• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • 1
  • Tagged with
  • 29
  • 29
  • 15
  • 14
  • 14
  • 13
  • 12
  • 12
  • 12
  • 11
  • 10
  • 10
  • 9
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Acute Whole-Body Vibration Does Not Affect Static Jump Performance

Kavanaugh, Ashley A., Ramsey, Michael W., Sands, William A., Haff, G. Gregory, Stone, Michael H. 01 January 2011 (has links)
Currently, whole-body vibration is being used to promote enhanced performance. Many coaches and athletes believe that it can acutely enhance explosive performance and power output. However, the scientific literature is unclear as to whether this enhancement occurs. The purpose of this study was to examine the acute effects of whole-body vibration on static jump performance, including jump height, peak force, rate of force development, and peak power. Fourteen recreationally active individuals (5 females, 9 males) participated in three separate randomized treatment sessions. Treatment 1 consisted of no vibration while treatment 2 and treatment 3 incorporated whole-body vibration. The whole-body vibration protocol consisted of three 30-s bouts of vibration performed at 30 Hz and low amplitude ( 3 mm) with a 30-s rest between bouts. Treatment 1 was identical in duration to both treatments 2 and 3, but did not contain any vibration. Five minutes after each treatment, the participants performed the static jump protocols. Two (data averaged) non-weighted static jumps and two 20 kg weighted jumps were performed. Treatments 1 vs. 2, 1 vs. 3, and 2 vs. 3 were calculated for each variable at both 0 kg and 20 kg. Jump height, peak force, rate of force development, and peak power were analysed using a one-way analysis of variance with repeated measures. The intra-class correlations comparing the two trials of each jump for each of the three treatments were ≥0.92. Compared with the no-vibration condition, jump height showed a non-significant increase as a result of whole-body vibration for both unweighted and weighted jumps; peak force, rate of force development, and peak power were not statistically different. The results indicate that whole-body vibration has no effect on jump height, peak force, rate of force development or peak power during static jumping.
22

The Efficacy of Incorporating Partial Squats in Maximal Strength Training

Bazyler, Caleb D., Sato, Kimitake, Wassinger, Craig A., Lamont, Hugh S., Stone, Michael H. 01 November 2014 (has links)
The efficacy of incorporating partial squats in maximal strength training. J Strength Cond Res 28(11): 3024–3032, 2014—The purpose of our study was to examine the effects of 2 different training methods on dynamic and isometric measures of maximal strength. Seventeen recreationally trained men (1 repetition maximum [1RM] squat: 146.9 ± 22.4 kg) were assigned to 2 groups: full range of motion (ROM) squat (F) and full ROM with partial ROM squat (FP) for the 7-week training intervention. Repeated measures analysis of variance revealed that there was a statistically significant group-by-time interaction for impulse scaled at 50, 90, and 250 milliseconds at 90° of knee flexion and rate of force development at 200 milliseconds with 120° of knee flexion (p ≤ 0.05). There was also a statistically significant time effect (p ≤ 0.05) for the 1RM squat, 1RM partial squat, isometric squat peak force allometrically scaled (IPFa) 90°, IPFa 120°, and impulse allometrically scaled at 50, 90, 200, and 250 milliseconds at 90° and 120° of knee flexion. Additionally, the FP group achieved statistically larger relative training intensities (%1RM) during the final 3 weeks of training (p ≤ 0.05). There was a trend for FP to improve over F in 1RM squat (+3.1%, d = 0.53 vs. 0.32), 1RM partial squat (+4.7%, d = 0.95 vs. 0.69), IPFa 120° (+5.7%, d = 0.52 vs. 0.12), and impulse scaled at 50, 90, 200, and 250 milliseconds at 90° (+6.3 to 13.2%, d = 0.50–1.01 vs. 0.30–0.57) and 120° (+3.4 to 16.8%, d = 0.45–1.11 vs. 0.08–0.37). These larger effect sizes in the FP group can likely be explained their ability to train at larger relative training intensities during the final 3 weeks of training resulting in superior training adaptations. Our findings suggest that partial ROM squats in conjunction with full ROM squats may be an effective training method for improving maximal strength and early force-time curve characteristics in men with previous strength training experience. Practically, partial squats may be beneficial for strength and power athletes during a strength-speed mesocycle while peaking for competition.
23

