• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 430
  • 214
  • 166
  • 20
  • 20
  • 20
  • 19
  • 17
  • 8
  • 7
  • 6
  • 5
  • 5
  • 4
  • 2
  • Tagged with
  • 1060
  • 179
  • 164
  • 158
  • 152
  • 120
  • 115
  • 106
  • 95
  • 95
  • 92
  • 83
  • 80
  • 77
  • 71
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
571

Raman and photoluminescence spectroscopy from magnesium doped, as grown, hydrogen implanted and annealed GaN

Maremane, Martin Koena 26 April 2005 (has links)
The presence of the hydrogen complex in Mg-doped GaN poses serious threats for the technological development of blue and ultraviolet light- emitting diodes and lasers. Since hydrogen is a difficult element to work with and it is incorporated into GaN through various mechanisms, a thorough understanding of hydrogen in GaN and other nitrides is essential to meet potential challenges by hydrogen. Most of the work done on the interaction of hydrogen implanted Mg-doped GaN deals mainly with passivation of the dopants and formation of the hydrogen complex with magnesium. However, the role of hydrogen implantation on the optical properties of Mg-doped GaN is not well understood. This study is mainly about optical properties of Mg-doped GaN and the effects of hydrogen on the Mg-doped GaN. Theoretically, group theory is used to determine the total number of symmetry allowed modes in GaN, Raman active modes and possible overtones. Experimentally, Raman and photoluminescence spectroscopy verify the theoretical results. / Dissertation (MSc)--University of Pretoria, 2006. / Physics / unrestricted
572

PHOTOLUMINESCENCE MECHANISM AND APPLICATIONS OF GRAPHENE QUANTUM DOTS

Liu, Yiyang 01 January 2017 (has links)
Graphene quantum dots (GQDs) are small pieces of graphene oxide whose physical dimensions are so confined (a few to a few tens nm) that they have a finite bandgap due to a quantum confinement effect. The finite bandgap of GQDs grants them pronounced absorption bands and a substantial photoluminescence. These optical properties are rarely observed in traditional carbon materials, since most of carbon materials are metallic with a near-zero bandgap and thus have broad absorption spectra with no photoluminescence. The unique optical properties of GQDs, along with GQDs’ inherited advantages from carbon material family (cheap, abundant, non-toxic), make GQDs an attractive material for various applications such as bio-imaging, photoinduced therapy, chemical and metal ion sensors, and photovoltaic devices. Despite of their great potential, several great challenges need to be overcome to enable wider applications. One challenge is the fact that GQDs prepared by typical chemical methods possess significant inhomogeneity, so the precise control of the dimension and surface functionalities is very difficult. Due to the inhomogeneity of GQDs in terms of dimensions and surface functionalities, it is challengeable to establish a precise structure-property relationship. As of today, it is still under debate how surface functional groups of GQDs are responsible for the photoluminescence mechanism, photophysics, and photochemistry. This dissertation is mainly to provide a dedicated study about the photoluminescence mechanism and structure-property relations of GQDs.
573

Propriétés d'émission de luminophores incorporés au sein de cristaux photoniques colloïdaux d'architecture contrôlée

