• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • Tagged with
  • 17
  • 11
  • 8
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Rotulamentos de codigos por grupos de simetrias

Alves, Marcelo Muniz Silva 22 February 2002 (has links)
Orientadores: Sueli Irene Rodrigues Costa, Reginaldo Palazzo Jr / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-07-31T18:00:25Z (GMT). No. of bitstreams: 1 Alves_MarceloMunizSilva_D.pdf: 2526567 bytes, checksum: 5178d706f84287d867192491521e8404 (MD5) Previous issue date: 2002 / Resumo: A tese versa sobre questões relativas a grupos de simetrias de códigos e sua utilização no rotulamento destes códigos. Um código é rotulável por um grupo G se este grupo age como grupo de simetrias de modo livre e transitivo; os rotulamentos são as bijeções naturais entre o grupo e suas órbitas. A importância disto vem das isometrias associadas entre anéis e códigos que vêm sendo usadas para obtenção de novos exemplos a partir de construções já conhecidas. Neste trabalho utilizamos grupos de simetrias de códigos em dois problemas distintos: o primeiro, sobre extensões de códigos quaternários via isometrias entre anéis e códigos em espaços de Hamming, e o segundo sobre códigos em grafos que incluem os espaços de Lee. Um dado interessante é que todos os grupos envolvidos podem ser escritos como produto semi-direto de dois grupos simétricos ou de um grupo simétrico por um grupo abeliano (mais especificamente, o produto é o "wreath product" destes grupos). Na parte relativa a espaços de Hamming, os resultados principais são a descrição dos códigos propelineares como órbitas de grupos de simetrias e suas relações com os códigos G-lineares; a demonstração da inexistência de rotulamentos cíclicos de espaços de Hamming em geral; a determinação dos grupos de simetrias dos códigos de Reed-Muller generalizados de primeira ordem e rotulamentos cíclicos para estes códigos. A existência destes rotulamentos é conhecida de trabalhos anteriores, e aqui fornecemos uma descrição alternativa, a qual determina todos os rotulamentos no caso binário. Além disso, mostramos que as simetrias que rotulam RM(l,m) não se estendem a isometrias do espaço ambiente. Quanto aos códigos sobre grafos, os principais resultados são a explicitação de relações entre códigos em grafos e ladrilhamentos do espaço euclidiano; a construção de um grupo rotulador não-abeliano para uma família de espaços de Lee; e a descrição de todos os códigos perfeitos de Lee em dimensão 2, via a consideração do problema de ladrilhamentos associado (estendendo resultados clássicos sobre estes códigos) / Abstract: This work deals with questions related to symmetry groups of codes and their use as code labelings. A code is labeled by a group G if this group acts freely and transitively as a group of symmetries; the labelings are the natural bijections between the group and its orbits. The importance of labelings comes from the associated isometries between rings and codes which have been used as a means of constructing new codes from old ones. In this work we use symmetry groups of codes in two different problems: the first one, on extensions of quaternary codes via isometries between rings and codes in Hamming spaces, and the second on codes in graphs that include Lee spaces. An interesting feature is that all the groups involved can be expressed as wreath products of two symmetric groups or of a symmmetric group and an abelian group. Concerning Hamming spaces, the main results are the description of propelinear codes as orbits of symmetry groups and the determination of its relationship with G-linear codes; the proof of the non-existence of cyclic labelings of general Hamming spaces; the determination of the symmetry groups of the generalized first-order Reed-Muller codes and of cyclic labelings for these codes. The existence of these labelings is known from previous works, but here we provide an alternative description that determines all the labelings in the binary case. In addition, we show that the symmetries that label RM (1, m) are not extendable to symmetries of the ambient space. With respect to codes on graphs, the main results are the establishment of the relations between codes on graphs and tesselations of euclidean space; the construction of a non-abelian labeling group for a family of Lee spaces; and the description of all linear perfect Lee codes in dimension two, via the associated tesselation (thus extending classical results on these codes) / Doutorado / Doutor em Matemática
12

