass spectrometry. The complexes previously tested for biological properties, [Ru2Cl(ibp)4], ibp = ibuprofenate, and [Ru2(cet)4Cl], cet = cetoprofenate, were inv estigated for the stability in the solid state by isothermal thermogravimetry. The lipophilicity of the se complexes, as well as those of the parent drugs and of the precursor [Ru2(O2CH3)4Cl], was evaluated by the shake flask method, and their aqueous solubility in the presence of alcohol co-solvents was investigated. In addition, the intrinsic dissolution rate was determined for [Ru2Cl(ibp)4], which is undergoing advanced biological studies. The results provide important new information on the thermal behavior of the complexes and also on their biopharmaceutical propertie.
42

CALIBRATED SHORT TR RECOVERY MRI FOR RAPID MEASUREMENT OF BRAIN-BLOOD PARTITION COEFFICIENT AND CORRECTION OF QUANTITATIVE CEREBRAL BLOOD FLOW

Thalman, Scott William 01 January 2019 (has links)
The high prevalence and mortality of cerebrovascular disease has led to the development of several methods to measure cerebral blood flow (CBF) in vivo. One of these, arterial spin labeling (ASL), is a quantitative magnetic resonance imaging (MRI) technique with the advantage that it is completely non-invasive. The quantification of CBF using ASL requires correction for a tissue specific parameter called the brain-blood partition coefficient (BBPC). Despite regional and inter-subject variability in BBPC, the current recommended implementation of ASL uses a constant assumed value of 0.9 mL/g for all regions of the brain, all subjects, and even all species. The purpose of this dissertation is 1) to apply ASL to a novel population to answer an important clinical question in the setting of Down syndrome, 2) to demonstrate proof of concept of a rapid technique to measure BBPC in mice to improve CBF quantification, and 3) to translate the correction method by applying it to a population of healthy canines using equipment and parameters suitable for use with humans. Chapter 2 reports the results of an ASL study of adults with Down syndrome (DS). This population is unique for their extremely high prevalence of Alzheimer’s disease (AD) and very low prevalence of systemic cardiovascular risk factors like atherosclerosis and hypertension. This prompted the hypothesis that AD pathology would lead to the development of perfusion deficits in people with DS despite their healthy cardiovascular profile. The results demonstrate that perfusion is not compromised in DS participants until the middle of the 6th decade of life after which measured global CBF was reduced by 31% (p=0.029). There was also significantly higher prevalence of residual arterial signal in older participants with DS (60%) than younger DS participants (7%, p = 0.005) or non-DS controls (0%, p < 0.001). This delayed pattern of perfusion deficits in people with DS differs from observations in studies of sporadic AD suggesting that adults with DS benefit from an improved cardiovascular risk profile early in life. Chapter 3 introduces calibrated short TR recovery (CaSTRR) imaging as a rapid method to measure BBPC and its development in mice. This was prompted by the inability to account for potential changes in BBPC due to age, brain atrophy, or the accumulation of hydrophobic A-β plaques in the ASL study of people with DS in Chapter 2. The CaSTRR method reduces acquisition time of BBPC maps by 87% and measures a significantly higher BBPC in cortical gray matter (0.99±0.04 mL/g,) than white matter in the corpus callosum (0.93±0.05 mL/g, p=0.03). Furthermore, when CBF maps are corrected for BBPC, the contrast between gray and white matter regions of interest is improved by 14%. This demonstrates proof of concept for the CaSTRR technique. Chapter 4 describes the application of CaSTRR on healthy canines (age 5-8 years) using a 3T human MRI scanner. This represents a translation of the technique to a setting suitable for use with a human subject. Both CaSTRR and pCASL acquisitions were performed and further optimization brought the acquisition time of CaSTRR down to 4 minutes which is comparable to pCASL. Results again show higher BBPC in gray matter (0.83 ± 0.05 mL/g) than white matter (0.78 ± 0.04 mL/g, p = 0.007) with both values unaffected by age over the range studied. Also, gray matter CBF is negatively correlated with age (p = 0.003) and BBPC correction improved the contrast to noise ratio by 3.6% (95% confidence interval = 0.6 – 6.5%). In summary, the quantification of ASL can be improved using BBPC maps derived from the novel, rapid CaSTRR technique.
43

Solubility Modelling in Condensed Matter. Dielectric Continuum Theory and Nonlinear Response

Sandberg, Lars January 2002 (has links)
No description available.
44

Some Aspects of Arsenic and Antimony Geochemistry in High Temperature Granitic Melt – Aqueous Fluid System and in Low Temperature Permeable Reactive Barrier – Groundwater System