Dechezelles, Jean-François 14 December 2009 (has links)
Au cours de ce travail, nous nous sommes intéressés à l’élaboration de cristaux photoniques colloïdaux d’architecture contrôlée afin d’étudier leur effet sur les spectres de photoluminescence de luminophores. Notre stratégie a été d’incorporer les émetteurs au sein des particules de silice composant les cristaux colloïdaux de façon à les répartir de manière homogène dans l’ensemble des matériaux. Nous présentons la synthèse des précurseurs minéraux et l’élaboration de cristaux colloïdaux d’épaisseur contrôlée à la couche près grâce à la technique de Langmuir-Blodgett. Ces structures sont caractérisées par une bande interdite qui affecte la propagation de la lumière. L’insertion d’une couche de particules de diamètre différent dans un cristal colloïdal induit l’apparition d’une bande passante au sein de la bande interdite. Nous avons ainsi étudié l’influence de la structure de cristaux avec et sans défaut(s) sur les spectres d’émission de différents luminophores. Nous avons observé une inhibition et une exaltation locale de la lumière émise dans les zones spectrales correspondant respectivement aux bandes stoppante et passante. Nous avons également observé des modifications réversibles des spectres de photoluminescence des émetteurs, lorsque ceux-ci sont incorporés au sein de cristaux colloïdaux dont les propriétés optiques peuvent être modulées via l’application d’un stimulus extérieur. / During this work, we were interested in the elaboration of colloidal photonic crystals with a controlled architecture to study their effect on the photoluminescence spectra of emitters. Our strategy was to incorporate the emitters within the silica particles composing the colloidal crystals in order to distribute them homogeneously in the samples. We present the synthesis of the mineral precursors and the elaboration of colloidal crystals whose thickness is controlled at the layer level thanks to the Langmuir-Blodgett technique. These structures are characterized by a band gap which affects the light propagation. Insertion of a monolayer of particles with a different size as a planar defect within a colloidal crystal leads to the formation of a pass band in the band gap. We thus studied the effect of the structure of crystals with or without planar defect(s) on the emission spectra of different emitters. We observed local inhibition and exaltation of the emission in the spectral region corresponding to the stop band and the pass band, respectively. We have also observed reversible modulations of the photoluminescence spectra of the emitters when these ones were incorporated in colloidal crystals whose optical properties can be tuned by an external stimulus.
574

Sistemas magnéticos multicomponentes nanoestruturados hierarquicamente com propriedades biológicas e luminescentes / Multicomponent hierarchically nanostructured magnetic system with biological and luminescents properties

Corbi, Fabiana Cristina Andrade, 1977- 26 August 2018 (has links)
Orientador: Italo Odone Mazali / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-26T13:56:34Z (GMT). No. of bitstreams: 1 Corbi_FabianaCristinaAndrade_D.pdf: 10094232 bytes, checksum: 10529e501237e454e749493b87002f92 (MD5) Previous issue date: 2014 / Resumo: Na busca de um material multifuncional, esta Tese propõe a síntese de uma nanoestrutura hierárquica caroço@casca, sendo o caroço de magnetita e a casca de sílica mesoporosa. Desta combinação surge uma plataforma magneto-porosa que, além das propriedades magnéticas, pode apresentar outras propriedades de acordo com a espécie incorporada na camada de sílica. As partículas do caroço magnético foram obtidas via síntese solvotérmica a partir de cloreto de ferro(III) controlando-se a fase cristalina e a morfologia. A casca de sílica mesoporosa foi obtida via método sol-gel a partir do tetraetilortossilicato (TEOS), sendo o brometo de cetiltrimetilamônio o agente direcionador na formação dos poros. A fase cristalina foi caracterizada por medidas de difração de raios X (XRD), espectroscopia no infravermelho (IR) e Raman, e termogravimetria (TGA/DTA). A morfologia e a nanoestruturação do sistema foram analisadas por microscopia eletrônica de varredura (SEM), enquanto