• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 47
  • 28
  • 20
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Interfacial engineering of transparent electrodes and nanoparticles with phosphonic acids and metal-organic dopants for organic electronic applications

Paniagua Barrantes, Sergio 12 January 2015 (has links)
This thesis focuses on understanding the chemistry involved in a variety of surface modification reactions, both on metal oxides and graphene. In this work, the rates of chemisorption of a prototypical phosphonic acid on ITO under several processing protocols are measured using XPS to determine the optimal procedure. UPS is used to track the dependence of the electronic structure of the system, specifically of the work function and position of the valence band maximum on coverage. Phosphonic acid monolayers with appropriate tail groups can also be used to initiate chemistry from surfaces, which has potential for building layers of organic-electronic devices, including organic solar cells and capacitors. The growth of non-conjugated polymers from BaTiO₃ nanoparticles using a facile ATRP technique is studied via solution-phase and solid-state techniques to determine its applicability to make matrix-free composites for hybrid dielectrics. In addition, the surface chemistry involved in Kumada Catalyst-Transfer to grow polythiophene derivatives from ITO is examined via XPS. Finally, the newly emerged alternative for replacement of ITO as transparent electrode, graphene, is n- and p-doped using redox-active, solution-processable metal-organics, which increased its conductivity and allowed the work function to be tuned over a range of 1.8 eV. The systems are characterized in a systematic study, and the results are promising for future applications of graphene.
12

The Effect of N, N Bis (ethylene)-P (1-adamantyl) Phosphonic Diamide on Rous Sarcoma Virus

McGraw, Thomas L. (Thomas Lee) 03 1900 (has links)
The drug, N,N bis (ethylene)-P (1-adamantyl) phosphonic diamide inhibits focus formation of Rous Sarcoma Virus in tissue culture. Transformation of chick cells was inhibited when the drug was added to chick cells prior to infection. The drug did not inhibit the transformation of Normal Rat Kidney Cells infected with RSV, when the cells were grown at non-permissive temperatures and shifted to permissive temperatures upon addition of the drug. Nor did the drug revert cells transformed at permissive temperatures. These studies indicated that the inhibition of RSV is in the early stage of viral growth, possible penetration or uncoating.
13

The Effects of Phosphonic Acids in Dye-Sensitized Solar Cells

James, Keith Edward 26 May 2016 (has links)
Novel methods for the construction of dye-sensitized solar cells (DSSCs) were developed. A thin dense underlayer of TiO2 was applied on fluorine-doped tin oxide (FTO) glass using as a precursor Tyzor AA-105. Subsequently a mesoporous film of P-25 TiO2 was applied by spreading a suspension uniformly over the surface of the underlayer and allowing the plate to slowly dry while resting on a level surface. After sintering at 500° C slides were treated with TCPP as a sensitizing dye and assembled into DSSCs. A novel method was used to seal the cells; strips of Parafilm® were used as spacers between the electrodes and to secure the electrodes together. The cells were filled with a redox electrolyte and sealed by dipping into molten paraffin. A series of phosphonic acids and one arsonic acid were employed as coadsorbates in DSSCs. The coadsorbates were found to compete for binding sites, resulting in lower levels of dye adsorption. The resulting loss of photocurrent was not linear with the reduction of dye loading, and in some cases photocurrent and efficiency were higher for cells with lower levels of dye loading. Electrodes were treated with coadsorbates by procedures including pre-adsorption, simultaneous (sim-adsorption), and post-adsorption, using a range of concentrations and treatment times and a variety of solvents. Most cells were tested using an iodide-triiodide based electrolyte (I3I-1) but some cells were tested using electrolytes based on a Co(II)/Co(III) redox couple (CoBpy electrolytes). Phosphonic acid post-adsorbates increased the Voc of cells using CoBpy electrolytes but caused a decrease in the Voc of cells using I3I-1 electrolyte. Phosphonic acids as sim-adsorbates resulted in a significant increase in efficiency and Jsc, and they show promise as a treatment for TCPP DSSCs.
14