Rapid Grip Strength and Muscle Activity as Predictors of Reaction Time

Rodriguez, Gabriela 01 January 2021 (has links)
INTRODUCTION: Reaction time may be broadly defined as the time between stimulus presentation and a response. Analysis of reaction time in terms of rate of force development (RFD), peak force, and surface electromyography (EMG) may help bridge the gaps in knowledge pertaining to the neuromuscular system's role in reaction time. The purpose of the present study was to identify predictors of reaction time using digital hand grip dynamometry and EMG. It was hypothesized that RFD and rate of EMG rise (RER) at the onset of a contraction would correlate with reaction time. METHODS: For grip testing, participants were instructed to squeeze a handheld dynamometer with the right hand "…as hard and fast as possible" for 5 seconds upon hearing a "beep" from the computer. A total of 5 attempts were performed, with 1-minute rest periods. Bipolar surface EMG signals were detected from the right first dorsal interosseous (FDI) and flexor carpi radialis (FCR) muscles throughout grip testing. Bivariate correlations (Pearson r) were used to examine the statistical associations. The 95% confidence interval (CI) for each Pearson r was also computed. An alpha level of p ≤ 0.05 was used to reject the null hypothesis. RESULTS: Significant correlations were observed between reaction time and all other measures of grip force (r = -0.507 to -0.557, p= 0.016 to 0.042), except for time until peak force (r = 0.029, p = 0.915). As FDI EMG amplitude increased reaction time decreased (r = -0.664, p = .005). CONCLUSION: Many of the grip force variables were significantly associated with reaction time. Peak force and rapid force variables showed significant correlations with reaction time. While no significant correlations for any of the FDI RER or FCR variables were found, EMG amplitude from the FDI presented the strongest bivariate correlation. As FDI EMG amplitude, peak force, and rapid force variables increased reaction time decreased. These findings give some insight into the neuromuscular system's role in hand grip tasks and help broaden the current understanding of variables that may be used to assess or improve reaction time in the clinical setting.
24

Reliability of Two Alternative Methods for the Standard Mid-thigh Isometric Pull

Williams, Duane A., Hall, Courtney D., Cantor, Patsy, Williams, Jennifer, Brown, N., Dulling, Ryan, Egbujor, Ogechi 12 July 2014 (has links)
The purpose of this study was to determine the reliability of two new alternative portable methods for measuring maximal isometric force measures while performing the standard mid-thigh pull. One method, the bar grip method, required the use of the trunk and upper extremity muscles, while the second method, the pelvic belt method, did not. Both methods demonstrated good test-retest reliability via randomized repeated measures over 24-36 hours. Interestingly, the pelvic belt method generally demonstrated average maximal forces up to 65% higher than the bar method. There was a good relationship between both methods. These new alternative methods could provide strength coaches an option for a more efficient, cost-effective, portable means for the mid-thigh pull test.
25

Identifying a Test to Monitor Weightlifting Performance in Competitive Male and Female Weightlifters