que as propriedades magnéticas foram determinadas por magnetometria de amostra vibrante (VSM), SQUID e hipertermia magnética. Em um primeiro momento, investigou-se a potencialidade do sistema no carregamento e liberação de fármacos utilizando-se um fármaco antibacteriano, a levofloxacina. Para a plataforma carregada com levofloxacina foram realizados ensaios de atividade antibacteriana, os quais demonstraram que o sistema apresenta atividade contra cepas Gram-positivas e Gram-negativas. Ensaios de citotoxicidade mostraram que tanto as partículas de magnetita quanto a plataforma magneto-porosa não são citotóxicas para células saudáveis (NIH/3T3) o que viabiliza sua aplicação biológica. O complexo luminescente diaquatris(tenoiltrifluoroacetonato)európio(III) foi incorporado à plataforma e o monitoramento do tempo de vida da emissão do complexo em função da temperatura revelou que o sistema funciona como uma sonda de temperatura, considerando-se que foi obtida uma variação linear de temperatura na faixa de interesse biológico (entre 36-45 °C). Nas medidas de hipertermia magnética a plataforma magneto-porosa elevou a temperatura da água em 8 °C. Aliando a este resultado à propriedade de sonda de temperatura, teríamos um termômetro que poderia ser utilizado in situ em procedimentos de terapia do câncer por aquecimento. Portanto, o conjunto de resultados obtidos revela que foi possível obter uma plataforma magneto-porosa multifuncional, e que diferentes ensaios podem ser realizados com o sistema visando diversas aplicações / Abstract: Due to the high versatility, the core@shell nanostructures represent a class of materials in the interface between chemistry and different areas, in which they find applications. Among them, the biomedical and pharmaceutical, catalysis and photoluminescence applications can be emphasized. Searching for a multifunctional material, this Thesis proposes the synthesis of a hierarchical nanostructure core@shell, being the core of magnetite and the shell of mesoporous silica. From this arrangement a magneto-porous platform is obtained, in which besides the magnetic property other properties can be achieved according to the species incorporated into the silica layer. The magnetic core was obtained by solvothermal synthesis from iron(III) chloride by controlling the crystalline phase and morphology. The shell of mesoporous silica was obtained by the sol-gel method from tetraethylorthosilicate (TEOS), being the cetyltrimethylammonium bromide the directing agent in the formation of pores. The crystalline phase was characterized by X-ray diffraction (XRD) measurements, infrared (IR) and Raman spectroscopies and thermogravimetry (TGA/DTA). The morphology and the nanostructure of the system were analyzed by scanning electron microscopy (SEM), while the magnetic properties were determined by vibrating magnetometry sample (VSM), SQUID and magnetic hyperthermia. At first, we investigated the potential of the system in the loading and releasing of drugs using the antibiotic levofloxacin. Antibacterial assays have demonstrated that the system is active against Gram-positive and Gram-negative bacterial strains. Cytotoxicity assays showed that the particles of magnetite and the magneto-porous platform are not cytotoxic to healthy cells (NIH/3T3), which enables its biological application. The diaquatris(tenoyltrifluoroacetonate)europium(III) luminescent complex was incorporated into the platform and studies of monitoring lifetime of the emission of the complex as a function of temperature revealed that the system operates as a temperature probe, since a linear variation was observed in the temperature range of biological interest (between 36-45 °C). In magnetic hyperthermia measurements, in the presence of the magneto-porous platform the water temperature was elevated by 8 ° C. Combining this result to the property of temperature probe, we could have a thermometer that may possibly be used in situ in cancer therapy procedures by heating. Therefore, the set of results show that it is possible to obtain a magneto-porous multifunctional platform and different assays may be performed with the system aiming for diverse applications / Doutorado / Quimica Inorganica / Doutora em Ciências
575

