• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 14
  • 11
  • 10
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 131
  • 32
  • 20
  • 16
  • 12
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Investigation into Melting Characteristics of Hydrogen-Reduced Iron Ore Pellets

Pousette, Hedda January 2019 (has links)
What kinetic and thermodynamic characteristics are established in a melt of hydrogen-reduced iron ore pellets? The pellets contain self-fluxing slag components which upon melting form an initial slag. Refining capabilities of this slag, such as dephosphorization power, are investigated in a lab-scale vertical furnace. Understanding the initial slag and the reactions taking place when hydrogen-reduced iron ore pellets melt is important for future optimization of ingoing raw materials as well as industry scale process design. A sample of either crushed hydrogen-reduced iron ore pellets or a powder mixture representative of iron ore pellets in terms of composition was melted in a lab-scale vertical furnace. The sample was lowered into the argon atmosphere furnace which had a temperature of 1600°. The sample was kept inside a magnesia crucible with a molybdenum loosely-fitted lid. The purpose of the lid was to fix the oxygen partial pressure. The reduction degree of the pellets or corresponding powder mixture as well as the total melting times were varied. XRF and OES analysis were employed to find the composition of the slag and metal phases, respectively. SEM analysis was employed to investigate phases present in the slag. Comparison of melted iron ore pellets and corresponding powder mixture show that powder can be employed to represent reduced iron ore pellets accurately. It was found that reduction degree strongly impacts both phosphorus and vanadium distributions as well as the types of phases formed in the slag fraction. During melting, almost all of the Vanadium and most of the Phosphorus content goes to the slag fraction. At lower reduction degrees, dephosphorization is greater; however, the Phosphorus content in the steel is still quite high at 130 ppm or higher. Modification to the amount and/or composition of the self-fluxing slag is suggested to reach lower levels of phosphorus in the steel. / Vilka kinetiska och termodynamiska egenskaper skapas i en smälta av vätgasreducerade järnmalmspellets? Pellets innehåller självflussande slaggkomponenter som vid smältning bildar en initial slagg. Slaggens raffineringsförmåga, till exempel fosforreningsförmåga, undersöks i laboratorieskala. För framtida optimering av ingående råvaror såväl som industriellskalig processdesign är det viktigt att förstå den initiala slaggen samt de reaktioner som äger rum vid nedsmältning av vätgasreducerade järnmalmspellets. Ett prov av antingen krossade vätgasreducerade järnmalmspellets eller en pulverblandning som är representativ för järnmalmspellets med avseende på sammansättning smältes ned i en laboratorieskalig vertikal ugn. Ugnen hade en argonatmosfär och temperatur på 1600°C då provet sänktes ner i ugnen för smältning. En magnesiumoxiddegel med ett löst inpassat molybdenlock användes som behållare för provet under nedsmältningen. Syftet med locket var att kontrollera syrgaspartialtrycket. Reduktionsgraden av pellets eller motsvarande pulverblandning såväl som de totala smältningstiderna varierades. XRF och OES mätverktyg användes för att undersöka sammansättning av slagg- och metallfraktionerna. SEM analys användes för att identifiera närvarande faser i slaggfraktionen. Jämförelse av nedsmälta vätgasreducerade järnmalmspellets med motsvarande pulverblandning visar att de två är representativa av varandra till stor grad. Resultaten visar på att reduktionsgraden påverkar starkt både fosfor- och vanadinfördelningarna samt faserna som bildas i slaggfraktionen. Vid smältning går nästan all mängd vanadin och majoriteten av fosfor till slaggfraktionen. Vid lägre reduktionsgrader är fosforreningen bättre. Fosforhalten i stålet är relativt hög och har ett värde på 130 ppm eller högre för samtliga prover. Ändring av mängden och/eller sammansättning av den självflussande slaggen rekommenderas för att nå lägre nivåer av fosfor i stålet.
62

Effects Of Reduced Ras And Volume On Anaerobic Zone Performance For A Septic Wastewater Biological Phosphorous Removal System