Análise Combinatória: teoria e aplicações para o ensino básico

Passos, Gilvan da Silva, 92992831239 28 March 2018 (has links)
Submitted by Gilvan Passos (gilvan.dspassos@gmail.com) on 2018-11-02T17:23:45Z No. of bitstreams: 3 GilvanTCC.pdf: 392056 bytes, checksum: c92e4c9757ada7893dc6f62a78267aa6 (MD5) IMG_20181102_131441.jpg: 1218636 bytes, checksum: 36aa8c31ec2aca115870ea2c2a9e278c (MD5) IMG_20181102_131427.jpg: 1672384 bytes, checksum: ef52fc665bf97e6c37ae0b3c0202ac2c (MD5) / Approved for entry into archive by PPGM Matemática (ppgmufam@gmail.com) on 2018-11-08T18:51:06Z (GMT) No. of bitstreams: 3 GilvanTCC.pdf: 392056 bytes, checksum: c92e4c9757ada7893dc6f62a78267aa6 (MD5) IMG_20181102_131441.jpg: 1218636 bytes, checksum: 36aa8c31ec2aca115870ea2c2a9e278c (MD5) IMG_20181102_131427.jpg: 1672384 bytes, checksum: ef52fc665bf97e6c37ae0b3c0202ac2c (MD5) / Rejected by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br), reason: A Dissertação inserida está sem Ficha Catalográfica. Instruções no link http://biblioteca.ufam.edu.br/servicos/elaboracao-de-ficha-catalografica Dúvidas? ddbc@ufam.edu.br on 2018-11-09T13:58:53Z (GMT) / Submitted by Gilvan Passos (gilvan.dspassos@gmail.com) on 2018-11-09T20:14:38Z No. of bitstreams: 4 GilvanTCC.pdf: 392056 bytes, checksum: c92e4c9757ada7893dc6f62a78267aa6 (MD5) IMG_20181102_131441.jpg: 1218636 bytes, checksum: 36aa8c31ec2aca115870ea2c2a9e278c (MD5) IMG_20181102_131427.jpg: 1672384 bytes, checksum: ef52fc665bf97e6c37ae0b3c0202ac2c (MD5) fichacatalografica.pdf: 5598 bytes, checksum: 78c21bd3648cbde20ad062f8314ad74d (MD5) / Approved for entry into archive by PPGM Matemática (ppgmufam@gmail.com) on 2018-11-13T14:28:28Z (GMT) No. of bitstreams: 4 GilvanTCC.pdf: 392056 bytes, checksum: c92e4c9757ada7893dc6f62a78267aa6 (MD5) IMG_20181102_131441.jpg: 1218636 bytes, checksum: 36aa8c31ec2aca115870ea2c2a9e278c (MD5) IMG_20181102_131427.jpg: 1672384 bytes, checksum: ef52fc665bf97e6c37ae0b3c0202ac2c (MD5) fichacatalografica.pdf: 5598 bytes, checksum: 78c21bd3648cbde20ad062f8314ad74d (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-11-13T18:08:41Z (GMT) No. of bitstreams: 4 GilvanTCC.pdf: 392056 bytes, checksum: c92e4c9757ada7893dc6f62a78267aa6 (MD5) IMG_20181102_131441.jpg: 1218636 bytes, checksum: 36aa8c31ec2aca115870ea2c2a9e278c (MD5) IMG_20181102_131427.jpg: 1672384 bytes, checksum: ef52fc665bf97e6c37ae0b3c0202ac2c (MD5) fichacatalografica.pdf: 5598 bytes, checksum: 78c21bd3648cbde20ad062f8314ad74d (MD5) / Made available in DSpace on 2018-11-13T18:08:41Z (GMT). No. of bitstreams: 4 GilvanTCC.pdf: 392056 bytes, checksum: c92e4c9757ada7893dc6f62a78267aa6 (MD5) IMG_20181102_131441.jpg: 1218636 bytes, checksum: 36aa8c31ec2aca115870ea2c2a9e278c (MD5) IMG_20181102_131427.jpg: 1672384 bytes, checksum: ef52fc665bf97e6c37ae0b3c0202ac2c (MD5) fichacatalografica.pdf: 5598 bytes, checksum: 78c21bd3648cbde20ad062f8314ad74d (MD5) Previous issue date: 2018-03-28 / This work aims to study combinatorial analysis, which is an important branch of mathematics which is not usually subtly treated and through many years was teached as the mechanical memorization, leaving aside the learning process, self-learning and logical construction. It is important to emphasize the application of combinatorial analysis in set theory and probabilities theory that are often present in problem solving. It is necessary to present to our students the potential and beauty of the logical construction of ideas of combinatorial analysis, not excluding formulas applications, that can be used when the concepts and structure is well assimilated. We present counting methods beyond those used in basic education such as repetition chaotic permutations combinations, inclusion and exclusion principles, Kaplansky and Dirichlet lemmas, but we also highlight basic methods such as simple arrangements, simple combinations, and simple permutations. Beyond that, we present a generalization of the factorial numbers through the Gamma function besides olympics problems resolutions. / Este trabalho tem por objetivo estudar Análise Combinatória, que é um importante ramo da matemática que normalmente não é tratado com sutileza e transmitida ao longo dos anos através de memorização mecânica deixando o processo aprendizagem, auto-aprendizagem e construção lógica de lado. É importante enfatizar a aplicação da Análise Combinatória nas teorias dos conjuntos e teoria das probabilidades que muitas vezes se fazem presentes nas resoluções de problemas. Se faz necessário apresentar para nossos alunos o potencial e a beleza da construção lógica de ideias que a Análise Combinatória proporciona não excluindo as aplicações de fórmulas mas que elas possam ser usadas quando os conceitos e a estrutura forem bem assimiladas. Apresentamos métodos de contagem além dos usados no ensino básico como permutações caóticas combinações com repetição, princípio da inclusão e exclusão, lemas de Kaplansky e de Dirichlet mas também destacamos os métodos básicos como arranjos simples, combinações simples e permutações simples. Além disso, para apresentamos uma generalização dos números fatoriais definida pela função Gama e resoluções de problemas de olimpíadas.
13