Propriedades ópticas de nanofios de InP / Optical properties of InP nanowires

Gadret, Everton Geiger 14 August 2018 (has links)
Orientador: Fernando Iikawa / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-14T10:28:22Z (GMT). No. of bitstreams: 1 Gadret_EvertonGeiger_M.pdf: 38585296 bytes, checksum: 3da598e65313d603b738c440498d2858 (MD5) Previous issue date: 2009 / Resumo: Neste trabalho foram estudadas as propriedades ópticas de nanofios de InP crescidos pelo método Vapor-Liquid-Solid (VLS) no sistema Chemical Beam Epitaxy (CBE) através da técnica de micro-fotoluminescência variando parâmetros de medida, tais como potência de excitação, polarização do sinal emitido e temperatura da amostra. Devido à formação de politipismo (InP nas fases cúbica, do tipo blenda de zinco (ZB), e hexagonal, do tipo wurtzita (WZ)) esta estrutura se torna interessante sob o ponto de vista das propriedades ópticas, devido às interfaces InP¿ZB/InP¿WZ do tipo II. Notamos que há poucas informações na literatura a respeito da estrutura eletrônica do InP na fase wurtzita porque esta fase só foi relatada em nanofios. Concentramos, assim, nossa investigação sobre a estrutura eletrônica de nanofios que contenham ambas as fases. Identificamos emissões ópticas dos poços quânticos tipo II em nanofios de InP assim como emissões envolvendo impurezas aceitadoras rasas e recombinação no gap do InP¿WZ. A emissão óptica dos poços quânticos tipo II é dominante a baixas temperaturas, abaixo de 100K, e está entre 1,44 e 1,46eV a 10K. O comportamento desta emissão como função da temperatura, potência de excitação e polarização da luz está de acordo com a estrutura proposta e é confirmada por imagem de microscopia eletrônica de transmissão (TEM). A emissão óptica da impureza rasa está ~ 43meV abaixo da emissão do poço quântico, valor bem próximo do carbono aceitador no InP na fase cúbica. A emissão óptica associada ao InP¿WZ em 1,49eV (10K) foi observada a temperaturas de 10K a 300K, em concordância com resultados relatados na literatura. Observamos também transição óptica relacionada a portadores localizados nas barreiras dos poços quânticos a temperaturas mais altas, acima de 150K. / Abstract: Optical properties of InP nanowires grown by Vapor-Liquid-Solid (VLS) method in a Chemical Beam Epitaxy system were investigated by using micro-photoluminescence spectroscopy varying experimental parameters such as excitation power, emitted signal polarization and sample temperature. Due to polytypism (InP in cubic, zincblende (ZB), and hexagonal, wurtzite (WZ) phases), this structure becomes interesting by the point of view of optical properties, due to type¿II InP¿ZB/InP¿WZ interfaces. We have noticed that there are few informations in the literature about electronic structures of InP in wurtzite phase, because this phase has been only reported in nanowires. We focused, thus, our investigation about electronic structure of nanowires having both structural phases. We identified optical emissions from type II quantum wells in InP nanowires as well as emissions involving shallow acceptor impurities and InP¿WZ gap recombination. The type II quantum well optical emission is dominant at low temperatures, below 100K, which is in 1,44 ¿ 1,46eV range at 10K. This emission behavior as function of temperature, excitation power and light polarization is in agreement with the proposed structure and is supported by transmission electronic microscopy (TEM) imagem. The shallow impurity emission is ~ 43meV below the quantum well emission, a value close to the carbon acceptor in InP in cubic phase. The optical emission associated to the InP¿WZ at 1,49eV (10K) was observed from temperatures of 10K to 300K, in agreement with results reported in literature. We also observed an additional optical transition related to the carrier localized at the barriers of the quantum wells at at high temperatures, above 150K. / Mestrado / Física da Matéria Condensada / Mestre em Física
576

Síntese e caracterização do composto SrTi1-XNbXO3 nanoestruturado / Synthesis and Characterization of SrTi1-XNbXO3 Compound Nanostructured

Alessandro Fernandes 11 June 2012 (has links)
Amostras nanoestrutradas do sistema \'SR\'TI IND.1-x\'NB IND.x\'O IND.3\' na forma de pó contendo até 10 mol % de nióbio foram preparadas através do método dos precursores poliméricos. As propriedades térmicas, estruturais e óticas destas amostras foram caracterizadas através de diferentes técnicas. Os resultados mostram que no limite de concentração de nióbio que foi incorporado a rede da matriz \'SR\'TI\'O IND.3\', ocorreu a formação da solução sólida \'SR\'TI IND.1-x\'NB IND.x\'O IND.3\' e que o aumento da quantidade de nióbio leva a uma maior aglomeração das partículas bem como a um aumento na temperatura de cristalização das amostras. Em bom acordo com dados da literatura, uma intensidade fotoluminescente significativa foi somente observada em amostras amorfas ou parcialmente cristalinas. Amostras na forma de filmes finos foram obtidas através da técnica de evaporação por feixe de elétrons. Os dados de difração de raios-X (DRX) mostram que em certas composições, além da fase \'SR\'TI\'O IND.3\', observou-se a presença da fase \'SR\'CO IND.3\'. Através das técnicas de DRX e Microscopia de força atômica (AFM) foi possível observar que, como no caso das amostras na forma de pó, o aumento da concentração de nióbio inibe o processo de cristalização da amostra. Medidas da resistência elétrica mostraram que todas as amostras, independente da concentração de nióbio, apresentam valores elevador de resistência, da ordem de \'10 POT.15\' \'ômega\' . Este valor, muito acima do esperado e do observado na literatura, inviabilizou a medidas de sensibilidade dos filmes a diferentes tipos de gases. / Nanostructured \'SR\'TI IND.1-x\'NB IND.x\'O IND.3\' samples in a powder form containing up to 10 mol% of niobium have been prepared by the polymeric precursor method. The thermal, structural and optical properties of these samples were characterized by different techniques. The results show that in the limit of concentration of niobium added to the samples, the dopant was incorporated into the \'SR\'TI\'O IND.3\' matrix lattice forming a \'SR\'TI IND.1-x\'NB IND.x\'O IND.3\' solid solution. The increasing on the amount of niobium leads to an increased agglomeration of the particles as well as an increase in the crystallization temperature of the samples. In good agreement with the literature data, a significant photoluminescence intensity was only observed in amorphous or partially crystalline samples. Samples in the form of thin films were obtained using the electron beam evaporation technique. X-ray diffraction (XRD) show that in certain compositions, beyond the \'SR\'TI\'O IND.3\' phase, it was also observed the presence of phase \'SR\'CO IND.3\' phase. Through the XRD and Atomic Force Microscope (AFM) results, it has been observed that, as in the case of the samples in powder form, the concentration of niobium inhibits the crystallization process of the sample. Electrical resistance measurements showed that all samples, independent of the concentration of niobium, present higher values of resistance of the order of \'10 POT.15\' \'ômega\' . This value is much higher than expected and reported in the literature and does not allowed to measure the sensibility of thin films to different species of gases.
577