Magro, Daniel 01 January 2005 (has links)
Enhanced Biological Phosphorous Removal (EBPR) performance was found to be adequate with reduced Return Activated Sludge (RAS) flows (50% of available RAS) to the anaerobic tank and smaller than typical anaerobic zone volume (1.08 hours hydraulic retention time or HRT). Three identical parallel biological nutrient removal (BNR) pilot plants were fed with strong, highly fermented (160 mg/L VFAs), domestic/industrial wastewater from a full scale wastewater treatment facility (WWTF). The pilot plants were operated at 100%, 50%, 40% and 25% RAS (percent of available RAS) flows to the anaerobic tank with the remaining RAS to the anoxic tank. In addition, varying anaerobic HRT (1.08 and 1.5 hours), and increased hydraulic loading (35% increase) was examined. The study was divided in four Phases, and the effect of these process variations on EBPR were studied by having one different variable between two identical systems. The most significant conclusions were that only bringing part of the RAS to the anaerobic zone did not decrease EBPR performance, instead changing the location of P release and uptake. Bringing less RAS to the anaerobic and more to the anoxic tank decreased anaerobic P release and increased anoxic P release (or decreased anoxic P uptake). Equally important is that with VFA rich influent wastewater, excessive anaerobic volume was shown to hurt overall P removal even when it resulted in increased anaerobic P release. Computer modeling with BioWin and UCTPHO was found to predict similar results to the pilot test results. Modeling was done with reduced RAS flows to the anaerobic zone (100%, 50%, and 25% RAS), increased anaerobic volume, and increased hydraulic loading. The most significant conclusions were that both models predicted EBPR did not deteriorate with less RAS to the anaerobic zone, in fact, improvements in EBPR were observed. Additional scenarios were also consistent with pilot test data in that increased anaerobic volume did not improve EBPR and increased hydraulic loading did not adversely affect EBPR.
63

Synthesis Of Non-Halogenated Flame Retardants For Polyurethane Foams

Durganala, Sravanthi 22 August 2011 (has links)
No description available.
64

Laboratory Analysis of Sustainable Nutrient Treatment Methods for Agricultural Runoff

Wamsley, Peter Randal 11 May 2012 (has links)
No description available.
65

Concentration of Suspended Solids and Nutrients in Overland Flow in Suburban Philadelphia Watersheds

Cushman, Elizabeth January 2019 (has links)
Suburban Philadelphia is a densely populated region with a history of urbanization and waterway channelization. Situated within the Delaware River watershed, 70% of the region’s stream segments are impaired, primarily due to excess sediment and nutrients. To improve water quality, the Upstream Suburban Philadelphia Cluster of the Delaware River Watershed Initiative (DRWI) established focus areas within the region for targeted implementation of stormwater control measures and community outreach about stormwater management. The focus areas consisted of upstream headwaters to four streams flowing into the Delaware River. The objective of this study was to determine sediment and nutrient concentrations in first flush overland flow (OLF) in three of the DRWI focus areas. Seven sites were selected for collection of OLF, stream, and rain samples. A total of 228 samples from 24 sample locations across 17 storms were collected from the Pennypack Creek, Jenkintown Creek, and Sandy Run watersheds. Samples were analyzed for nitrate (N), total dissolved phosphorous (TDP), total phosphorous (TP), suspended sediment concentration (SSC), and chloride (Cl), and results were compared to catchment metrics including area and land cover. OLF samples showed a wider variability of sediment, chloride, and nutrient concentrations than stream samples, and the stormwater quality varied between catchments with different land cover composition. Higher N correlated with increased road coverage and landscaping applications in vegetated areas. Lower TDP was linked to increased tree canopy, while higher TP was linked to smaller lot sizes. In the stream samples, higher SSC was linked to increased road coverage and smaller building sizes, and higher Cl was linked to nearby impervious surfaces. SSC was often reduced in the OLF samples after flowing downhill or through vegetated patches. Two bioretention basins were sampled at the inlet and outlet. Both basins experienced a decrease in SSC and N at the outlets, showed marginal to poor efficiency for TDP and TP removal, and provided an increase in Cl in outlet. A review of all collected data suggests that land cover and human activity in these watersheds are greater drivers of stormwater quality than rainfall and weather patterns. The data presented in this report has implications for stormwater control. First, this study provides an understanding of local heterogeneities in the distribution of nutrients, sediment, and chloride in stormwater runoff from seemingly similar watersheds in terms of land use. Second, the presented data can be used in projects and models at the headwater scale and the micro-catchment scale to improve planning and monitoring. / Geology
66