Développement par PECVD de membranes conductrices protoniques de type phosphonique pour la production d’hydrogène par (photo-)électrolyse de l’eau / Development by PECVD of phosphonic acid-type proton conductive membranes for hydrogen production by water (photo-)electrolysis

Kinfack leoga, Arnaud 09 October 2018 (has links)
Le but de ces travaux était de développer des membranes conductrices protoniques de type phosphonique par PECVD radio-fréquence en décharges continue et pulsée à partir du mono-précurseur diméthyl allylphosphonate. De telles membranes sont pressenties comme pouvant avantageusement remplacer la membrane Nafion® ou les membranes conventionnelles de type sulfonique ou phosphonique classiquement utilisées dans les dispositifs piles à combustible ou électrolyseur de type PEM. Ainsi, une étude paramétrique visant à établir des corrélations entre les propriétés des films et les paramètres de dépôt a été menée. Il ressort de cette étude paramétrique que l’utilisation d’une décharge pulsée est favorable à une vitesse de croissance plus élevée et une densité des films plus faible que le mode de décharge continue, favorisant ainsi la conduction protonique. Nous avons également démontré que les dépôts réalisés en mode de décharge pulsée présentent de meilleures capacités de sorption et de rétention d’eau, ce qui est bénéfique pour l’application visée qui est la (photo-)électrolyse de l’eau. Par ailleurs toutes les membranes phosphoniques plasma préparées sont stables d’un point de vue rétention d’eau et réseau covalent jusqu’à au moins 250 °C, ce qui garantit leur utilisation dans des systèmes pouvant fonctionner jusqu’à 120 °C. Par la suite les membranes phosphoniques plasma ont été intégrées en cellule d’électrolyse de l’eau, associées au Nafion® en tant qu’électrolyte. Les caractérisations électrochimiques en cellule ont montré que les membranes phosphoniques plasma sont suffisamment compétitives pour être envisagées dans le futur comme électrolytes solides à part entière dans des AME « tout solide ». / The purpose of this work was to develop phosphonic-type proton conductive membranes by radio-frequency PECVD in a continuous or pulsed discharge from the single precursor dimethyl allylphosphonate. Such membranes could advantageously replace the Nafion® membrane or conventional sulfonic-type or phosphonic acid-type membranes, more classically used in PEM fuel cells and electrolysis devices. A parametric study was carried out in order to establish correlations between the properties of the films and the deposition parameters. It appears that the use of a pulsed discharge promotes better films properties, namely higher growth rate and lower density, than the continuous discharge, thus promoting proton conduction. It was also noticed that the deposits prepared in a pulsed discharge have the highest sorption and water retention capacities, which is particularly beneficial for the intended application i.e. the (photo-) electrolysis of water. Furthermore, all the plasma phosphonic membranes prepared are stable in terms of water retention and covalent network up to at least 250 °C, which ensures their use in systems able to operate up to 120 °C. Subsequently the plasma phosphonic membranes, deposited on the Nafion® as mechanical support, were integrated as electrolyte membrane into a water electrolysis cell. It turns out that plasma phosphonic membranes are competitive enough to be envisaged in the future as integral solid electrolytes in solid membrane-electrodes assemblies.
15

Surface modification of nanoparticles for polymer/ceramic nanocomposites and their applications

