• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 258
  • 98
  • 21
  • 16
  • 11
  • 9
  • 9
  • 9
  • 8
  • 6
  • 5
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 527
  • 527
  • 91
  • 78
  • 77
  • 67
  • 65
  • 57
  • 55
  • 54
  • 51
  • 38
  • 37
  • 36
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Integrated Mobility and Service Management for Future All-IP Based Wireless Networks

He, Weiping 24 April 2009 (has links)
Mobility management addresses the issues of how to track and locate a mobile node (MN) efficiently. Service management addresses the issues of how to efficiently deliver services to MNs. This dissertation aims to design and analyze integrated mobility and service management schemes for future all-IP based wireless systems. We propose and analyze per-user regional registration schemes extending from Mobile IP Regional Registration and Hierarchical Mobile IPv6 for integrated mobility and service management with the goal to minimize the network signaling and packet delivery cost in future all-IP based wireless networks. If access routers in future all-IP based wireless networks are restricted to perform network layer functions only, we investigate the design of intelligent routers, called dynamic mobility anchor points (DMAPs), to implement per-user regional management in IP wireless networks. These DMAPs are access routers (ARs) chosen by individual MNs to act as regional routers to reduce the signaling overhead for intra-regional movements. The DMAP domain size is based on a MN's mobility and service characteristics. A MN optimally determines when and where to launch a DMAP to minimize the network cost in serving the user's mobility and service management operations. We show that there exists an optimal DMAP domain size for each individual MN. We also demonstrate that the DMAP design can easily support failure recovery because of the flexibility of allowing a MN to choose any AR to be the DMAP for mobility and service management. If access routers are powerful and flexible in future all-IP based networks to perform network-layer and application-layer functions, we propose the use of per-user proxies that can run on access routers. The user proxies can carry service context information such as cached data items and Web processing objects, and perform context-aware functions such as content adaptation for services engaged by the MN to help application executions. We investigate a proxy-based integrated mobility and service management architecture (IMSA) under which a client-side proxy is created on a per-user basis to serve as a gateway between a MN and all services engaged by the MN. Leveraging Mobile IP with route optimization, the proxy runs on an access router and cooperates with the home agent and foreign agent of the MN to maintain the location information of the MN to facilitate data delivery by services engaged by the MN. Further, the proxy optimally determines when to move with the MN so as to minimize the network cost associated with the user's mobility and service management operations. Finally we investigate a proxy-based integrated cache consistency and mobility management scheme called PICMM to support client-server query-based mobile applications, to improve query performance, the MN stores frequently used data in its cache. The MN's proxy receives invalidation reports or updated data objects from application servers, i.e., corresponding nodes (Cans) for cached data objects stored in the MN. If the MN is connected, the proxy will forward invalidation reports or fresh data objects to the MN. If the MN is disconnected, the proxy will store the invalidation reports or fresh data objects, and, once the MN is reconnected, the proxy will forward the latest cache invalidation report or data objects to the MN. We show that there is an optimal ``service area'' under which the overall cost due to query processing, cache consistency management and mobility management is minimized. To further reduce network traffic, we develop a threshold-based hybrid cache consistency management policy such that whenever a data object is updated at the server, the server sends an invalidation report to the MN through the proxy to invalidate the cached data object only if the size of the data object exceeds the given threshold. Otherwise, the server sends a fresh copy of the data object through the proxy to the MN. We identify the best ``threshold'' value that would minimize the overall network cost. We develop mathematical models to analyze performance characteristics of DMAP, IMSA and PICMM developed in the dissertation research and demonstrate that they outperform existing schemes that do not consider integrated mobility and service management or that use static regional routers to serve all MNs in the system. The analytical results obtained are validated through extensive simulation. We conclude that integrated mobility and service management can greatly reduce the overall network cost for mobile multimedia and database applications, especially when the application's data service rate is high compared with the MN's mobility rate. / Ph. D.
342

A Novel Highly Accurate Wireless Wearable Human Locomotion Tracking and Gait Analysis System via UWB Radios