Guo, Qiang 30 January 2008 (has links)
Arsenic and antimony are important trace elements in magmatic-hydrothermal systems, geothermal systems and epithermal deposits, but their partitioning behavior between melt and aqueous fluid is not well understood. The partitioning of arsenic and antimony between aqueous fluid and granitic melt has been studied in the system SiO2-Al2O3-Na2O-K2O-H2O at 800 degree C and 200 MPa. The partition coefficients of As and Sb between aqueous fluid and melt, are 1.4 +- 0.5 and 0.8 +- 0.5, respectively. The partitioning of As is not affected by aluminum saturation index (ASI) or SiO2 content of the melt, or by oxygen fugacity under oxidized conditions (log fO2 > the nickel-nickel oxide buffer, NNO). The partitioning of Sb is independent of and SiO2 content of the melt. However, aluminum saturation index (ASI) does affect Sb partitioning and Sb partition coefficient for peralkaline melt (0.1 +- 0.01) is much smaller than that for metaluminous melts (0.8 +- 0.4) and that for peraluminous melts (1.3 +- 0.7). Thermodynamic calculations show that As(III) is dominant in aqueous fluid at 800 degree C and 200 MPa and XPS analysis of run product glass indicate that only As(III) exists in melt, which confirms the finding that does not affect As partitioning between fluid and melt. XPS analysis of run product glass show that Sb(V) is dominant in melt at oxidized conditions (log fO2 > -10). The peralkaline effect only exhibits on Sb partitioning, not on As partitioning at oxidized conditions, which is consistent with the x-ray photoelectron spectroscopy (XPS) measurements that As(III) and Sb(V) are dominant oxidation states in melt under oxidized conditions, because the peralkaline effect is stronger for pentavalent than trivalent cations. Permeable reactive barriers (PRBs) are an alternative technology to treat mine drainage containing sulfate and heavy metals. Two column experiments were conducted to assess the suitability of an organic carbon (OC) based reactive mixture and an Fe0-bearing organic carbon (FeOC) based reactive mixture, under controlled groundwater flow conditions. The organic carbon (OC) column showed an initial sulfate reduction rate of 0.4 μmol g(oc)-1 d-1 and exhausted its capacity to promote sulfate reduction after 30 pore volumes (PVs), or 9 months of flow. The Fe0-bearing organic carbon (FeOC) column sustained a relative constant sulfate reduction rate of 0.9 μmol g(oc)-1 d-1 for at least 65 PVs (17 months). The microbial enumerations and isotopic measurements indicate that the sulfate reduction was mediated by sulfate reducing bacteria (SRB). The cathodic production of H2 by anaerobic corrosion of Fe probably is the cause of the difference in sulfate reduction rates between the two reactive mixtures. Zero-valent iron can be used to provide an electron donor in sulfate reducing PRBs and Fe0-bearing organic carbon reactive mixture has a potential to improve the performance of organic carbon PRBs. The δ34S values can be used to determine the extent of sulfate reduction, but the fractionation is not consistent between reactive materials. The δ13C values indicate that methanogenesis is occurring in the front part of both columns. Arsenic and antimony in groundwater are great threats to human health. The PRB technology potentially is an efficient and cost-effective approach to remediate organic and inorganic contamination in groundwater. Two column experiments were conducted to assess the rates and capacities of organic carbon (OC) PRB and Fe-bearing organic carbon (FeOC) PRB to remove As and Sb under controlled groundwater flow conditions. The average As removal rate for the OC column was 13 nmole day-1 g-1 (dry weight of organic carbon) and its removal capacity was 11 μmole g-1 (dry weight of organic carbon). The remove rate of the FeOC material was 165 nmole day-1 g-1 (dry weight of organic carbon) and its minimum removal capacity was 105 mole g-1 (dry weight of organic carbon). Antimony removal rate of the OC material decreases from 8.2 to 1.4 nmole day-1 g-1 (dry weight of organic carbon) and its removal capacity is 2.4 μmole g-1 (dry weight of organic carbon). The minimum removal rate of FeOC material is 13 nmole day-1 g-1 (dry weight of organic carbon) and its minimum removal capacity is 8.4 μmole g-1 (dry weight of organic carbon). The As(III) : [As(III)+As(V)] ratio increased from 1% in the influent to 50% at 5.5 cm from the influent end, and to 80% at 15.5 cm from the influent end of the OC column. X-ray absorption near edge spectroscopy (XANES) shows As(III)-sulfide species on solid samples. These results suggest that As(V) is reduced to As(III) both in pore water and precipitate as As sulfides or coprecipitate with iron sulfides. The arsenic reduction rate suggests that As(V) reduction is mediated by bacterial activity in the OC column and that both abiotic reduction and bacterial reduction could be important in FeOC.
45

Some Aspects of Arsenic and Antimony Geochemistry in High Temperature Granitic Melt – Aqueous Fluid System and in Low Temperature Permeable Reactive Barrier – Groundwater System