Travis, S. Kyle, Goodin, Jacob R., Beckham, George K., Bazyler, Caleb D. 23 May 2018 (has links)
Monitoring tests are commonly used to assess weightlifter’s preparedness for competition. Although various monitoring tests have been used, it is not clear which test is the strongest indicator of weightlifting performance. Therefore, the purpose of this study was to (1) determine the relationships between vertical jump, isometric mid-thigh pull (IMTP) and weightlifting performance; and (2) compare vertical jumps to IMTP as monitoring tests of weightlifting performance in a large cohort of male and female weightlifters. Methods: Fifty-two competitive weightlifters (31 males, 21 females) participated in squat and countermovement jump testing (SJ, CMJ), and IMTP testing performed on force plates. All laboratory testing data was correlated to a recent competition where the athletes had attempted to peak. Results: Squat jump height (SJH) was the strongest correlate for men and women with the Sinclair Total (r = 0.686, p ≤ 0.01; r = 0.487, p ≤ 0.05, respectively) compared to countermovement jump height (r = 0.642, p ≤ 0.01; r = 0.413, p = 0.063), IMTP peak force allometrically scaled to body mass (r = 0.542, p ≤ 0.01; r = −0.044, p = 0.851) and rate of force development at 200 ms (r = 0.066, p = 0.723; r = 0.086, p = 0.711), respectively. Further, SJH was a stronger correlate of relative weightlifting performance compared to IMTP peak force in females (p = 0.042), but not male weightlifters (p = 0.191). Conclusions: Although CMJ and IMTP are still considered strong indicators of weightlifting performance, SJH appears to be the most indicative measure of weightlifting performance across a wide-range of performance levels. Thus, SJH can be used as a reliable measure to monitor weightlifting performance in male and female weightlifters.
26

Maximum Strength, Rate of Force Development, Jump Height, and Peak Power Alterations in Weightlifters across Five Months of Training

Hornsby, W. Guy, Gentles, Jeremy A., MacDonald, Christopher J., Mizuguchi, Satoshi, Ramsey, Michael W., Stone, Michael H. 13 October 2017 (has links)
The purpose of this monitoring study was to investigate how alterations in training affect changes in force-related characteristics and weightlifting performance. Subjects: Seven competitive weightlifters participated in the study. Methods: The weightlifters performed a block style periodized plan across 20 weeks. Force plate data from the isometric mid-thigh pull and static jumps with 0 kg, 11 kg, and 20 kg were collected near the end of each training block (weeks 1, 6, 10, 13, 17, and 20). Weightlifting performance was measured at weeks 0, 7, 11, and 20. Results: Very strong correlations were noted between weightlifting performances and isometric rate of force development (RFD), isometric peak force (PF), peak power (PP), and jump height (JH). Men responded in a more predictable manner than the women. During periods of higher training volume, RFD was depressed to a greater extent than PF. JH at 20 kg responded in a manner reflecting the expected fatigue response more so than JH at 0 kg and 11 kg. Conclusions: PF appears to have been more resistant to volume alterations than RFD and JH at 20 kg. RFD and JH at 20 kg appear to be superior monitoring metrics due to their “sensitivity.”
27

Sondes à nanotubes de carbone mono-paroi pour la microscopie à force atomique : synthèse et imagerie à l'air et en milieu liquide / Single-walled carbon nanotube probes for atomic force microscopy : synthesis and imaging in air and in liquid