Shaban, Heba Ahmed 09 June 2010 (has links)
Gait analysis is the systematic study of human walking. Clinical gait analysis is the process by which quantitative information is collected for the assessment and decision-making of any gait disorder. Although observational gait analysis is the therapist's primary clinical tool for describing the quality of a patient's walking pattern, it can be very unreliable. Modern gait analysis is facilitated through the use of specialized equipment. Currently, accurate gait analysis requires dedicated laboratories with complex settings and highly skilled operators. Wearable locomotion tracking systems are available, but they are not sufficiently accurate for clinical gait analysis. At the same time, wireless healthcare is evolving. Particularly, ultra wideband (UWB) is a promising technology that has the potential for accurate ranging and positioning in dense multi-path environments. Moreover, impulse-radio UWB (IR-UWB) is suitable for low-power and low-cost implementation, which makes it an attractive candidate for wearable, low-cost, and battery-powered health monitoring systems. The goal of this research is to propose and investigate a full-body wireless wearable human locomotion tracking system using UWB radios. Ultimately, the proposed system should be capable of distinguishing between normal and abnormal gait, making it suitable for accurate clinical gait analysis. / Ph. D.
343

Integrated Mobility and Service Management for Network Cost Minimization in Wireless Mesh Networks

Li, Yinan 04 June 2012 (has links)
In this dissertation research, we design and analyze integrated mobility and service management for network cost minimization in Wireless Mesh Networks (WMNs). We first investigate the problem of mobility management in WMNs for which we propose two efficient per-user mobility management schemes based on pointer forwarding, and then a third one that integrates routing-based location update and pointer forwarding for further performance improvement. We further study integrated mobility and service management for which we propose protocols that support efficient mobile data access services with cache consistency management, and mobile multicast services. We also investigate reliable and secure integrated mobility and service man agement in WMNs, and apply the idea to the design of a protocol for secure and reliable mobile multicast. The most salient feature of our protocols is that they are optimal on a per-user basis (or on a per-group basis for mobile multicast), that is, the overall network communication cost incurred is minimized for each individual user (or group). Per-user based optimization is critical because mobile users normally have vastly different mobility and service characteristics. Thus, the overall cost saving due to per-user based optimization is cumulatively significant with an increasing mobile user population. To evaluate the performance of our proposed protocols, we develop mathematical models and computational procedures used to compute the network communication cost incurred and build simulation systems for validating the results obtained from analytical modeling. We identify optimal design settings under which the network cost is minimized for our mobility and service management protocols in WMNs. Intensive comparative performance studies are carried out to compare our protocols with existing work in the literature. The results show that our protocols significantly outperform existing protocols under identical environmental and operational settings. We extend the design notion of integrated mobility and service management for cost minimization to MANETs and propose a scalable dual-region mobility management scheme for location-based routing. The basic design concept is to use local regions to complement home regions and have mobile nodes in the home region of a mobile node serve as location servers for that node. We develop a mathematical model to derive the optimal home region size and local region size under which overall network cost incurred is minimized. Through a comparative performance study, we show that dual-region mobility management outperforms existing mobility management schemes based on static home regions. / Ph. D.
344

Dynamic Redundancy Management of Multisource Multipath Routing Integrated with Voting-based Intrusion Detection in Wireless Sensor Networks

Al-Hamadi, Hamid Helal 24 April 2014 (has links)
Wireless sensor networks (WSNs) are frequently deployed unattended and can be easily captured or compromised. Once compromised, intrusion prevention methods such as encryption can no longer provide any protection, as a compromised node is considered a legitimate node and possesses the secret key for decryption. Compromised nodes are essentially inside attackers and can perform various attacks to break the functionality of the system. Thus, for safety-critical WSNs, intrusion detection techniques must be used to detect and remove inside attackers and fault tolerance techniques must be used to tolerate inside attackers to prevent security failure. In this dissertation research, we develop a class of dynamic redundancy management algorithms for redundancy management of multisource multipath routing for fault and intrusion tolerance, and majority voting for intrusion detection, with the goal of maximizing the WSN lifetime while satisfying application quality-of-service and security requirements, for base station based WSNs, homogeneous clustered WSNs, and heterogeneous clustered WSNs. By means of a novel model-based analysis methodology based on probability theory, we model the tradeoff between energy consumption vs. reliability, timeliness and security gain, and identify the optimal multisource multipath redundancy level and intrusion detection settings for maximizing the lifetime of the WSN while satisfying application quality-of-service requirements. A main contribution of our research dissertation is that our dynamic redundancy management protocol design addresses the issues of "how many paths to use" and "what paths to use" in multisource multipath routing for intrusion tolerance. Another contribution is that we take an integrated approach combining intrusion detection and tolerance in the protocol design to address the issue of "how much intrusion detection is enough" to prevent security failure and prolong the WSN lifetime time. We demonstrate resiliency of our dynamic redundancy management protocol design for intrusion detection and tolerance against sophisticated attacker behaviors, including selective and random capture, as well as persistent, random, opportunistic and insidious attacks, by model-based performance analysis with results supported by extensive simulation based on ns3. / Ph. D.
345