Guo, Qiang 30 January 2008 (has links)
Arsenic and antimony are important trace elements in magmatic-hydrothermal systems, geothermal systems and epithermal deposits, but their partitioning behavior between melt and aqueous fluid is not well understood. The partitioning of arsenic and antimony between aqueous fluid and granitic melt has been studied in the system SiO2-Al2O3-Na2O-K2O-H2O at 800 degree C and 200 MPa. The partition coefficients of As and Sb between aqueous fluid and melt, are 1.4 +- 0.5 and 0.8 +- 0.5, respectively. The partitioning of As is not affected by aluminum saturation index (ASI) or SiO2 content of the melt, or by oxygen fugacity under oxidized conditions (log fO2 > the nickel-nickel oxide buffer, NNO). The partitioning of Sb is independent of and SiO2 content of the melt. However, aluminum saturation index (ASI) does affect Sb partitioning and Sb partition coefficient for peralkaline melt (0.1 +- 0.01) is much smaller than that for metaluminous melts (0.8 +- 0.4) and that for peraluminous melts (1.3 +- 0.7). Thermodynamic calculations show that As(III) is dominant in aqueous fluid at 800 degree C and 200 MPa and XPS analysis of run product glass indicate that only As(III) exists in melt, which confirms the finding that does not affect As partitioning between fluid and melt. XPS analysis of run product glass show that Sb(V) is dominant in melt at oxidized conditions (log fO2 > -10). The peralkaline effect only exhibits on Sb partitioning, not on As partitioning at oxidized conditions, which is consistent with the x-ray photoelectron spectroscopy (XPS) measurements that As(III) and Sb(V) are dominant oxidation states in melt under oxidized conditions, because the peralkaline effect is stronger for pentavalent than trivalent cations. Permeable reactive barriers (PRBs) are an alternative technology to treat mine drainage containing sulfate and heavy metals. Two column experiments were conducted to assess the suitability of an organic carbon (OC) based reactive mixture and an Fe0-bearing organic carbon (FeOC) based reactive mixture, under controlled groundwater flow conditions. The organic carbon (OC) column showed an initial sulfate reduction rate of 0.4 μmol g(oc)-1 d-1 and exhausted its capacity to promote sulfate reduction after 30 pore volumes (PVs), or 9 months of flow. The Fe0-bearing organic carbon (FeOC) column sustained a relative constant sulfate reduction rate of 0.9 μmol g(oc)-1 d-1 for at least 65 PVs (17 months). The microbial enumerations and isotopic measurements indicate that the sulfate reduction was mediated by sulfate reducing bacteria (SRB). The cathodic production of H2 by anaerobic corrosion of Fe probably is the cause of the difference in sulfate reduction rates between the two reactive mixtures. Zero-valent iron can be used to provide an electron donor in sulfate reducing PRBs and Fe0-bearing organic carbon reactive mixture has a potential to improve the performance of organic carbon PRBs. The δ34S values can be used to determine the extent of sulfate reduction, but the fractionation is not consistent between reactive materials. The δ13C values indicate that methanogenesis is occurring in the front part of both columns. Arsenic and antimony in groundwater are great threats to human health. The PRB technology potentially is an efficient and cost-effective approach to remediate organic and inorganic contamination in groundwater. Two column experiments were conducted to assess the rates and capacities of organic carbon (OC) PRB and Fe-bearing organic carbon (FeOC) PRB to remove As and Sb under controlled groundwater flow conditions. The average As removal rate for the OC column was 13 nmole day-1 g-1 (dry weight of organic carbon) and its removal capacity was 11 μmole g-1 (dry weight of organic carbon). The remove rate of the FeOC material was 165 nmole day-1 g-1 (dry weight of organic carbon) and its minimum removal capacity was 105 mole g-1 (dry weight of organic carbon). Antimony removal rate of the OC material decreases from 8.2 to 1.4 nmole day-1 g-1 (dry weight of organic carbon) and its removal capacity is 2.4 μmole g-1 (dry weight of organic carbon). The minimum removal rate of FeOC material is 13 nmole day-1 g-1 (dry weight of organic carbon) and its minimum removal capacity is 8.4 μmole g-1 (dry weight of organic carbon). The As(III) : [As(III)+As(V)] ratio increased from 1% in the influent to 50% at 5.5 cm from the influent end, and to 80% at 15.5 cm from the influent end of the OC column. X-ray absorption near edge spectroscopy (XANES) shows As(III)-sulfide species on solid samples. These results suggest that As(V) is reduced to As(III) both in pore water and precipitate as As sulfides or coprecipitate with iron sulfides. The arsenic reduction rate suggests that As(V) reduction is mediated by bacterial activity in the OC column and that both abiotic reduction and bacterial reduction could be important in FeOC.
46

Solubility Modelling in Condensed Matter. Dielectric Continuum Theory and Nonlinear Response

Sandberg, Lars January 2002 (has links)
No description available.
47

Μελέτη των ιδιοτήτων φόρτωσης και αποδέσμευσης βιοδιασπώμενων νανοσωματιδίων PLGAmPEG / Study of the encapsulation and release properties of biodegradable PLGAmPEG nanoparticles