Vertical Carrier Transport Properties and Device Application of InAs/InAs1-xSbx Type-II Superlattice and a Water-Soluble Lift-Off Technology

January 2020 (has links)
abstract: The first part of this dissertation reports the study of the vertical carrier transport and device application in InAs/InAs1-xSbx strain-balanced type-II superlattice. It is known that the low hole mobility in the InAs/InAs1-xSbx superlattice is considered as the main reason for the low internal quantum efficiency of its mid-wave and long-wave infrared photodetectors, compared with that of its HgCdTe counterparts. Optical measurements using time-resolved photoluminescence and steady-state photoluminescence spectroscopy are implemented to extract the diffusion coefficients and mobilities of holes in the superlattices at various temperatures from 12 K to 210 K. The sample structure consists of a mid-wave infrared superlattice absorber region grown atop a long-wave infrared superlattice probe region. An ambipolar diffusion model is adopted to extract the hole mobility. The results show that the hole mobility first increases from 0.2 cm2/Vs at 12 K and then levels off at ~50 cm2/Vs as the temperature exceeds ~60 K. An InAs/InAs1-xSbx type-II superlattice nBn long-wavelength barrier infrared photodetector has also been demonstrated with a measured dark current density of 9.5×10-4 A/cm2 and a maximum resistance-area product of 563 Ω-cm2 at 77 K under a bias of -0.5 V. The Arrhenius plot of the dark current density reveals a possible high-operating-temperature of 110 K.The second part of the dissertation reports a lift-off technology using a water-soluble sacrificial MgTe layer grown on InSb. This technique enables the seamless integration of materials with lattice constants near 6.5 Å, such as InSb, CdTe, PbTe, HgTe and Sn. Coherently strained MgTe with a lattice constant close to 6.5 Å acts as a sacrificial layer which reacts with water and releases the film above it. Freestanding CdTe/MgxCd1-xTe double-heterostructures resulting from the lift-off process show increased photoluminescence intensity due to enhanced extraction efficiency and photon-recycling effect. The lifted-off thin films show smooth and flat surfaces with 6.7 Å root-mean-square roughness revealed by atomic-force microscopy profiles. The increased photoluminescence intensity also confirms that the CdTe/MgxCd1-xTe double-heterostructures maintain the high optical quality after epitaxial lift-off. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2020
578

Bandgap Engineering of 1300 nm Quantum Dots/Quantum Well Nanostructures Based Devices