Korrelationsanalyser mellan Yo-Yo-intermittent Recovery test level 2 och fatigue av fysiska matchparametrar för ett svenskt elitfotbollslag / Correlation Analysis between Yo-Yo Intermittent Recovery Test and Fatigue of Physical Match Parameters for a Swedish Elite Football Team

Bergström, Johan January 2021 (has links)
Inom elitfotboll utvärderas fysisk prestation på spelplanen med hjälp av global positioning systems (GPS:er). På lägre nivåer används istället tester av fysisk kapacitet, såsom Yo-Yo Intermittent Recovery Test Level 2 (YYIR2), som prediktor av fysisk matchprestation. Det är dock oklart om prestation på YYIR2 har något samband med fysisk prestation under fotbollsmatcher. Syftet med denna studie var att undersöka om det fanns korrelationer mellan prestation på YYIR2 och fysiska matchprestationsparametrar mot slutet av fotbollsmatcher. Nio manliga fotbollsspelare (medelvärde ± SD: ålder = 24.2 ± 3.8 år; längd = 184 ± 5.4 cm; vikt = 78.9 ± 4.6 kg) tillhörande ett elitlag på seniornivå i det svenska seriesystemet deltog i studien. Data från fem fysiska parametrar samlades in från 28 matcher under säsongen 2020 med STATSport Apex 10 Hz GPS-system. YYIR2 genomfördes av samtliga spelare under försäsongen. Korrelationer mellan prestation på YYIR2 och alla  matchparametrar undersöktes genom Spearman’s rho korrelationsanalys. En signifikant negativ korrelation observerades mellan YYIR2 och andelen accelerationer (r = -0.812, p = 0.008). Inga signifikanta korrelationer observerades mellan YYIR2 och total distans (r = 0.059, p = 0.881),höghastighetslöpningar (r = -0.437, p = 0.240), sprinter (r = -0.268, p = 0.486) eller decelerationer (r = -0.360, p = 0.342). Resultaten indikerar på att YYIR2 är en dålig prediktor på spelarnas förväntade fysiska prestation i slutet av fotbollsmatcher. Resultaten ska dock tolkas med försiktighet på grund av låg statistisk power. Framtida studier bör undersöka påverkan av spelares position på den här typen av korrelationer. / In elite football, physical performance during matches is evaluated using global positioning systems (GPSs). At lower levels, tests of physical capacity, such as the Yo-Yo Intermittent Recovery Test Level 2 (YYIR2), are used to predict physical match performance. It is however unclear whether YYIR2 performance is associated with physical match performance. This study investigated potential correlations between YYIR2 performance and physical match parameters towards the end of football matches.Nine male football players (mean ± SD: age = 24.2 ± 3.8 years; height = 184 ± 5.4 cm; weight = 78.9 ± 4.6 kg) of an elite Swedish football team participated. Data from five physical parameters were collected from 28 matches during the 2020 season with the STATSport Apex 10 Hz GPS system. YYIR2 was performed by all players during pre-season. Correlations between YYIR2 performance and each physical match parameter were analysed using Spearman's rho.A significant negative correlation was observed between YYIR2 and the proportion of accelerations (r = -0.812, p = 0.008). No significant correlations were observed between YYIR2 and total distance (r = 0.059, p = 0.881), high-speed runs (r = -0.437, p = 0.240), sprints (r = -0.268, p = 0.486) or decelerations (r = -0.360, p = 0.342).Results indicate that the YYIR2 is a poor predictor of physical performance towards the end of football matches. The results should however be interpreted with caution due to low statistical power. Future research should investigate the influence of playing position on such correlations.
346

Anomaly Detection In Heterogeneous IoT Systems: Leveraging Symbolic Encoding Of Performance Metrics For Anomaly Classification

