• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 22
  • 11
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 94
  • 51
  • 14
  • 12
  • 12
  • 12
  • 12
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Potencial dos biflavonóides de Araucaria angustifolia (Bert.) O. Kuntze como antioxidantes e fotoprotetores / Potential of flavonoids Araucaria angustifolia (Sert.) O. Kuntze as antioxidants and sunscreens

Lydia Fumiko Yamaguchi 26 November 2004 (has links)
A Araucaria angustifolia é uma conífera endêmica das regiões sul e sudeste do Brasil sendo considerada uma espécie em extinção devido ao extenso extrativismo madeireiro. Atualmente, existem inúmeros projetos visando o reflorestamento e o uso sustentável deste pinheiro. Em vista destes pontos, o estudo das propriedades dos componentes das folhas com o intuito da utilização destes com fins comerciais tornou-se de extrema importância. As suas folhas foram submetidas à extração com solventes e foram identificados seis biflavonóides majoritários, dentre estes a amentoflavona e a ginkgetina, que são apontados como agentes contra inflamações e artrites. A fração rica de biflavonóides (BFF) extraída da araucaria foi testada frente a sua atividade em proteger contra danos em biomoléculas provocadas por espécies reativas de oxigênio, capacidade em quelar metais e proteção contra raios UV. A capacidade do BFF em proteger contra danos provocados por espécies reativas de oxigênio foi comparado com compostos conhecidamente antioxidantes, como o α-tocoferol, Trolox®, quercetina, rutina e com padrões de biflavonóides, a amentoflavona e ginkgetina. O BFF demonstrou que possui uma constante de supressão do 1O2 (50 x 106 M-1s-1), superior ao da quercetina (9 x 106 M-1s-1) e foi o mais eficiente na proteção contra quebras de simples fita em DNA plasmidial, provocado por esta espécie reativa. Ainda em relação à proteção de DNA plasmidial o BFF foi capaz de proteger também contra estes danos provocados através da reação de Fenton, apesar de não demonstrar a mesma eficiência da quercetina que mostrou ser um potente protetor destes danos. O BFF protegeu contra lipoperoxidação em lipossomos de fosfatidilcolina induzida por raios UV e reação de Fenton. Em análises realizadas com espectrometria de massas foi observada a formação de complexos destes biflavonóides com íons metálicos como ferro, cobre e alumínio que possuem um papel importante na formação de radicais livres. Em relação à capacidade fotoprotetora do BFF, este inibiu a formação de dímeros de pirimidina que são apontados como causadores de câncer de pele induzidos, principalmente por radiação UV-B. Esta ação protetora foi superior àquela conferida ao p-metoxicinamato de octila, um conhecido fotoprotetor. Com o intuito de permitir a solubilização do BFF em soluções aquosas e assim, avaliar a ação do BFF em células, incorporou-se o BFF em ciclodextrina. Essa inclusão favoreceu a incorporação de BFF em células CV1-P na concentração aproximada de 0,4 µg/ml após 24 horas de incubação. Essa concentração incorporada não demonstrou ser tóxica para as células no teste com MTT. Assim, o BFF tem despertado grande interesse em relação ao seu potencial na utilização nas mais variadas áreas como cosmética, alimentos e fitoterápicos. / Araucaria angustifolia is an endemic conifer in southern and southeastern Brazil endangered due the extensive loggings. Nowadays, there are several projects aiming the recovering of forest and the sustainable use of their products. Its needles contain six major amentoflavone-type biflavonoids, including amentoflavone, ginkgetin and tetra-O-methylamentoflavone, all reported to possess a variety of biological activities such as anti-inflammatory and antiarthritic activities. The organic fraction rich in biflavonoids (BFF) extracted from Araucaria was evaluated regarding its activity to protect against damage to biomolecules promoted by reactive oxygen species, its capacity to chelate ion metals and protection it affords against UV radiation. The ability of the BFF prevent oxidative damages was compared to antioxidants compounds, such as, α-tocopherol, Trolox®, quercetin, rutin and with standards of biflavonoids amentoflavone and ginkgetin. The BFF showed a higher 1O2 quenching rate (50 x 106 M-1s-1) than individual quercetin (9 x 106 M-1s-1). Accordingly, BFF was shown to strongly inhibit plasmid DNA single strand break (ssb) induced by 1O2 generated by NDPO2. On the other hand, BFF did not protect plasmid DNA against ssb triggered by the Fenton reaction as effectively as quercetin and rutin. BFF, quercetin and rutin were able to protect liposomes against peroxidative degradation caused by UV-irradiation. Since there is considerable evidence relating oxygen species with UV phospholipid degradation, the protective effect of quercetin and rutin is likely to result from their well-known scavenging activity against hydroxyl and peroxyl radicals and superoxide anion radicals. Using electrospray ionization mass spectrometry, metal (Fe3+, Cu2+ and Al3+) biflavonoids complexes were also detected and characterized. The sunlight UV region is believed to be largely responsible for the greatest damage to the skin including indution of the pirimidine dimers formation suggested to be implicated in skin cancer. BFF was able to diminish the formation of this photoproduct more efficiently tham octyl methoxycinnamate. Solubilization of BFF in aqueous solutions was performed using cyclodextrin, which allowed the incorporation of 0,4 g/ml of biflavonoids in CV1-P cells after 24 hours. In this conditions the BFF was not cytotoxic to CV1-P evaluated by the MTT assay.Altogether, these properties point BFF as an excellent candidate for successful employment as antioxidant compound in several systems.
92