Κατσικόγιαννη, Γεωργία 14 May 2007 (has links)
Ένας από τους πιο σημαντικούς στόχους της φαρμακευτικής θεραπείας είναι η ανάπτυξη φορέων φαρμάκου που θα μεταφέρουν και θα παραδίδουν εκλεκτικά το φάρμακο στις θέσεις φαρμακολογικής δράσης του αλλά και με έναν ελεγχόμενο ρυθμό χορήγησης κατάλληλα προσαρμοσμένο για την κάθε ασθένεια. Για την ελεγχόμενη χορήγηση και στόχευση βιοδραστικών ουσιών έχουν αναπτυχθεί πολλοί φορείς, όπως πολυμερικά νανοσωματίδια και λιποσώματα. Μεταξύ των πολυμερών που έχουν χρησιμοποιηθεί για την παρασκευή νανοσωματιδιακών φορέων φαρμάκων ιδιαίτερη προσοχή συγκεντρώνουν τα βιοδιασπώμενα και βιοσυμβατά πολυμερή του πολυ(γαλακτικού-γλυκολικού) οξέος (PLGA). Τα νανοσωματίδια που παρασκευάζονται από τα συμπολυμερή αυτά απομακρύνονται ταχύτατα από τη συστηματική κυκλοφορία μετά από ενδοφλέβια χορήγηση, κυρίως μέσω της πρόσληψης τους από το δικτυοενδοθηλιακό σύστημα. Όταν όμως επικαλυφθούν με υδρόφιλα, μη ιονικά πολυμερή, όπως η πολυ(αιθυλενογλυκόλη), έχουμε στερεοχημική σταθεροποίηση των νανοσωματιδίων και παράταση του χρόνου παραμονής τους στην συστηματική κυκλοφορία. Στην παρούσα εργασία μελετήθηκε η επίδραση της διαλυτότητας του φαρμάκου στην φόρτωση και αποδέσμευση του από PLGAmPEG νανοσωματίδια διαφορετικής πολυμερικής σύστασης (αναλογία PLGA/PEG). Ως πρότυπα φάρμακα χρησιμοποιήθηκαν τα μέλη της τάξης των μεθυλοξανθινών καφεΐνη, θεοφυλλίνη και θεοβρωμίνη. Οι μεθυλοξανθίνες αποτελούν ικανοποιητικά πρότυπα ώστε να μπορούν να χρησιμοποιηθούν στην μελέτη της επίδρασης της διαλυτότητας στις ιδιότητες φόρτωσης και απελευθέρωσης φαρμάκων από τα PLGAmPEG νανοσωματίδια, καθώς είναι μικρά μόρια με παραπλήσιο μοριακό βάρος και χημικές ιδιότητες ενώ η διαλυτότητα τους στο νερό είναι σημαντικά διαφορετική: καφεΐνη (1g/46 ml), θεοφυλλίνη (1 g/120 ml) και θεοβρωμίνη (1 g/2000 ml). Παρασκευάστηκαν έτσι τρεις διαφορετικές συνθέσεις νανοσωματιδίων με την μέθοδο του διπλού γαλακτώματος και χαρακτηρίστηκαν ως προς το μέγεθος και το ζ δυναμικό. Στην συνέχεια μελετήθηκαν οι ιδιότητες φόρτωσης των μεθυλοξανθινών καθώς και οι ιδιότητες απελευθέρωσής τους από τα νανοσωματίδια μέσα σε φυσιολογικό ορό ρυθμισμένο με φωσφορικά (PBS) και ανθρώπινο πλάσμα in vitro. Το μέσο μέγεθος των νανοσωματιδίων κυμαίνονταν από 130 έως 200 nm και το ζ δυναμικό από -7 έως -20 mV. Τα χαρακτηριστικά αυτά καθιστούν τα νανοσωματίδια κατάλληλα για εφαρμογές ελεγχόμενης αποδέσμευσης. Η φόρτωση και η ενκαψακίωση των PLGAmPEG νανοσωματιδίων βρέθηκε να εξαρτάται από την σχετική διαλυτότητα του φαρμάκου στην εξωτερική υδατική φάση και στην οργανική φάση που χρησιμοποιούνται κατά την παρασκευή των νανοσωματιδίων και όχι απλά από την υδατοδιαλυτότητά τους. Έτσι η φόρτωση των νανοσωματιδίων ήταν μεγαλύτερη στην περίπτωση της καφεΐνης απ’ ότι στην θεοβρωμίνη, και αυτής από την φόρτωση στην περίπτωση της θεοφυλλίνης. Η φόρτωση και η ενκαψακίωση των μεθυλοξανθινών σε PLGAmPEG νανοσωματίδια επηρεάζεται από την αρχική φόρτωση των νανοσωματιδίων σε φάρμακο (drug input). Για όλα τα φάρμακα που δοκιμάστηκαν, αύξηση της αρχικής ποσότητας του φαρμάκου είχε σαν αποτέλεσμα την αύξηση της φόρτωσης των νανοσωματιδίων με φάρμακο. Αντίθετα η επίδραση της αρχικής φόρτωσης στην ενκαψακίωση βρέθηκε να εξαρτάται από την υδατοδιαλυτότητα του φαρμάκου. Έτσι η αύξηση της αρχικής φόρτωσης είχε σαν αποτέλεσμα την ελάττωση της ενκαψακίωσης στην περίπτωση της καφεΐνης, δεν είχε κανένα αποτέλεσμα στην ενκαψακίωση της θεοφυλλίνης ενώ οδήγησε σε μικρή αύξηση της ενκαψακίωσης της θεοβρωμίνης. Η φόρτωση και η ενκαψακίωση των φαρμάκων που δοκιμάστηκαν δεν επηρεάστηκε σημαντικά από τη σύνθεση του PLGAmPEG συμπολυμερούς από το οποίο παρασκευάστηκαν τα νανοσωματίδια. Ανεξάρτητα από την πολυμερική σύνθεση των νανοσωματιδίων, ο ρυθμός απελευθέρωσης των εγκλωβισμένων στα νανοσωματίδια μεθυλοξανθινών ήταν, τόσο στο PBS όσο και στο ανθρώπινο πλάσμα in vitro, ανάλογος της υδατοδιαλυτότητας του φαρμάκου. Έτσι ο ρυθμός αποδέσμευσης ήταν μεγαλύτερος στην περίπτωση της καφεΐνης απ’ ότι στην θεοφυλλίνη, και αυτής από την θεοβρωμίνη. Με όλες τις πολυμερικές συνθέσεις που δοκιμάστηκαν, ο εγκλωβισμός των μεθυλοξανθινών στα νανοσωματίδια είχε ως αποτέλεσμα την ελάττωση του ρυθμού αποδέσμευσης των φαρμάκων in vitro, τόσο σε PBS όσο και σε ανθρώπινο πλάσμα. Η ελάττωση του ρυθμού αποδέσμευσης αυξάνονταν με ελάττωση της υδατοδιαλυτότητας του φαρμάκου. Ο ρυθμός απελευθέρωσης και των τριών μεθυλοξανθινών ήταν μεγαλύτερος στο PBS σε σύγκριση με το ανθρώπινο πλάσμα. Η απόδειξη της ελεγχόμενης αποδέσμευσης των φαρμάκων από τα νανοσωματίδια στο ανθρώπινο πλάσμα είναι σημαντική καθώς καταδεικνύει την καταλληλότητα των PLGAmPEG σωματιδίων για εφαρμογές ελεγχόμενης χορήγησης φαρμάκων. Πάντως η χρησιμότητα των PLGAmPEG νανοσωματιδίων σε ελεγχόμενη χορήγηση φαρμάκων φαίνεται να περιορίζεται στις περιπτώσεις των φαρμάκων με μικρή