Luu, Ngoc Mai 24 May 2019 (has links)
La microscopie à force atomique (AFM) permet d’étudier à l’échelle nanométrique la surface d’échantillons. Elle offre de nombreux avantages par rapport aux microscopes optiques et aux microscopes électroniques, tout en évitant des étapes de préparation particulières : pas de nécessité de congeler, de métalliser ou de teinter l’échantillon ni de travailler sous vide. La résolution de l'imagerie AFM est principalement déterminée par la morphologie de la sonde utilisée et peut atteindre la résolution moléculaire. Toutefois, les sondes en silicium sont très fragiles. De plus, leur forme pyramidale ou conique génère des artefacts sur l’image résultante. Parmi les sondes actuellement en développement, les sondes à nanotubes de carbone mono-paroi offrent de bonnes caractéristiques en termes de qualité d'imagerie et de longévité. Ces sondes sont plus résistantes et de plus petite taille que les sondes traditionnelles.Cette thèse s’intéresse à la fabrication directe de sondes à nanotubes mono-paroi sur des extrémités de pointes AFM commerciales par la méthode de dépôt chimique en phase vapeur assistée par filament chaud dans un réacteur développé au CBMN. En jouant sur les paramètres de synthèse, tels que la quantité de catalyseur ou la température, nous optimisons le protocole de synthèse originel en collaboration avec son auteur Anne-Marie Bonnot afin de l’adapter à notre réacteur. Les nanotubes obtenus sont caractérisés par les microscopies Raman, électronique à balayage et transmission et à force atomique. La caractérisation montre que les nanotubes obtenus ont une structure mono-paroi. Le rendement d’obtention de sondes nanotubes utilisables est de 30%.Les courbes d’approche-retrait d'AFM nous donnent des informations sur la sonde à nanotube utilisée, telles que sa raideur, le nombre de nanotubes en contact avec la surface. Ces courbes nous permettent de sélectionner les paramètres d’imagerie. Deux échantillons sont testés avec les sondes produites : du graphite pyrolytique haute orientation et des origamis d’ADN rectangulaires. Nous réalisons des expériences d’imagerie avec des sondes à nanotube dans l’air en mode dynamique FM et en milieu liquide en mode Peak Force. Les résultats montrent des images à haute résolution de l’origami d’ADN où la période de 5,8 nm est observable. Les sondes à nanotube présentent également une plus longue durée de vie que les pointes AFM en silicium. / Atomic force microscopy (AFM) is used to study at nanometer scale samples on surfaces. It offers many advantages over conventional optical microscopes and electron microscopes: no freezing, metal coating, vacuum or dye is needed to prepare the sample. The AFM imaging resolution is mostly determined by the sharpness of the used probe and can reach molecular resolution. However, silicon probes are brittle. Additionally, their pyramidal or conical shape generates artifacts on the resulting image. Among the probes currently under development, single-walled carbon nanotube probes offer good characteristics in terms of imaging quality and longevity. These probes are more resistant and smaller in size than traditional probes.This thesis focuses on the direct fabrication of single-wall nanotube probes at the apex of commercial AFM tips by the hot-filament chemical vapor deposition method in a reactor developed at CBMN. By playing on the synthesis parameters, such as the amount of catalyst or the temperature of synthesis, we optimize the original synthesis protocol in collaboration with its author Anne-Marie Bonnot in order to adapt it to our reactor. The nanotubes obtained are characterized by Raman, scanning electron microscopy and transmission electron microscopy and AFM. The characterization shows that the nanotubes obtained have a single-wall structure. The yield of nanotube probes for AFM is 30%.AFM approach-retract curves give us information about the nanotube probe used, such as its stiffness or the number of nanotubes in contact with the surface. These curves allow us to select the imaging parameters. Two samples are tested with the produced probes: highly oriented pyrolytic graphite and rectangular DNA origamis. We image the samples with nanotube probes in both air with dynamical FM mode and in liquid medium with Peak Force mode. The results show high resolution images of DNA origami where the 5.8 nm period is observable. Nanotube probes also have longer life than silicon AFM tips.
28