Nutritional Strategies to Improve Pig Growth and Performance

Kroscher, Kellie Ann 07 October 2020 (has links)
Many factors influence the efficiency of muscle growth including genetics, nutrition, and environment. The neonatal period is characterized as a time of rapid growth. Growth rate is reduced during neonatal nutrient restriction possibly due to altered satellite cell activity which can permanently alter growth potential. Therefore, optimal nutrition is important for maximizing the growth potential of the animal. Heat stress leads to changes in digestion and metabolism, thus alters nutrient availability to muscle. Heat stress is a prevalent problem in the agriculture industry resulting in great economic losses due to reduced growth, fertility, and increased morbidity. The use of functional feed additives is a potential strategy to mitigate these negative effects. The objective of this dissertation was to investigate nutritional strategies to improve growth in pigs during key malleable periods. Three nutritional studies were conducted to discern the optimal inclusion levels of calcium phosphate, energy, and protein in the diet to maximize neonatal muscle growth. Adequate dietary calcium phosphate was most efficient for satellite cell function which may be mediated by micro-RNA. Differentiation promoting miR-206 and correspondingly the fusion rate was highest in adequate calcium phosphate diets. Excess protein diets enhanced body and muscle growth, while deficient protein was detrimental to growth. Dietary protein treatments altered energy metabolism genes, and genes regulating protein degradation were upregulated in deficient protein diets. Dietary energy levels did not influence body weight, however feed efficiency improved with energy balance. Excess energy diets had the lowest fusion rates and the lowest differentiation promoting miR-1 expression. These data suggest that nutrient inclusion levels are important for satellite cell function and may mediate satellite cell activity through the expression of micro-RNAs. The final study sought to discern the ability of supplementation of an artificial high-intensity sweetener and capsicum oleoresin to mitigate the negative effects of heat stress on pig performance. Heat stress leads to increased body temperature and respiration and was detrimental to metabolic flexibility. Supplementation helped improve feed efficiency and maintain metabolic flexibility. These data indicate that supplementation may be an efficient strategy to mitigate heat stress. / Doctor of Philosophy / Muscle is an important tissue to consider when optimizing growing conditions in feed animals due to its function as a consumer good. Many factors influence the efficiency of muscle growth including genetics, nutrition, and environment. Fractional growth rates are highest during the neonatal period and animals require adequate nutrients to facilitate this growth. Nutrient restriction reduces growth rate and can lead to permanent changes the animals' body size and composition later in life. Therefore, optimal nutrition is important for maximizing the growth potential of the animal. While the nutrients in feed can be controlled to improve growth, other factors are more difficult to regulate. Heat stress is a prevalent problem in the agriculture industry resulting in great economic losses due to reduced growth, fertility, and increased morbidity. The use of functional feed additives is a potential strategy to alleviate these negative effects. The objective of this dissertation was to investigate nutritional strategies to improve growth in pigs during key malleable periods. Three nutritional studies were conducted to determine the optimal inclusion levels of calcium phosphate, energy, and protein in the diet to maximize neonatal muscle growth. Satellite cells are muscle-specific stem cells that help facilitate the growth of muscle. Altering the ability of satellite cells to proliferate and fuse impairs the ability of muscle to grow and repair. Adequate dietary calcium phosphate was most efficient for satellite cell function. Excess protein diets enhanced body and muscle growth, while deficient protein was detrimental to growth. Dietary protein treatments altered energy metabolism genes, and genes regulating protein degradation were upregulated in deficient protein diets. Dietary energy levels did not influence body weight, however, feed efficiency improved with energy balance. Satellite cells from excess energy diets had the lowest fusion rates. These data suggest that nutrient inclusion levels are important for satellite cell function and growth. The final study sought to discern the ability of the supplementation of an artificial high-intensity sweetener and capsicum oleoresin to mitigate the negative effects of heat stress on pig performance. Heat stress leads to increased body temperature and respiration and was detrimental to metabolic flexibility. Supplementation helped improve feed efficiency and maintain metabolic flexibility. These data indicate that supplementation may be an efficient strategy to mitigate heat stress.
67