σχετικά υδατοδιαλυτότητα. / The rapid removal of conventional polymeric nanoparticles from the bloodstream limits their potentional in controlled drug delivery and targeting. Surface engineering, however, may lead to nanoparticles capable of evading their uptake from the mononuclear phagocyte system (MPS), which exhibit prolonged residence in blood. Thus, coating the nanoparticle surface with a hydrophilic polymer such as poly(ethylene glycol) (PEG) has been shown to confer long circulation properties to PLGA (poly(lactide-co-glycolide) nanoparticles. Although the basic physicochemical and biological properties of these nanoparticles have been studied, there is currently a luck of studies dealing in a systematic way with their drug incorporation and release properties. In this work the effect of three different PLGAmPEG copolymer composition on drug loading and release properties, was studied using the members of the methyl-xanthine class of drugs, i.e. caffeine, theophylline, theobromine, as model drugs. This way, the effect of drug solubility on drug loading and release from the nanoparticles can be evaluated in a more scientifically sound way than applying more common practices, such as the study of a drug and its salt. PLGAmPEG copolymers were synthesized from dl-lactide (LE), glycolide (GE) and mPEG(5000) by a melt polymerization process. The synthesized copolymers were identified by the moral ratio of (LE +GE)/mPEG determined by 1H-NMR. PLGAmPEG nanoparticles loaded with caffeine, theophylline and theobromine were prepared by a double emulsion (w1/o/w2) method, where w1: aqueous solution of drug, o: a dichloromethane (dcm) solution of the polymer and w2: an aqueous solution of sodium cholate (12mM). The size and æ potential of the nanoparticles, were determined by photon correlation spectroscopy and microelectrophoresis respectively. The size of the nanoparticles ranged approximately from 130 to 200nm depending on the type of PLGAmPEG copolymer used and the formulation. All nanoparticle formulations exhibited low negative æ potential in the range -7 to -20. Drug loading was determined using direct method in which the samples were dissolved in NaOH and the drug in the solution was assayed by a High Performance Liquid Chromatography method (HPLC). The release experiments were performed in phosphate buffered saline and in human plasma in vitro. The nanoparticles were enclosed in a dialysis bag and incubated in PBS (pH=7.4, 37oC) and in human plasma under mild agitation. At predetermined time intervals, samples were withdrawn and assayed for the drug by HPLC. The drug loading and encapsulation values increased and decreased respectively when the drug/polymer ratio increased, by increasing drug input (initially present drug) while keeping polymer input constant. Due to the relatively high aqueous solubility of the three methylxanthines low nanoparticle loadings were generally obtained. Caffeine, despite its higher aqueous solubility, exhibited a little higher encapsulation and loading than theophylline and theobromine. This may be attributed to the much higher partition coefficient K (dcm/water) of caffeine compared to theophylline and theobromine, which would decrease to a higher extend in the case of caffeine the tendency of the drug to pass from the dcm droplets, formed during the second emulsification step of nanoparticle preparation, to the surrounding aqueous phase. As a result, higher drug retention in the nanoparticles was observed in the case of caffeine. Drug release from the nanoparticles was sustained and depended on the aqueous solubility of the drugs. For instance, the more water-soluble caffeine was released relatively faster than the less water-soluble theophylline and the even less water-soluble theobromine, from all PLGAmPEG compositions both in PBS and in human plasma. Drug release from the nanoparticles did not appear to depend on the composition of the PLGAmPEG copolymer used to prepare the nanopaparticles. Drug release rate in plasma was lower than that in PBS, probably due to the binding of the drug molecules to plasma proteins. Drug encapsulation of methylxanthines in the PLGAmPEG nanoparticles depended on the solubility properties of the drugs. The organic/aqueous phase partition coefficient of the drug may be crucial with regard to the incorporation efficiency of the drug in these nanoparticles. Drug release from the nanoparticles was sustained in both PBS and human plasma, but only for the relatively hydrophobic theobromine in a satisfactory extent. The rate of drug release was affected by the aqueous solubility of the drug and the release medium. It appears that PLGAmPEG nanoparticles can be applied for controlled drug delivery applications only in the case of relatively water-insoluble drugs.
48