Kim, Philseok 17 November 2008 (has links)
Polymer/ceramic nanocomposites benefit by combining high permittivities (r) of metal oxide nanoparticles with high dielectric strength and excellent solution-processability of polymeric hosts. Simple mixing of nanoparticles and polymer generally results in poor quality materials due mainly to the agglomeration of nanoparticles and poor miscibility of nanoparticles in host materials. Surface modification of metal oxide nanoparticles with phosphonic acid-based ligands was found to afford a robust surface modification and improve the processablity and the quality of nanocomposites. The use of phosphonic-acid modified barium titanate (BaTiO₃) nanoparticles in dielectric nanocomposites dramatically improved the stability of the nanoparticle dispersion and the quality of the nanocomposites. Surface modification of BaTiO₃ nanoparticles allowed high quality nanocomposite thin films in ferroelectric polymer hosts such as poly(vinylidene fluoride-co-hexafluoropropylene) with large volume fractions (up to 50 vol. %), which exhibited a remarkable combination of a high permittvity (35 at 1 kHz) and a high breakdown strength (210 V/µm) leading to a maximum energy storage density of 6.1 J/cm³. The effect of nanoparticle volume fractions on the dielectric properties of this nanocomposite system was investigated and compared with theoretical models. At high volume fraction of nanoparticles, the porosity of the nanocomposites was found to have important role in the dielectric performance. A combined effective medium theory and finite difference simulation was used to model the dielectric properties of high volume fraction dielectric nanocomposites with porosity. These results provide a guideline to optimize the volume fractions of nanoparticles for maximum energy density. Nanocomposites based on phosphonic acid-modified BaTiO₃ nanoparticles can also be used as printable high permittivity dielectrics in organic electronics. High volume fractions (up to 37 vol. %) of phosphonic acid-modified BaTiO₃ nanoparticles dispersed in cross-linked poly(4-vinylphenol) allowed solution-processable high permittivity thin films with a large capacitance density (~50 nF/cm²) and a low leakage current (10 8 A/cm²) suitable as a gate insulator in organic field-effect transistors (OFETs). Pentacene-based OFETs using these nanocomposites showed a low threshold voltage (< -2.0 V) and a large on/off current ratio (Ion/off 104 ~ 106) due to the high capacitance density and low leakage current of the gate insulator.
16

Theoretical investigation of polar zinc oxide surface modification via phosphonic acid self-assembled monolayers

Wood, Christopher Alan 17 January 2012 (has links)
The interface of a zinc-terminated polar zinc oxide surface (0002) with a series of chemisorbed fluorinated benzylphosphonic acids has been studied using density functional theory. The calculations indicate that there is a substantial change in the binding energies and work function modification depending on the binding motif. The results also indicate that there is a pronounced difference in the magnitude and trends of the factors determining the total change in work function. The oxygen core-level binding shifts have been calculated and compared to available experimental data.
17

The role of strychnine-sensitive nACHRS in rabbit retinal OFF ganglion cells

Renna, Jordan Michael. January 2008 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2008. / Title from first page of PDF file (viewed Feb. 13, 2009). Includes bibliographical references.
18

Estudos sobre a formacao do complexo do sup(153)Sm com EDTMP (acido etilenodiaminotetrametileno-fosfonico) e dos complexos do sup(153)Sm com outros fosfonatos, em temperatura ambiente

GASIGLIA, HAROLDO T. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:45:09Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:04:09Z (GMT). No. of bitstreams: 1 07013.pdf: 6587866 bytes, checksum: e1c1d18518e5c83a812cb4dc4c0cb496 (MD5) / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
19

Estudo de determinação de resíduos de glifosato e ácido aminometilfosfônico (AMPA) em amostras de soja e água usando cromatografia líquida acoplada à espectrometria de massas em TANDEM com ionização por electrospray (LC-ESI/MS/MS)

MARTINS JUNIOR, HELIO A. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:51:27Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:07:07Z (GMT). No. of bitstreams: 1 11308.pdf: 5633148 bytes, checksum: b3d2021838a1f898b67a77dcc4341edc (MD5) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
20

Estudos sobre a formacao do complexo do sup(153)Sm com EDTMP (acido etilenodiaminotetrametileno-fosfonico) e dos complexos do sup(153)Sm com outros fosfonatos, em temperatura ambiente

GASIGLIA, HAROLDO T. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:45:09Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:04:09Z (GMT). No. of bitstreams: 1 07013.pdf: 6587866 bytes, checksum: e1c1d18518e5c83a812cb4dc4c0cb496 (MD5) / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP

Page generated in 1.5329 seconds