Meet the matchstick women - the hidden victims of the industrial revolution

Kelsey, Catherine 08 March 2018 (has links)
Yes
68

Elucidating the function of inositol pyrophosphate signaling pathways in Arabidopsis thaliana

Cridland, Caitlin A. 12 April 2022 (has links)
Phosphate (Pi) is an essential nutrient for plants, required for plant growth and seed viability. When Pi is limited, plants undergo dynamic morphological and metabolic changes to leverage available Pi, known as the Phosphate Starvation Response (PSR). The inositol phosphate (InsP) signaling pathway is a crucial element of the plant's ability to regulate the PSR and respond to changing energy conditions. InsPs are synthesized from the cyclic 6-carbon polyol scaffold, myo-inositol. Inositol hexakisphosphate (InsP6) is the most abundant InsP signaling molecule and can be phosphorylated by the multifunctional inositol tetrakisphosphate 1-kinase 1 (ITPK1) and diphosphoinositol pentakisphosphate (VIP) kinases, resulting in inositol pyrophosphates (PP-InsPs). PP-InsPs have high energy bonds and have been linked to Pi maintenance and energy homeostasis in yeast, plants, and mammals. However, the precise mechanism(s) by which PP-InsPs act within plant signaling pathways remains to be determined. Two approaches to understand the role of PP-InsPs in plants are described within this dissertation. The first approach analyzes genetic loss-of-function vip1/vip2 double mutants, and their responses to low Pi conditions. Specifically, vip1/vip2 double mutant gene expression and lipid remodeling patterns in response to low Pi were characterized. We found that vip1-2/vip2-2 had an impacted lipid remodeling response under low Pi conditions, whereas ipk1 had altered lipid composition under Pi-replete conditions. In a complementary approach, a gain-of-function in either the ITPK1 or the kinase domain of VIP (VIP2KD) were constructed in transgenic Arabidopsis thaliana plants. Both ITPK1 and VIP2KD transgenic plants contain elevated levels of the specific inositol pyrophosphate, InsP8. Elevated InsP8 in both types of plants results in changes in growth and senescence phenotypes, delayed time to flowering, Pi accumulation, and altered PSR gene expression. The data from both approaches suggest new roles for PP-InsPs in the regulation of the PSR and other signaling pathways in plants. To enhance my teaching and leadership skills, I participated in the Graduate Teaching Scholars (GTS) program. As a GTS, I worked with the Virginia Tech Research and Extension Experiential Learning (VT-REEL) program where I developed a structured mentorship program for undergraduate and graduate students and created a professional development workshop series. During the COVID-19 pandemic, I developed an online version of the VT-REEL program. Using inclusive pedagogy practices and surveys from the participants, we compiled the best practices for moving a summer undergraduate research program online. These practices come from surveyed participants in the 2020 and provides strategies that can be tailored to various online research experiences and be implemented in both online and in-person formats. / Doctor of Philosophy / Phosphate (Pi) is crucial for plant development and crop yield, but is often limited in soils. Pi-containing fertilizers are often added to supplement soils. Overuse of Pi-containing fertilizers can lead to Pi runoff and can devastate aquatic ecosystems. In addition, Pi is a limited, nonrenewable resource, with U.S. stores projected to be depleted in as little as 30 years. It is now crucial to develop crops that can feed a growing population with less Pi input. Here, we describe how changing levels of plant messenger molecules known as inositol pyrophosphates (PP-InsPs) impact the ability of plants to sense and respond to Pi. This knowledge advances understanding f how mineral nutrient physiology affects many plants traits, and can be harnessed to develop novel strategies to reduce Pi-application and overuse.
69

Topographic and Surface Chemical Aspects of the Adhesion of Structural Epoxy Resins to Phosphorus Oxo Acid Treated Aluminum Adherends