Nanocomposite films for corrosion protection

Sababi, Majid January 2013 (has links)
This thesis describes technical and scientific aspects of new types of composite films/coatings for corrosion protection of carbon steel, composite films with nanometer thickness consisting of mussel adhesive protein (Mefp‐1) and ceria nanoparticles, and polymeric composite coatings with micrometre thickness consisting of conducting polymer and ceria nanoparticles in a UV‐curing polyester acrylate (PEA) resin. The influence of microstructure on corrosion behaviour was studied for a Fe‐Cr‐V‐N alloy containing micro‐sized nitrides with different chemical composition spread in martensitic alloy matrix. The Volta potential mapping suggested higher relative nobility for the nitride particles than the alloy matrix, and the nitrides with higher amounts of nitrogen and vanadium exhibited higher nobility. Potentiodynamic polarization measurements in a 0.1 M NaCl solution at neutral pH and ambient temperature showed passivity breakdown with initiation of localized corrosion which started in the boundary region surrounding the nitride particles, especially the ones enriched in Cr and Mo. Mefp‐1/ceria nanocomposite films were formed on silica and metal substrates by layer‐by‐layer immersion deposition. The film formation process was studied in situ using a Quartz Crystal Microbalance with Dissipation (QCM‐D). The film grows linearly with increasing number of immersions. Increasing Mefp‐1 concentration or using Mefp‐1 with larger size leads to more Mefp‐1 being deposited. Peak Force Quantitative Nanomechanical Mapping (Peak Force QNM) of the composite films in air indicated that the elastic modulus of the film increased when the film deposited had a higher Mefp‐1 concentration. It was also noted that the nature of the outermost layer can affect bulk morphology and surface mechanical properties of the film. The QCM‐D study of Mefp‐1 on an iron substrate showed that Mefp‐1 adsorbs at a high rate and changes its conformation with increasing adsorption time. The QCM‐D and in situ Peak Force QNM measurements showed that the addition of Fe3+ ions causes a transition in the single Mefp‐1 layer from an extended and soft layer to a denser and stiffer layer. In situ ATR‐FTIR and Confocal Raman Microscopy (CRM) analyses revealed complex formation between Fe3+ and catechol groups in Mefp‐1. Moreover, optical microscopy, SEM and AFM characterization of the Mefp‐1/ceria composite film formed on carbon steel showed micron‐size aggregates rich in Mefp‐1 and ceria, and a nanostructure of well dispersed ceria particles in the film. The CRM analysis confirmed the presence of Mefp‐1/Fe complexes in the film. Electrochemical impedance microscopy and potentiodynamic polarization measurements showed that the Mefp‐1/ceria composite film can provide corrosion protection for carbon steel, and that the protection efficiency increases with exposure time. Composite coatings of 10 μm thickness composed of a UV‐curing PEA resin and a small amount of conductive polymer and ceria nanoparticles were coated on carbon steel. The conductive polymer (PAni) was synthesized with phosphoric acid (PA) as the dopant by chemical oxidative polymerization. The ATR‐FTIR and SEM analyses confirmed that the added particles were well dispersed in the coatings. Electrochemical measurements during long exposure in 0.1 M NaCl solution, including open circuit potential (OCP) and EIS, were performed to investigate the protective performance of the coatings. The results showed that adding ceria nanoparticles can improve the barrier properties of the coating, and adding PAni‐PA can lead to active protection of the coating. Adding PAni‐PA and ceria nanoparticles simultaneously in the coating can improve the protection and stability of the composite coating, providing excellent corrosion protection for carbon steel. / <p>QC 20131024</p>
29