Alhashim, Hala H. 29 May 2016 (has links)
The main objectives of this thesis are to develop viable process and/or device technologies for bandgap tuning of 1300-nm InGaAs/GaAs quantum-dot (QD) laser structures, and broad linewidth 1300-nm InGaAsP/InP quantum well (QW) superluminescent diode structures. The high performance bandgap-engineered QD laser structures were achieved by employing quantum-dot intermixing (QDI) based on impurity free vacancy diffusion (IFVD) technique for eventual seamless active-passive integration, and bandgap-tuned lasers. QDI using various dielectric-capping materials, such as HfO2, SrTiO3, TiO2, Al2O3 and ZnO, etc, were experimented in which the resultant emission wavelength can be blueshifted to ∼ 1100 nm ─ 1200 nm range depending on process conditions. The significant results extracted from the PL characterization were used to perform an extensive laser characterization. The InAs/GaAs quantum-dot lasers with QDs transition energies were blueshifted by ~185 nm, and lasing around ~1070 – 1190 nm was achieved. Furthermore, from the spectral analysis, a simultaneous five-state lasing in the InAs/InGaAs intermixed QD laser was experimentally demonstrated for the first time in the very important wavelength range from 1030 to 1125 nm. The QDI methodology enabled the facile formation of a plethora of devices with various emission wavelengths suitable for a wide range of applications in the infrared. In addition, the wavelength range achieved is also applicable for coherent light generation in the green – yellow – orange visible wavelength band via frequency doubling, which is a cost-effective way of producing compact devices for pico-projectors, semiconductor laser based solid state lighting, etc. [1, 2] In QW-based superluminescent diode, the problem statement lies on achieving a flat-top and ultra-wide emission bandwidth. The approach was to design an inhomogeneous active region with a comparable simultaneous emission from different transition states in the QW stacks, in conjunction with anti-reflection coating and tilted ridge-waveguide device configuration. In this regard, we achieved 125 nm linewidth from InGaAsP/InP multiple quantum well (MQW) superluminescent diode with a total output power in excess of 70 mW with an average power spectral density of 0.56 mW/nm, and a spectral ripple of ≤1.2 ± 0.5 dB. The high power and broadband SLD with flat-top emission spectrum is a desirable as optical source for noninvasive biomedical imaging techniques employing low coherence interferometry, for instance, optical coherence tomography (OCT).
579