Nitowski, Gary Alan 11 May 1998 (has links)
Structural adhesive bonding offers several advantages over other types of joining. These include improved stress distribution and increased design flexibility. Adhesive bonding is important in aerospace, automotive, and packaging applications. However, the full potential of the technology has not been exploited because the understanding of the basic mechanisms of adhesion and adhesion failure is incomplete. This investigation elucidates the chemical and mechanical mechanisms responsible for durable adhesion of epoxy resins to phosphorus oxo acid treated aluminum alloys. By systematically altering the adherend surface chemistry, surface topography, and adhesive formulation, combined with accelerated testing, the chemical and mechanical factors that influence the properties of adhesively bonded aluminum are isolated and assessed. It is postulated that a combination of two factors determines the strength and environmental durability of epoxy-bonded aluminum. One is the formation of hydrolytically stable, primary bonds between the adhesive and the adherend, and the second is the hydrolytic stability of the surface oxide, which is always present on the surface of aluminum and aluminum alloys. These conditions can best be met by chemical pretreatment of the oxide surface, which renders the oxide insoluble and creates, at the same time, functional surface sites. These sites can form chemical bonds with reactive components of the adhesive. Morphological and mechanical alteration of the metal surface oxide through hydroxide formation requires liquid water. Liquid water can only form by capillary condensation in interfacial gaps from molecularly diffusing water. A hydrolytically stable oxide will prevent bond failure due to mechanical weakening of the substrate surface, while a high density of hydrolytically stable surface bonding sites will minimize the occurrence of capillary gaps at the interface, thus decreasing the formation of liquid water. It is shown that highly chemically active, although not inherently stable, oxide surfaces can provide environmentally stable adhesive bonds. Conversely, certain highly stable oxide surfaces with few chemically active sites provide no environmental stability to adhesive joints, regardless of the topography of the surface. / Ph. D.
70