Patel, Maanav 01 June 2024 (has links) (PDF)
Anomaly detection in Internet of Things (IoT) systems has become an increasingly popular field of research as the number of IoT devices proliferate year over year. Recent research often relies on machine learning algorithms to classify sensor readings directly. However, this approach leads to solutions being non-portable and unable to be applied to varying IoT platform infrastructure, as they are trained with sensor data specific to one configuration. Moreover, sensors generate varying amounts of non-standard data which complicates model training and limits generalization. This research focuses on addressing these problems in three ways a) the creation of an IoT Testbed which is configurable and parameterizable for dataset generation, b) the usage of system performance metrics as the dataset for training the anomaly classifier which ensures a fixed dataset size, and c) the application of Symbolic Aggregate Approximation (SAX) to encode patterns in system performance metrics which allows our trained Long Short-Term Memory (LSTM) model to classify anomalies agnostic to the underlying system configuration. Our devised IoT Testbed provides a lightweight setup for data generation which directly reflects some of the most pertinent components of Industry 4.0 pipelines including a MQTT Broker, Apache Kafka, and Apache Cassandra. Additionally, our proposed solution provides improved portability over state-of-the-art models while standardizing the required training data. Results demonstrate the effectiveness of utilizing symbolized performance metrics as we were able to achieve accuracies of 95.87%, 87.33%, and 87.47% for three different IoT system configurations. The latter two accuracies represent the model’s ability to be generalized to datasets generated from differing system configurations.
347

Performance analysis and enhancement of QoS framework for fixed WiMAX networks : design, analysis and evaluation of 802.16 Point-to-Multipoint (PMP) Quality of Service Framework based on uplink scheduler and call admission control analysis

Laias, Elmabruk M. January 2009 (has links)
Given the current developments and advances in the scientific and technological aspects of human knowledge and introducing new approaches in various fields of telecommunication technologies and industries, there has been an increasing growth in its players' plans and a positive change in their outlooks in order to achieve the target of "anywhere and anytime access". Recent developments of WiMAX (Worldwide interoperability for Microwave Access) networks, as a sign of increasing needs and demands for new telecommunication services and capabilities, have led to revolutions in global telecommunication which should be perceived properly in terms of the commercial and technical aspects in order to enjoy the new opportunities. Most experts believe that WiMAX technology is a preliminary step to develop Fourth Generation networks known as 4G technologies. It has not only succeeded in the utilization of several of the latest telecommunication techniques in the form of unique practical standards, but also paved the way for the quantitative and qualitative developments of high-speed broadband access. IEEE 802.16 Standard introduces several advantages, and one of them is the support for Quality of Services (QoS) at the Media Access Control (MAC) level. For these purposes, the standard defines several scheduling classes at MAC layer to treat service flow in a different way, depending on QoS requirements. In this thesis, we have proposed a new QoS framework for Point-to-Multi Point (PMP) 802.16 systems operating in Time Division Duplexing (TDD) mode over a WirelessMAN-OFDM physical layer. The proposed framework consists of a Call Admission Control (CAC) module and a scheduling scheme for the uplink traffic as well as a simple frame allocation scheme. The proposed CAC module interacts with the uplink scheduler status and it makes its decision based on the scheduler queue status; on the other hand, the proposed scheduling scheme for the uplink traffic aims to support realtime flows and adapts the frame-by-frame allocations to the current needs of the connections, with respect to the grants boundaries fixed by the CAC module. Extensive OPNET simulation demonstrates the effectiveness of the proposed architecture.
348

Analysis and Implementation of Fine-grained Distributed Maximum Power Point Tracking in Photovoltaic Systems

Poshtkouhi, Shahab 19 December 2011 (has links)
This thesis deals with quantifying the merits of Distributed Maximum Power Point Tracking (DMPPT), as well as providing solutions to achieve DMPPT in PV systems. A general method based on 3D modeling is developed to determine the energy yield of PV installations exploiting different levels of DMPPT granularity. Sub-string-level DMPPT is shown to have up to 30% more annual energy yield than panel-level DMPPT. A Multi-Input-Single-Output (MISO) dc-dc converter is proposed to achieve DMPPT in parallel-connected applications. A digital current-mode controller is used to operate the MISO converter in pseudo-CCM mode. For series-connected applications, the virtualparallel concept is introduced to utilize the robustness of the parallel connection. This concept is demonstrated on a three-phase boost converter. The topology offers reduced output voltage ripple under shading which increases the life-time of the output capacitor. The prototypes yield output power benefits of up to 46% and 20% for the tested shading conditions.
349

Joint Network / Channel Decoding over Noisy Wireless Networks / Décodage Conjoint de Réseau / Canal sur les Réseaux sans fil bruyants.