O método simbólico aplicado a problemas de combinatória / The symbolic method applied to combinatorial problems

Rodrigues, Christiane Buffo, 1983- 04 May 2013 (has links)
Orientador: José Plínio de Oliveira Santos / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-22T15:43:28Z (GMT). No. of bitstreams: 1 Rodrigues_ChristianeBuffo_M.pdf: 948322 bytes, checksum: be5636b0d15a131df52736cd4f4782d0 (MD5) Previous issue date: 2013 / Resumo: Este trabalho trata da aplicação do Método Simbólico na resolução de problemas de Combinatória. A vantagem desta técnica é o cálculo direto de uma expressão fechada para a Função Geradora F(z) do problema escrito como uma Série de Potências. Consequentemente garantimos a facilidade na enumeração da sequência que queremos a partir do coeficiente de zn de F(z). O desenvolvimento de nosso estudo foi feito aplicando-se o método a dois tipos de Classes: Rotuladas e não Rotuladas, apontando as diferenças básicas entre elas através de exemplos e resultados teóricos. Ao final, concluímos que a enumeração independe do tipo de modelagem feita para o problema / Abstract: This work deals with the application of the Symbolic Method in the solutions of combinatorial problems. The advantage of this technique is the direct calculus for the exact expression of the Generating Function F(z) of the problem, written as a Power Series. Consequently, we ensure the enumeration of the desired sequence, from the coefficient of zn of F(z). Our study was developed by applying the method in two types of Classes: Labeled and unlabelled, pointing the basic differences between them through examples and theoretical results. Finally, we concluded that the enumeration does not depend of the type of the model chosen for the problem / Mestrado / Matematica Aplicada / Mestra em Matemática Aplicada
14

Limites de seqüências de permutações de inteiros / Limits of permutation sequences

Sampaio, Rudini Menezes 18 November 2008 (has links)
Nesta tese, introduzimos o conceito de sequência convergente de permutações e provamos a existência de um objeto limite para tais sequências. Introduzimos ainda um novo modelo de permutação aleatória baseado em tais objetos e introduzimos um conceito novo de distância entre permutações. Provamos então que sequências de permutações aleatórias são convergentes e provamos a equivalência entre esta noção de convergência e convergência nesta nova distância. Obtemos ainda resultados de amostragem e quase-aleatoriedade para permutações. Provamos também uma caracterização para parâmetros testáveis de permutações. / We introduce the concept of convergent sequence of permutations and we prove the existence of a limit object for these sequences. We also introduce a new and more general model of random permutation based on these limit objects and we introduce a new metric for permutations. We also prove that sequences of random permutations are convergent and we prove the equivalence between this notion of convergence and convergence in this new metric. We also show some applications for samplig and quasirandomness. We also prove a characterization for testable parameters of permutations.
15

Polinômios de permutação e palavras balanceadas / Permutacion polinomias and balanced words