Comparative modelling of phosphorous production in rural catchments

Matji, Maselaganye Petrus 12 1900 (has links)
Thesis (M.Ing.)--Stellenbosch University, 2000. / ENGLISH ABSTRACT: The objective of this research has been to compare nonpoint sources assessment techniques for simulating phosphorous production in rural catchments which have a variety ofland use types. Four nonpoint source assessment techniques capable of simulating phosphorous production, operating at different spatial and temporal resolutions, were selected after an intensive literature review. The model selection criteria included the capability to simulate phosphorous production, the need for the study to cover a range of spatial and temporal resolutions, model data requirements, model affordability and availability in South Africa. The models selected using these criteria are the Phosphorous Export Model (PEM) (Weddepohl & Meyer, 1992), Impoundment and River Management and Planning Assessment Tool for Water Quality Simulation Model (IMPAQ) (DWAF,1995), the Hydrological Simulation Program Fortran (HSPF) (Bricknell,1993) and the Agricultural Catchments Research Unit Model (ACRU) (Smithers and Caldecott, 1994). Four ofthe study catchments were selected within the Berg River basin in the Western Cape and the remaining four were selected within the Amatole catchments in the Eastern Cape. The four subcatchments in the Berg River basin are the Twenty-Four Rivers, Leeu River, Kompanjies River and Doring River catchments and the four in the Amatole catchments are the Upper Buffalo, Cwencwe, Yellowwoods and Gqunube River catchments. The range of land use/cover types comprises: Western Cape catchments : wheat, grapes, natural vegetation and forestry Eastern Cape catchments : natural vegetation and forestry The PEM and IMPAQ models were applied reasonably successfully to all the catchments to simulate phosphorous production, with the observed flow as the input. The HSPF model could not successfully be applied to the catchments to simulate both the catchment hydrology and phosphorous production. Hence, the investigation into HSPF was abandoned, and in its place, the ACRU daily phosphorous yield model was incorporated at a fairly late stage in the research. ACRU was applied to only the Western Cape catchments. The estimated parameters for different land use types were compared to investigate the potential for parameter transfer in space and time. Both the PEM and IMP AQ models showed promise that land use parameters could be transferred in time for catchments located in the Western Cape catchments, but did not show promise for catchments located in the Eastern Cape. The IMPAQ model showed promise that land use parameters could be transferred in space for catchments located in the Eastern Cape, but did not perform as well in the Western Cape catchments. The PEM model showed promise that land use parameters could be transferred in space for catchments located in the Western Cape, but did not perform as well in the Eastern Cape. Since the ACRU phosphorous yield model was included at a late stage of the research, the potential for land use parameter transfer in space and time could not investigated. The model results were verified at the relevant flow and water quality gauging stations. The ACRU phosphorous model verification results showed promise for catchments located in humid parts of the Berg River basin, but did not perform as well in the catchment located in the semi-arid part. RECOMMENDATIONS FOR FURTHER RESEARCH: I. Intensive research should be undertaken to develop a database ofland use parameters/ export coefficients related to phosphorous production (and other non-conservative constituents) in South African catchments. Availability of these parameters would make phosphorous modelling much easier. HSPF should be configured and calibrated, more especially its water quality component, for catchments with hourly rainfall and rainfall stations located within/on the catchment boundaries, to investigate its performance under South African conditions. Given the complexity of the HSPF algorithms and the time required to familiarise oneself with the model, it is recommended that such an investigation be undertaken which is not inclusive of any other models. The spatial resolution ofPEM is extremely coarse, and should be improved to allow the user to partition the total flow in the catchment according to contributions from the variety ofland use types and to estimate soluble and particulate phosphorous parameters for each land use type. A study should be undertaken to investigate the potential for the ACRU phosphorous yield model parameter transfer in time and space. Sampling frequency of water quality data in South Africa should be improved, because it is difficult to assess the performance of the calibrated water quality models, more especially phosphorous export models, due to a lack of continuous data sets. Rainfall data collection in gauged catchments, more especially Western Cape catchments (e.g. Twenty-Four Rivers, Leeu, Kompanjies and the Doring River catchments), should be improved. There should be at least one rainfall gauging station located within the catchment boundaries. This would contribute towards achieving reasonable hydrological calibration or verification. Since runoff is the driving factor for water quality