Design, Synthesis and Characterization of Novel Nanomaterials

Thirupathi, Ravula January 2014 (has links) (PDF)
The present thesis entitled “Design, Synthesis and Characterization of Novel Nanomaterials” is divided into five chapters, staring with a general introduction. The remaining chapters focus on four different areas/projects that I have worked on. Chapter 1: Introduction to nanomaterials This chapter reviews the basic concepts of nanomaterials and their fabrication methods. Nanomaterials are defined as materials whose dimensions (at least one) are below 100 nm. One of the most exciting aspects of nanomaterials is that their properties may differ significantly from those of the corresponding bulk materials. Nanomaterials fabrication methods can be broadly classified according to whether the assembly follows either i) the bottom-up approach or ii) the top-down approach. These methods have been discussed with various examples including the self-assembly of proteins, peptides and small molecules. In the top-down approach synthetic procedures for Graphene Oxide and its application are discussed. All characterization techniques that are used for characterizing the nanomaterials are also described briefly. Chapter 2 Section A: Self-assembly of 1-Hydroxy benzotriazole (HOBT) in water The studies presented in Chapter 2 identifies HOBT as the smallest non-peptide building block that spontaneously self-assembles into hollow micro tubular structures upon evaporation of water. The tubes form under ambient conditions by rolling over of crystalline sheets of HOBT. The packing of HOBT in the tubes seem to be predominantly driven by intermolecular π-stacking interactions between the aromatic rings of HOBT. These structural and packing patterns are similar to those found in nanotubes formed by the self-assembly of peptides and other larger molecules. The cavities of these thermolabile microtubes act as molds for casting gold nanoparticles for the synthesis of gold microrods with monodisperse dimensions. The non-reacting inner surfaces of the cavities have been used to uniquely synthesize R6G-functionalized gold microrods. With these features, HOBT is an important novel non-peptide building block for accessing micro and nanometric materials for their applications in medicine, biology and molecular biotechnology. Section B: Controlling the orientation of self-assembly of HOBT microtubes The studies presented in this chapter address the self-assembly of HOBT into microtubular structures in different solvents of varying polarities (H2O and DCM:MeOH) to understand the role of solvent volatility and its direction on the orientation of the HOBT microtubes. HOBT self-assembles from DCM:MeOH mixtures in its bipolar canonical form and is coordinated with its water of hydration, similar to its crystals obtained from water. FTIR and TGA data shows that MeOH is also integrated with the microtubes. We observe for the first time that the orientation of microtubular self-assembly is controlled in the direction of evaporation of the solvent. We demonstrate further this feature by controlling the orientation of HOBT self-assembly in exclusively vertical direction through controlled vertical evaporation of the solvent mixture DCM:MeOH (9:1). Additionally, the unique transition between vertical and horizontal orientations for self-assembled HOBT microtubes is achieved by simple change of solvation between aqueous and organic solvents. These results reveal a dynamic relationship between the rate of evaporation of solvent and the rates of formation of different self-assembled morphologies. The rate of evaporation of the solvent primarily governs the rate of formation of the tubes, rather than their orientations in three dimensions. Chapter 3: Chemical origins of debris in Graphene Oxide (GO) This chapter is focused on the investigation of the carbonyl rich fragments arising from GO and provides an understanding of its formation. The fragments are expelled from GO due to an uncontrolled nucleophile driven reaction in aqueous medium leaving the holes on the sheet. These fragments are carbonyl rich small (5 ± 2 nm) nonaromatic molecules that form as by-products of oxidative chemical reactions that occur at the sp3 clusters on the basal surface of GO sheets when they are treated with nucleophilic bases under aqueous conditions. The structure and size of the debris, and hence that of the hole, depend on the size of the sp3 cluster on the sheet. These debris fall out of the GO sheet surface, leading to formation of nanometer sized holes. Formation of debris and hence the holes can be avoided by using anhydrous polar solvents. This work sheds new light on the fundamental structure of GO and the prevention of debris from it during redox reactions enabling better control over functionalization of the GO surface. Chapter 4: Measurement of mechanical properties of polypeptide fragment from Insulin like growth factor binding protein nanotubes by the Peak Force QNM method This chapter describes the discovery of Polypeptide fragment from an IGFBP-2. This fragment self-assembles spontaneously and reversibly into nanotubular structures under oxidizing conditions. These nanotubes were characterized by using Transmission electron microscopy. Notably as compared to the monomer, an increase in intrinsic fluorescence upon self-assembly. The thermal stability of these nanotubes is realized form the fluorescence studies. Peak Force Quantitative Nanomechanical Mapping method of AFM was used to measure the Young’s modulus of the nanotubes. These nanotubes were found to have Young’s modulus value of ~10 Gpa, which is comparable to those of bones presumably due to intermolecular disulphide bonds. These nanotubes will have potential applications in tissue engineering. Chapter 5: Probing the pathways of n→π* interaction in peptides This chapter deals with the theoretical study of n→π* interaction in designed peptidomimetics. The n→π* interaction involves the delocalization of the lone pair of the donor group into the antibonding orbital (π*) of a carbonyl group. However despite beeing extensively studied there exists a debate over the validation of these n→π* interaction which is reminiscent to Bürgi and Dunitz trajectory. This chapter present our findings that peptidomimetics containing the 5,6-dihydro-4H-1,3-oxazine (Oxa) and 5,6-dihydro-4H-1,3-thiazine (Thi) functional groups at the C-terminus of Pro selectively stabilizes the cis conformer by reverse n→πi-1* interaction. These systems have been used to study the n→πi1* interaction using Natural Bond Orbital (NBO) method. Our study reveals that the energetically most favorable trajectory of a nucleophile for a favorable n→π* interaction presumably to facilitate the overlap between the lonepair of the nucleophile and the antibonding orbital of the carbonyl group. The geometrical requirements for the optimum n→π* interaction depends on the relative orientations of the orbitals that are involved. This study has implications for more accurately identifying long distant n→π* interaction.

Page generated in 0.0596 seconds