Paula, Ana Rachel Brito de, 1990- 27 August 2018 (has links)
Orientador: Fernando Eduardo Torres Orihuela / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-27T14:35:36Z (GMT). No. of bitstreams: 1 Paula_AnaRachelBritode_M.pdf: 1519694 bytes, checksum: 61b845f0f57e58e56f6a1f759fc9a382 (MD5) Previous issue date: 2015 / Resumo: A dissertação "Polinômios de Permutação e Palavras Balanceadas" tem como principal objetivo estudar a influência dos polinômios de permutação na teoria de códigos mediante o conceito de palavra balanceada. A base do trabalho é o artigo "Permutacion polynomials and aplications to coding theory" de Yann Laigke-Chapuy. Expomos os conceitos básicos de polinômios de permutação como algumas de suas características, exemplos e métodos para identificação dos mesmos. Em seguida trataremos dos códigos lineares com ênfase nos binários explorando particularmente a conjectura de Helleseth / Abstract: The main goal in writing this dissertation is the study of the influence of the Theory of Permutation Polynomials in the context of Coding Theory via the concept of balanced word. Our basic reference is the paper "Permutation polynomials and applications to coding theory" by Y. Laigke- Chapury. Our plan is to introduce the basic concepts in Coding Theory, Permutation Polynomials; then we mainly consider the long-standing open Helleseth¿s conjecture / Mestrado / Matematica Aplicada / Mestra em Matemática Aplicada
16

Limites de seqüências de permutações de inteiros / Limits of permutation sequences

Rudini Menezes Sampaio 18 November 2008 (has links)
Nesta tese, introduzimos o conceito de sequência convergente de permutações e provamos a existência de um objeto limite para tais sequências. Introduzimos ainda um novo modelo de permutação aleatória baseado em tais objetos e introduzimos um conceito novo de distância entre permutações. Provamos então que sequências de permutações aleatórias são convergentes e provamos a equivalência entre esta noção de convergência e convergência nesta nova distância. Obtemos ainda resultados de amostragem e quase-aleatoriedade para permutações. Provamos também uma caracterização para parâmetros testáveis de permutações. / We introduce the concept of convergent sequence of permutations and we prove the existence of a limit object for these sequences. We also introduce a new and more general model of random permutation based on these limit objects and we introduce a new metric for permutations. We also prove that sequences of random permutations are convergent and we prove the equivalence between this notion of convergence and convergence in this new metric. We also show some applications for samplig and quasirandomness. We also prove a characterization for testable parameters of permutations.
17

Matemática discreta: aplicações do Princípio de Inclusão e Exclusão

Bezerra Neto, Sebastião Alves 17 August 2016 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-09-05T16:47:02Z No. of bitstreams: 1 arquivototal.pdf: 1153647 bytes, checksum: a384e4d5e2acf05cec52ece972237c23 (MD5) / Approved for entry into archive by Viviane Lima da Cunha (viviane@biblioteca.ufpb.br) on 2017-09-06T10:49:22Z (GMT) No. of bitstreams: 1 arquivototal.pdf: 1153647 bytes, checksum: a384e4d5e2acf05cec52ece972237c23 (MD5) / Made available in DSpace on 2017-09-06T10:49:22Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1153647 bytes, checksum: a384e4d5e2acf05cec52ece972237c23 (MD5) Previous issue date: 2016-08-17 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The process of teaching and learning of mathematics is closely related to the resolution of theoretical and practical problems, which often involve situations of everyday life in our society. This work aims to present the Inclusion and Exclusion Principle as a tool for solving many problems involving counting elements, especially those that appear double, triple counting, among others. It also seeks to relate it with the determination of prime numbers of a number and the Sieve of Eratosthenes, use it to systematize the Formula of the function Fi ( Phi) Euler, as well as for determining the number of permutations Chaotic and number of Sobrejetoras functions. / O processo de ensino aprendizagem da Matemática está intimamente relacionado com a resolução de problemas teóricos e práticos, os quais geralmente envolvem situações do cotidiano de nossa sociedade. Esse trabalho tem como objetivo apresentar o Princípio da Inclusão e Exclusão como ferramenta para resolução de vá- rios modelos de problemas que envolvem a contagem de elementos, principalmente aquelas que aparecem contagem duplas, triplas, dentre outras. Além disso, busca relacioná-lo com a determinação de números primos de um número e com o Crivo de Eratóstenes, utilizá-lo para sistematizar a Fórmula da Função Fi ( ) de Euler, bem como para a determinação do Número de Permutações Caóticas e do Número de Funções Sobrejetoras.

Page generated in 0.0595 seconds