Contraindre les échanges côte-large et la pompe biologique de carbone par modélisation inverse de deux radio-isotopes (radium228 et thorium234) / Constraining the coast – open ocean exchanges and the biological carbon pump by inverse modeling of two radio-isotopes (radium 228 and thorium 234)

Le Gland, Guillaume 12 February 2018 (has links)
Les cycles océaniques du carbone et des principaux nutriments sont mal connus car ils sont affectés par de nombreux puits et sources physiques, chimiques ou biologiques difficiles à estimer par des mesures directes. Une manière de mieux contraindre ces processus importants est d’utiliser l’information contenue dans des traceurs plus simples : les proxies. Le radium 228 (228Ra), émis par les plateaux continentaux, est utilisé comme proxy des flux d’eau et d’éléments minéraux de la côte vers l’océan ouvert. Il permet en particulier d’estimer les flux d’eau souterraine ou SGDs (Submarine Groundwater Discharge). Le thorium 234(234Th), insoluble, permet quant à lui de contraindre la dynamique des particules par lesquelles il est adsorbé. Il est régulièrement utilisé pour estimer la pompe biologique du carbone (PBC), c’est-à-dire le flux de carbone de la surface vers l’océan profond.Au cours de cette thèse, un modèle numérique à une résolution de 2° a été construit pour chacun de ces deux radio-isotopes, en s’appuyant sur la circulation du modèle NEMO-OPA et les champs de particules du modèle PISCES. Plusieurs paramètres inconnus des modèles ont été contraints par des observations dans le cadre d’une méthode inverse.La modélisation inverse du 228Ra a permis d’estimer les flux de 228Ra venant de 38 régions côtières. En revanche, l’estimation des SGDs est imprécise, car les SGDs sont difficiles à distinguer d’une autre source de 228Ra: la diffusion par les sédiments.La modélisation inverse du 234Th a permis d’estimer les coefficients de partage du 234Th, qui représentent l’affinité de différents types de particules pour cet isotope. Elle a aussi permis d’estimer les erreurs associées à quelques simplifications courantes dans les études de la PBC fondées sur le 234Th. / The oceanic cycles of carbon and the main nutrients are poorly known since they are affected by many physical, chemical or biological sources and sinks that are difficult to estimate by direct measurements.One way to better constrain these important processes is to use the information contained in more simple tracers called "proxies". As radium 228 (228Ra) flows from the continental shelves, it is used as a proxy of water and mineral elements fluxes from the coast to the open ocean. In particular, it is often used to estimate the SGD (Submarine Groundwater Discharge). For its part, thorium 234 (234Th), an insoluble radio-isotope, is used to constrain the dynamics of the solid particles onto which it is adsorbed. The carbon flux from the surface to the deep ocean, called "biological carbon pump" (BCP), is often estimated by a 234Th-based method.During this PhD, a numerical model with a resolution of 2°, based on the circulation of the NEMO-OPA model and the particle fields of the PISCES model, was built for each of the two radioisotopes.Several unknown model parameters were constrained by observations using an inverse technique.The inverse modeling of 228Ra was used to constrain 228Ra fluxes from 38 coastal regions.However, the SGD fluxes are poorly constrained by this method, because SGD can be confused with another source of 228Ra: diffusion from sediments.The inverse modeling of 234Th produced estimates of partition coefficients, representing the affinity of different particle types for this isotope. It was also used to estimate the errors associated with some common simplifications made in 234Th-based BCP studies.
49

Estudos termodinâmicos da incorporação de terpenos em micelas aquosas por cromatografia eletrocinética micelar / Thermodynamics studies of terpenes incorporation into aqueous micelles by micelar electrokinetic chromatography