components, improved hydrological calibration/verification would result in reasonable water quality calibration/verification. / AFRIKAANSE OPSOMMING: Die doel van die navorsing was om die simulering van fosfaat produksie in landelike gebiede, wat 'n verskeidenheid grondgebruike het, met behulp van nie-punt bron evaluerings tegnieke te evulaeer. Vier nie-punt bron evaluerings tegnieke, met die vermoë om fosfaat produksie op verskillende ruimtelike en tyds resolusies te simuleer, is gekies na 'n intensiewe ondersoek van beskikbare literatuur. Die kriteria vir die keuse van die model het ingesluit die vermoë om fosfaat produksie te simuleer, die behoefte vir die studie om 'n reeks van ruimtelike en tyds resolusies te simuleer, model data vereistes, model bekostigbaarheid en beskikbaarheid in Suid Afrika. Die gekose modelle, gebaseer op bogemelde kriteria, was die PEM, IMPAQ, HSPF en ACRU modelle. Vier van die opvanggebiede gebruik in die studie, was in die Bergrivier bekken in die Wes-Kaap en vier was in die Amatole opvanggebiede in die Oos-Kaap. Die vier opvanggebiede in die Bergrivier bekken is die Vier-en- Twentigriviere, Leeurivier, Kompanjiesrivier en die Doringrivier en die vier opvanggebiede in die Amatole opvanggebiede is die Bo-Buffels, Cwencwe, Yellowwoods, en die Gunubierivier opvanggebiede. Grondgebruik beslaan die volgende: Wes-Kaap opvanggebiede : koring, druiwe, natuurlike weiding en plantasies. Oos-Kaap : natuurlike plantegroei en plantasies Die PEM en IMPAQ modelle is met redelike sukses in al die opvanggebiede gebruik vir die simulasie van fosfaat produksie, met die waargenome vloei as invoer. Die HSPF model kan nie met enige sukses gebruik word om beide die opvanggebied hidrologie en fosfaat produksie, te simuleer nie. Die HSPF model is dus uitgeskakel en in 'n redelike laat stadium van die studie met die ACRU daaglikse fosfaat leweringsmodel vervang. Die ACRU model is net op die Wes-Kaap opvanggebiede toegepas. Die beraamde parameters vir die verskillende grondgebruik tipes is vergelyk om die potensiaal vir parameter oordrag in ruimte en tyd te ondersoek. Beide die PEM en IMPAQ modelle het belowend vertoon ten opsigte van die oordrag van grondgebruik parameters in tyd vir opvanggebiede in die Wes- Kaap, maar het geensins belowend vertoon vir die Oos-Kaap opvanggebiede nie. Die IMPAQ model het belowend vertoon ten opsigte van die ruimtelike oordrag van grondgebruik parameters vir die Oos-Kaap opvanggebiede, maar het nie so goed vertoon in die Wes-Kaap opvanggebiede nie. Die PEM model het belowend vertoon ten opsigte van die ruimtelike oordrag dat grondgebruikte parameters in die Wes-Kaap opvanggebiede is, maar het nie so goed in die Oos-Kaap opvanggebiede vertoon nie. Aangesien die ACRU fosfaat leweringsmodel op 'n laat stadium van die navorsing ingesluit is, kan die potensiaal vir die oordrag van grondgebruik parameters in ruimte en tyd nie ondersoek word nie. Die model resultate is by die toepaslike vloei en waterkwaliteit meetstasies geverifiëer Die resultate van die ACRU fosfaat model verifikasie het belowend vertoon vir opvangebiede in die humiede gedeeltes van die Bergrivier bekken, maar het nie so goed vertoon in die semi-droeë deel van die opvangebied nie. AANBEVELINGS VIR VERDERE NAVORSING : Y4 Intensiewe navorsing moet onderneem word ten einde in 'n databasis van grondgebruik parameters/oordrag koëffisiente met betrekking tot fosfaat produksie (en ander niekonserwatiewe bestandelle ) in Suid Afrikaanse opvanggebiede op te bou. Beskikbaarheid van hierdie parameters sal fosfaat modellering vergemaklik. Die HSPF model moet opgestel en gekalibreer word, meer spesifiek ten opsigte van die waterkwaliteit komponent, vir opvanggebiede met uurlikse reënval en reënvalstasies binne of op die opvanggebied grense, om die model se vertoning onder Suid Afrikaanse omstandighede te ondersoek. Gegewe die kompleksiteit van die HSPF algoritmes en tyd benodig om met model vertroud te raak, word dit aanbeveel dat so 'n ondersoek onderneem word met uitsluiting van die ander modelle. Die ruimtelike resolusie van die PEM model is uitermatig grof, en behoort verbeter te word ten einde die gebruiker toe te laat om die totale vloei in die opvanggebied in ooreenstemming met die bydraes van die onderskeie grondgebruik tipes te verdeel en om oplosbare en partikulere fosfaat parameters vir elke grondgebruik tipe te beraam. 'n Studie om die potensiaal vir die ruimtelike en tydsoordrag van die ACRU fosfaat leweringsmodel parameters te ondersoek, moet onderneem word. Die frekwensie van waterkwaliteit monitering in Suid Afrika moet verbeter word, aangesien dit moelik is om, weens 'n gebrek aan deurlopend waargenome data, die vertoning van gekalibreerde waterkwaliteit modelle te ondersoek, meer spesifiek nog fosfaat uitvoer modelle. Reënval inligting versameling in gemete opvanggebied, meer spesifiek die Wes-Kaap opvanggebiede (bv.Vier-en-Twintigriviere, Leeu, Kompanjies en Doringrivier opvanggebiede), behoort verbeter te word. Daar behoort ten minste een reënval stasie binne die opvanggebied grense te wees. Dit sal bydra tot die bereiking van redelike hidrologiese kalibrasie ofverifikasie. Aangesien afloop die dryfveer van die waterkwaliteit komponente is, sal verbeterde hidrologiese kalibrasie/verifikasie lei tot redelike waterkwaliteit kalibrasie/verifikasie.

Page generated in 0.0456 seconds