Synthetic and Analytical Advancements for Zinc Sulfide Containing Quantum Dots

Bennett, Ellie January 2021 (has links)
Colloidal semiconductor nanocrystals exist at the interface of inorganic chemistry, solid-state physics, and materials applications. The highly tunable and size-dependent properties position them as prime candidates for advancing a range of technologies, including improving efficiency in solid-state lighting devices and high color-purity displays. To be successful in these endeavors, quantum dots require excellent optical properties, such as bright emission. Optimization of a zinc sulfide coating is widely regarded as a key requirement to achieving these necessary performances. Even so, zinc sulfide nanocrystal chemistry remains underdeveloped. This dissertation addresses these shortcomings and provides comprehensive synthetic and analytical tools to harness the potential of zinc sulfide containing nanocrystals. Chapter 1 introduces semiconductor nanocrystals, also referred to as quantum dots, and begins with a description of the size-dependent optical properties. Factors that lead to poorer emission properties, such as undercoordinated surface atoms are discussed. Methods to alleviate these issues, including controlling the surface coordination environment, and design and growth of heterostructures are introduced. Lastly, synthetic approaches and nanocrystal formation mechanisms are described. Chapter 2 covers the synthesis and size-dependent optical properties of zinc sulfide nanocrystals. We find that commonly used solvents in nanocrystal reactions lead to the formation of polymeric byproducts that are challenging to purify away, and thus design the zinc sulfide synthesis such that these can be avoided. Leveraging a library of rate tunable thioureas the final nanocrystal size can be carefully controlled. The reactions follow a thermally activated growth process, with larger zinc sulfide nanocrystals accessible at higher temperatures. Most relevantly for later chapters, the surface coordination environment is highly important; bulkier zinc carboxylate ligands that cannot achieve high surface coverages result in higher growth rates. These results represent the most tunable size controls reported for zinc sulfide nanocrystals. Chapter 3 uses high resolution electron microscopy techniques to study the shape (morphology) of zinc sulfide nanocrystals, synthesized using the methods developed in the second chapter. Irregular, anisotropic growth is commonly seen in zinc sulfide shell growth and is attributed to core/shell interfacial strain. We find that this growth also occurs in the binary zinc sulfide system. Synthetic conditions favoring fast growth result in unselective, isotropic growth of spherical zinc sulfide. Conversely, slower conditions can lead to irregular, anisotropic shapes. The shape is also highly dependent on the coordination environment during growth. Small, sterically unencumbered ligands stabilize specific crystal facets, leading to selective, anisotropic growth. These findings are translated to shelling procedures in Chapter 6, and further emphasize the need to understand and characterize zinc sulfide surfaces. Chapter 4 establishes an empirical relationship between the band gap energy of a zinc sulfide nanocrystal and its diameter. The literature reports a wide spread of diameters for a given energy, meaning zinc sulfide sizes could not previously be easily calculated from their optical properties. Leveraging the size- and shape-control discussed in Chapters 2 and 3, we assess the utility of a range of nanocrystal characterization techniques for accurately sizing quantum confined zinc sulfide. Using electron microscopy and X-ray scattering methods we present an updated energy-size (“sizing curve”) relationship for zinc sulfide. These results represent the most comprehensive zinc sulfide nanocrystal sizing study and enable the rapid size characterization of zinc sulfide from its absorbance spectrum. This provided crucial insight into the reaction progressions described in Chapter 2. Chapter 5 covers our endeavors to characterize and quantify the zinc sulfide nanocrystal surface chemistry, which we believe is imperative to improving shelling procedures and optical properties in zinc sulfide heterostructures. With no published extinction coefficient, the surface coverages of zinc sulfide cannot be obtained. Using the size- and shape-controlled syntheses, in conjunction with optical absorption spectroscopy and elemental analysis, we calculate extinction coefficients for a range of zinc sulfide nanocrystal sizes. The size-dependence is well described by a power law, and this represents the first reported extinction coefficient for zinc sulfide. Using this, we report the first surface coverages of zinc sulfide nanocrystals and assess the binding affinity of zinc carboxylates to the surface by monitoring their displacement by L-type ligands. Chapter 6 widens the zinc sulfide synthetic methods developed in earlier chapters to deposit zinc sulfide shells onto blue-emitting II-VI and red-emitting III-V nanocrystals. The reaction shows versatility, shelling nanocrystals over a wide range of temperatures. We demonstrate morphology control over the zinc shell by altering the deposition kinetics and coordination environment. Usually, thick, homogenous shells are desired by the nanocrystal field. However, by correlating the shell morphology to its optical properties, we see that the anisotropic shells generally achieve higher photoluminescence quantum yields (PLQYs). We also report progress towards cadmium-free quantum dot downconverters for use in solid-state lighting applications. Among other things, the photoluminescence intensity evolution throughout the shelling procedure is highly dependent on the initial surface termination of the nanocrystal core. Application of surface treatments allows brighter zinc sulfide shelled III-V heterostructures to be accessed.
580

Depozice a charakterizace GaN nanostruktur s kovovým jádrem / Deposition and characterization of GaN nanocrystals with a metal core

Čalkovský, Vojtěch January 2018 (has links)
Tato diplomova prace se zabyva prpravou a charakterizac GaN nanokrystalu s kovovym jadrem. V teoreticke casti teto prace je predstaven material GaN se svymi vlastnos- tmi a aplikacemi. Dale jsou uvedeny substraty pro rust a jednotlive mechanismy rustu GaN nanokrystalu. V dalsm jsou popsany kovove nanocastice a jejich opticke vlastnosti umoznujc zesilovan fotoluminiscence na zaklade interakce plasmonu a GaN. Experi- mentaln cast se zabyva prpravou GaN nanokrystalu s Ag jadrem ve ctyrech krocch. Prvne jsou Ag nanocastice naneseny na substrat Si(111). Nasledne se nechaj zoxidovat. Tretm krokem je depozice Ga a poslednm je nitridace. Jednotlive kroky byly opti- malizovany a analyzovany ruznymi metodami, jako je XPS, SEM, fotoluminiscence a Ramanova spektroskopie.

Page generated in 0.0637 seconds