Vu, Xuan Thang 14 January 2014 (has links)
Codage de réseau (NC) a gagné beaucoup d'attention de la recherche comme un candidat potentiel pour résoudre la demande de plus grande efficacité spectrale des communications modernes sans fil. De nombreux travaux de recherche ont étudié la performance des réseaux NC-aidés telles que le débit et la capacité de panne. Cependant, l'analyse de la NC dans des systèmes pratiques où NC est combiné avec d'autres techniques telles que le codage de canal est encore immature pour comprendre pleinement son potentiel de performance. Dans cette thèse, nous nous efforçons de concevoir des récepteurs de haute performance et d'analyser sa performance pour les réseaux de coopération réseau codé dans des scénarios pratiques. Tout d’abord, nous vous proposons deux Itératif Décodage de Réseau /Canal (IDRC) algorithmes pour le canal de relais d'accès multiple (MARC) avec deux systèmes de relais de notables nommés décodage-et-transfert et démoduler et transfert. L'algorithme du RIDC fonctionne sur la base de méthodes de décodage turbo-comme et réduit l'impact du problème de la propagation de l'erreur à l'aide d'un modèle de récepteur de canal courant. Tant parfaite information de la parfait CSI et imparfait CSI au côté récepteur sont étudiées. Nous proposons un procédé pratique qui transmet la version quantifiée des erreurs de décodage de relais à la destination. Il est démontré que les algorithmes proposés réaliser un gain de diversité complète et surpasse les solutions qui ne prennent pas soin de propagation d'erreur significative. Nous montrons également que le nombre de symboles pilotes ne concerne que le gain de codage, mais a un impact négligeable sur l'ordre de la diversité, alors que le niveau de quantification affecte à la fois la diversité et le gain de codage.Deuxièmement, nous proposons un Conjoint Décodage de Réseau/Canal Près Optimal (CDRCPO) algorithme pour le MARC qui permet d'analyser le taux de bits du système d'erreur (BER). L'algorithme de CDRCPO exécute le décodage de réseau et de décodage de canal en une seule étape de décodage du code superbe, qui se compose de tous les états de treillis de code individuel aux sources via NC. En outre, NC combiné avec la sélection de relais (RS) est considéré et l'ordre de diversité possible est étudié à l'aide de l'analyse de panne. Nous montrons analytiquement que la sélection de relais simple (SRS) permet toujours d'obtenir une ordonnance de la diversité et de la sélection de deux relais multiple (MRS) peut obtenir gain de diversité complète que lorsque le nombre de relais sélectionné dépasse le nombre de sources.En fin, nous proposons un protocole dit relais partielle d'améliorer l'efficacité spectrale pour le codage des réseaux de relais assisté canal. Forme-proche expression du BER et l'ordre de la diversité du système sont calculés pour le relais partiel. Nous montrons, par l'analyse et la simulation, qui avec un code convolutif bon, le relais partiel peut obtenir gain de diversité complète et même gain de codage que le classique (complet) relayer protocole fini région signal-sur-bruit alors qu'il obtient une meilleure utilisation du spectre. De plus, nous proposons un nouveau protocole basé sur le relais partiel dans les réseaux de coopération relayant opportunistes et montrons que ce protocole surpasse de manière significative la coopération sur la NC dans certaines circonstances. / Network coding (NC) has gained much research attention as a potential candidate to solve the demand for higher spectral efficiency of modern wireless communications. Many research papers have investigated the performance of NC-aided networks such as throughput and outage capacity. However, the analysis of NC in practical systems where NC is combined with other techniques such as channel coding is still immature to fully understand its potential performance. In this thesis, we aim to design high performance receivers and analyze its performance for network-coded cooperative networks in practical scenarios.Firstly, we propose two Iterative Network/Channel Decoding (INCD) algorithms for the Multiple-Access Relay Channel (MARC) with two notable relaying schemes named Decode-and-Forward (DF) and Demodulate-and-Forward (DMF). The INCD algorithm operates based on turbo-like decoding methods and reduces the impact of the error propagation problem with the aid of a channel-aware receiver design. Both perfect Channel State Information (CSI) and imperfect CSI at the receiver side are investigated. We propose a practical method that forwards the quantized version of the relay decoding errors to the destination. It is shown that the proposed algorithms achieve full diversity gain and significantly outperforms solutions which do not take care of error propagation. We also show that the number of pilot symbols affects only the coding gain but has a negligible impact on the diversity order, while the quantization level affects both the diversity and coding gain.Secondly, we propose a Near Optimal Joint Network/Channel Decoding (NOJNCD) algorithm for the MARC that allows to analyze the system Bit Error Rate (BER). The NOJNCD algorithm performs network decoding and channel decoding in one decoding step of the super code, which comprises of all trellis states of individual code at the sources via NC. Furthermore, NC combined with Relay Selection (RS) is considered and the achievable diversity order is studied with the aid of outage analysis. We analytically show that Single Relay Selection (SRS) always achieves a diversity order two and Multiple Relay Selection (MRS) can achieve full diversity gain only when the number of selected relays exceeds the number of the sources.Last but not least, we propose a so-called partial relaying protocol to improve the spectral efficiency for channel coding assisted relay networks. Closed-form expression of the BER and the system diversity order are computed for partial relaying. We show, by analysis and simulations, that with a proper Convolutional Code (CC), partial relaying can achieve full diversity gain and same coding gain as the classical (full) relaying protocol in finite signal-to-noise ratio region while it obtains a better spectrum usage. Moreover, we propose a new protocol based on partial relaying in opportunistic relaying cooperative networks and show that this protocol significantly outperforms the NC-based cooperation in some circumstances.
350