Carolina Raíssa Costa Picossi 07 June 2018 (has links)
Terpenos são os principais constituintes dos óleos essenciais e vêm sendo explorados há mais de 3500 anos pela humanidade. Por conta das suas propriedades flavorizantes, são amplamente empregados na indústria de cosméticos e perfumaria. Apresentam ainda uma infinidade de funções biológicas, como promoção de polinização nas plantas, e proteção contra pragas e animais. Além dessas funções, muitos compostos possuem ainda atividade antimicrobiana, anti-inflamatória, antifúngica, entre outras. Tendo em vista a simplicidade estrutural dos terpenos e a alta hidrofobicidade que sugere fracas interações intermoleculares, é difícil de se imaginar como esses compostos conseguem desempenhar funções tão específicas e diversas. É de se esperar que quanto mais complexa a estrutura do composto, mais fácil seja seu reconhecimento pelo organismo. Isso mostra o grande poder de reconhecimento do meio biológico. Nesse trabalho, os parâmetros termodinâmicos de transferência da fase aquosa para a fase micelar de 10 terpenos (carvona, cânfora, cumeno, t-anetol, eugenol, limoneno, citronelal, linalol, terpineol e verbenona) e cumarina em dois sistemas, SDS 30 mmol.kg-1 + TBS 20 mmol.kg-1 e SDS 30 mmol.kg-1 + TBS 20 mmol.kg-1 + 10% v/v de etanol foram determinados buscando elucidar a incorporação micelar desses compostos. Micelas apresentam compartimentos com diferentes polaridades e podem servir como modelo para mimetizar as diferentes interações no meio biológico. Dessa forma, a utilização da cromatografia eletrocinética micelar (MEKC, do inglês Micellar Electrokinetic Chromatography) na determinação dos coeficientes de partição e dos parâmetros termodinâmicos de transferência entre as fases aquosa e micelar desses solutos pode contribuir para o entendimento da distribuição bem como auxiliar na compreensão das funções que os mesmos desempenham na natureza. A hipótese de que os parâmetros termodinâmicos podem elucidar detalhes da incorporação micelar foi ainda testada através da busca de relações lineares de energia de solvatação (LSER, do inglês Linear Solvation Energy Relashionships) com o intuito de evidenciar as principais características moleculares que contribuem para o processo detransferência. Os modelos LSER foram estudados através de regressão múltipla e análises multivariadas de PLS, SPLS, PLS-DA e SPLS-DA, com o objetivo de verificar as propriedades dos terpenos que explicam sua incorporação nas micelas. Outras análises estatísticas multivariadas, como análise de agrupamentos e PCA, foram utilizadas para estudar a variabilidade estrutural dos compostos selecionados, bem como, determinar se os descritores teóricos calculados conseguem descrever as características estruturais dos terpenos. O estudo da termodinâmica de transferência de solutos neutros da fase aquosa para a fase micelar demonstrou que mesmo pequenas diferenças estruturais das moléculas contêm informação sobre a distribuição dos compostos nos compartimentos micelares. Também podese inferir sobre o efeito do etanol nas partições e sobre a própria estrutura micelar. Os resultados para o limoneno mostraram a complexidade envolvida nas partições, levando a ideia de restrição de volume nas micelas modificadas por álcool. Resultados de LSER mostraram que a transferência da fase aquosa para a fase micelar desses compostos é governada principalmente pela interação hidrofóbica onde Vx (Volume de McGowan) foi selecionado como um dos descritores mais importantes para explicar lnP. A análise comparativa dos resultados obtidos pelos dois métodos (estudo dos parâmetros termodinâmicos e LSER) indicou similaridade de resultados. Isso demonstra a grande confiabilidade dos resultados e, então, que estudos similares usando outras soluções micelares e outras classes de compostos (hormônios, flavonoides, aminas, etc.) podem ser muito promissores. / Terpenes are the main constituents of essential oils and have been explored for more than 3,500 years. Because of their flavoring properties, terpenes are widely used in the cosmetics and perfumery industry. They also exert a multitude of ecological functions, such as the promotion of plant pollination and protection against pests and animals. In addition, many compounds have antimicrobial, antifungal, anti-inflammatory activities and others. Given the structural simplicity of terpenes and the high hydrophobicity that suggests weak intermolecular interactions, it is difficult to imagine how these compounds can perform such specific and diverse functions. It is expected that the more complex the structure of the compound, the easier it is its recognition by the organism, which does not seem to be true for this class showing the great power of recognition of the biological system. In this work, the thermodynamic parameters of aqueous and micellar phase transfer of ten terpenes (carvone, camphor, cumene, t-anethol, eugenol, limonene, citronellal, linalool, terpineol, and verbenone) and coumarin in two systems, 30 mmol.kg-1 of SDS + 20 mmol.kg-1 of TBS and 30 mmol.kg-1 of SDS, 20 mmol.kg-1 of TBS, and 10% v/v of ethanol were determined to elucidate the micellar distribution of these compounds. Micelles have compartments that possess different polarities and might be a model to mimic the different interactions that terpenes may have in the biological environment. Thus, the use of micellar electrokinetic chromatography (MEKC) in the determination of the partition coefficients and the thermodynamic parameters of transfer of the aqueous phase to the micellar phase of these solutes can contribute to the understanding of the distribution, as well as help in the understanding of the functions they perform in nature. The hypothesis that the thermodynamic parameters can elucidate details of the micellar incorporation was further analyzed through the search of Linear Solvation Energy Relashionships (LSER), in order to highlight the main molecular characteristics that contribute to the transfer process. The LSER models were studied through multiple regression and other multivariate analyzes, such as PLS, SPLS, PLS-DA and SPLS-DA, in order to verify the properties of terpenes that explain their incorporation into micelles.Other multivariate statistical analysis, such as cluster analysis and PCA were used to study the structural variability of the selected compounds, as well as to determine if the calculated theoretical descriptors can describe all the structural characteristics of the terpenes. The study of thermodynamics of transfer of neutral solutes from the aqueous phase to the micellar phase has shown that even small structural differences of the molecules contain information about the distribution of the compounds in the micellar compartments. It was also possible to infer about the effect of ethanol on the partitions and on the micellar structure. The results for limonene showed the complexity involved in the partitions, showing that occurs volume restriction in alcohol-modified micelles. Results from LSER showed that the transfer of these compounds is mainly governed by hydrophobic interactions where Vx (McGowan volume) was selected as one of the most important descriptors to explain partition. The comparative analysis of the results obtained by the two methods (thermodynamic parameters studies and LSER) indicated similarity of results. This demonstrates the great reliability of the methods, and that similar studies using other micellar solutions and other classes of compounds (hormones, flavonoids, amines, etc.) might be very promising.
50