Uso de grafos evolutivos no roteamento em redes dinâmicas: algoritmos, fluxos e limites / Using evolving graphs in routing of dynamic networks: algorithms, flows and bounds

Monteiro, Julian Geraldes 13 July 2007 (has links)
O comportamento dinâmico das redes sem fio as torna muito peculiares e de difícil análise. No entanto, algumas destas redes, como as de sensores com funcionamento intermitente, redes periódicas ou cíclicas e as do sistema de satélites de órbita baixa têm um comportamento dinâmico relativamente previsível, pois as variações da topologia da rede no tempo são quase que determinísticas. Recentemente, um modelo teórico -- grafos evolutivos -- foi proposto com o intuito de capturar o comportamento dinâmico destas redes e formalizar algoritmos de roteamento de custo mínimo, além de outros. Os algoritmos e idéias obtidos com este modelo são teoricamente muito eficientes, mas, no entanto, antes deste trabalho não existiam estudos do uso destes modelos em situações práticas. Assim, o objetivo deste trabalho é analisar a aplicabilidade da teoria de grafos evolutivos na construção de protocolos de roteamento eficientes em cenários realistas. Foram implementados dois protocolos de roteamento para redes móveis ad hoc baseados nos algoritmos de grafos evolutivos, são eles: Jornada que Chega Mais Cedo e Jornada Mais Curta. Extensivas simulações foram realizadas utilizando o simulador de redes NS2 e os resultados foram comparados com outros quatro protocolos clássicos para este tipo de rede: AODV, DSR, OLSR e DSDV. Os resultados preliminares mostram que este recente modelo tem muito potencial para ser uma ferramenta poderosa no desenvolvimento e análise de algoritmos para redes dinâmicas com comportamento previsível. No entanto, foram apontados alguns aspectos que precisam ser melhores estudados para que estes algoritmos possam ser utilizados em situações reais. / The assessment of routing protocols for wireless networks is a difficult task, because of the networks\' highly dynamic behavior and the absence of benchmarks. However, some of these networks, such as intermittent wireless sensors networks, periodic or cyclic networks, and low earth orbit satellites systems, have more predictable dynamics, as the temporal variations in the network topology are somehow deterministic, which may make them easier to study. Recently, a graph theoretic model -- the evolving graphs -- was proposed to help to capture the dynamic behavior of these networks, in view of the construction of least cost routing and other algorithms. The algorithms and insights obtained through this model are theoretically very efficient and intriguing. However, before this work there was no study on the use of such theoretical results into practical situations. Therefore, the objective of our work is to analyze the applicability of the evolving graph theory in the construction of efficient routing protocols in realistic scenarios. We use the NS2 network simulator to first implement two evolving graph based routing protocols: Foremost Journey and Shortest Journey, They are evaluated and compared to four major ad-hoc protocols: AODV, DSR, OLSR and DSDV. Interestingly, our experiments show that evolving graphs have all the potentials to be an effective and powerful tool in the development and analysis of algorithms for dynamic networks, with predictable dynamics at least. In order to make this model widely applicable, however, some practical issues still have to be addressed and incorporated into the model.

Page generated in 0.1517 seconds