Estudo de propriedades físico-químicas de metalofármacos de dirutênio com anti-inflamatórios não esteroides / Study of physico-chemical properties of diruthenium metallodrugs with non-steroidal anti-inflammatory drugs

Iguatinã de Melo Costa 08 May 2014 (has links)
Complexos de rutênio, em razão da menor toxicidade e por poderem exibir atividade citotóxica ou antimetastática, tem sido considerados como alternativas potencialmente promissoras aos complexos de platina para tratamento de câncer. Nosso grupo de pesquisa tem investigado a interação de íons metálicos com fármacos anti-inflamatórios não esteroides (FAINEs) e já obteve sucesso na preparação de metalofármacos de dirutênio(II,III)-FAINEs, os quais se mostraram promissores com relação à atividade frente a modelos de glioma. Com a finalidade de contribuir para o entendimento das propriedades físico-químicas desses complexos, o presente trabalho teve como principal objetivo analisar propriedades consideradas particularmente essenciais a um potencial candidato a fármaco, tais como, estabilidade no estado sólido, lipofilicidade, solubilidade aquosa e dissolução intrínseca. Um complexo inédito de fórmula [Ru2Cl(feno)4], em que feno = fenoprofenato, foi sintetizado e caracterizado por meio de análise elementar, espectroscopia eletrônica, espectroscopia vibracional, difratometria de raios X, análise térmica e espectrometria de massas. Os complexos já testados anteriormente para atividade biológica, [Ru2Cl(ibp)4], ibp = ibuprofenato, e [Ru2(cet)4Cl], cet = cetoprofenato, foram analisados quanto à estabilidade no estado sólido por meio da determinação isotérmica de variação de massa. As lipofilicidades desses dois complexos, juntamente com a dos fármacos de origem e a do precursor sintético [Ru2(O2CH3)4Cl], foram avaliadas pelo método shake flask, e suas solubilidade aquosas foram investigadas em presença de co-solventes alcoólicos. Investigou-se ainda a velocidade de dissolução intrínseca do [Ru2Cl(ibp)4] que se encontra em estágio avançado de estudos biológicos. Os resultados obtidos trazem novas informações sobre o comportamento térmico dos complexos e sobre suas características biofarmacêutica. / Ruthenium complexes, mainly due to the lower toxicity and the cytotoxic and anti-metastatic activities, have been considered as potentially promising alternatives to platinum drugs for cancer treatment. Our research group has investigated the interactions of diruthenium metal cores with anti-inflammatory non-steroidal drugs (NSAIDs) and succeeded in preparing diruthenium(II,III)-NSAIDs metallodrugs which show promising activity against glioma models. With the aim of elucidating the physico-chemical properties of these complexes, the major objective of the present work was to investigate properties which are considered as essential for a potential candidate to drug, e.g., stability in the solid state, lipophilicity, aqueous solubility and intrinsic dissolution. A new complex of formula [Ru2Cl(feno)4], where feno = fenoprofen, was synthesized and characterized by elemental analysis, electronic spectroscopy, vibrational spectroscopy, X-rays difractommetry, thermal analysis and mass spectrometry. The complexes previously tested for biological properties, [Ru2Cl(ibp)4], ibp = ibuprofenate, and [Ru2(cet)4Cl], cet = cetoprofenate, were inv estigated for the stability in the solid state by isothermal thermogravimetry. The lipophilicity of the se complexes, as well as those of the parent drugs and of the precursor [Ru2(O2CH3)4Cl], was evaluated by the shake flask method, and their aqueous solubility in the presence of alcohol co-solvents was investigated. In addition, the intrinsic dissolution rate was determined for [Ru2Cl(ibp)4], which is undergoing advanced biological studies. The results provide important new information on the thermal behavior of the complexes and also on their biopharmaceutical propertie.

Page generated in 0.1027 seconds