The Ecological Function of Fish Mucus

Maxi Eckes Unknown Date (has links)
Ultraviolet light is damaging but fish have evolved protective mechanisms, which allows them to live in shallow water reefs, high in UV radiation. This thesis details my investigation into the physiological ecology of solar ultraviolet (UV) absorbing compounds, known as mycosporine-like amino acids found in the external epithelial mucus, and examines the supporting role potentially played by a UV-induced DNA repair mechanism in coral reef fish of the Indo-Pacific. Using reverse phase chromatography and UV spectrophotometry, I examined whether the distribution of MAA compounds across different areas of the body is correlated with differential UV exposure. Comparisons were made between the MAA content and the absorbance spectra of mucus from the dorsal, ventral, caudal and head body surface areas in five species of Scaridae (Chlorurus sordidus, Scarus schlegeli, S. niger, S. psittacus and S. globiceps) from Ningaloo Reef, Coral Bay, Western Australia. All fish analysed had at least five MAAs present, and results showed that fish had increased UV absorbance in mucus over the dorsal area, which receives the brunt of UV radiation. Little UV protection was found in mucus from the ventral area, which receives the lower level of UV radiation mostly via reflection of the sand and reef surfaces. Furthermore, UV absorbance per mg dry mucus versus standard fish length showed that there is a positive relationship in C. sordidus with increasing size. I examined whether there is a difference in the quantity of UV screening compounds found in the mucus of fish along a longitudinal geographical gradient from inshore reefs (Lizard Island, Great Barrier Reef) to the outer edge reefs to oceanic reefs (Osprey Reef). MAA absorbance increased with longitudinal distance from the mainland landmass of Australia to more oligotrophic outer reefs, where UV attenuation is reduced and the ocean is more transparent to UV wavelength. I determined that fish living on inshore, more turbid reefs where UV attenuation in shallow waters is high have lower levels of MAA protection than fish from clear oceanic reefs. Furthermore, there seems to be a direct relationship between light attenuation and exposure with the quantity of protective sunscreening found in the mucus of reef fish. It is know that UV irradiation decreases with water depth and that mucus from fish with deep habitats absorbs less UV than that of fish from shallow habitats. It is unknown however, whether this UV protection is variable within the same individuals and if so, how fast changes 11 occur. To test this, I relocated 9 ambon damselfish from a deep reef (18 m) to a shallow reef (1.5 m) to expose fish to increased levels of UV and relocated another 7 fish from a shallow to a deep reef to expose fish to decreased levels of UV. One week after relocation, all fish were returned to their original reef site to determine whether MAA levels would return to their initial levels. Fish relocated to a shallower depth were recovered and had a 60% (SD+/-2%) increase in mucus UV absorbance. Conversely, the fish relocated to a deeper depth were recovered and had a 41% (SD+/-1%) decrease mucus UV absorbance. No difference was found between UV absorbance of relocated and original fish at both depth. Six days after fish were returned to their original reef, mucus UV absorbance levels had returned to 67% +/- 4% of the original level. These results show that mucus UV absorbance is variable in individual ambon damselfish and that the sunscreen protection typical for a certain depth is reached in relocated fish within just a few days of relocation. The rate of MAA loss is higher than the accumulation of MAAs suggesting that diet is not the sole determining factor involved in the sequestration of MAAs to mucus. The cleaner fish Labroides dimidiatus performs a mutualistic service by removing ectoparasites such as gnathiid isopods as well other dead infected tissue from its clients. Cleaner fish however are also known to feed on client mucus. The benefits of eating mucus until recently were unclear. In this study, we analysed the mucus of several cleaner fish clients to determine whether mucus feeding has a nutritional advantage over gnathiids and whether cleaner fish obtain their own MAA protection through this dietary mucus ingestion. Results show that host fish that are infected with gnathiids of poor nutritional value, in contrast to those that harbour gnathiids with higher nutritional value, continuously exude mucus that has both high nutritional value and high MAA content. These findings support the conclusion that in a competitive market for cleaners some host fish are forced to offer more than parasites to cleaners. Ultraviolet light that is not filtered by UV absorbing compounds such as MAA may still lead to DNA damage such as the formation of cyclobutane pyrimidine dimers (CPDs) or 6-4 photoproducts (6-4 PPs). However, coral reef fish have alternative mechanisms to overcome UV induced damage via the photolyase DNA repair mechanisms. We experimentally demonstrated for the first time that a coral reef fish species, the moon wrasse Thalassoma lunare has the ability to repair DNA damage via photoreactivation. Fish both with and without MAA protection were irradiated with UVB wavelength to induce DNA lesions. Half of the experimental fish were then exposed to photoreactivating wavelength to induce DNA repair 12 while the other fish were blocked from the repair mechanisms. Fish which had undergone DNA repair had the lowest number of lesions regardless of mucus MAA protection. When fish were blocked from photoreactivation wavelengths MAA sunscreens clearly served a photoprotective role. The amount of damage was greatest in fish which both lacked MAAs and which were also blocked from photoreactivating wavelengths. Thus for the overall UV protection of fish both the MAA sunscreens as well as the DNA repair system play a significant role in counteracting UV damage. Ultraviolet protection by MAA sunscreens is ubiquitous in marine fish. To date the same 5 MAA compounds (palythine (λmax 320 nm), asterina (λmax 330 nm), palythinol (λmax 332 nm), usujirene (λmax 357 nm) and palythene (λmax 360nm) have been identified in the mucus of several different species of reef fish from Australia. Here we report the first evidence of the presence of additional UV absorbing compounds found in the mucus of fish from Indonesia. Using UV spectroscopy the mucus of four species of fish was compared between both geographical regions. The presence of an additional peak between 294-296 nm wavelengths suggests the presence of gadusol and/or deoxygadusol, which are photoprotective compounds, thought to be the precursors of MAAs. Thus, UV protecting compounds in the mucus of fish may not be as conserved between different regions as previously assumed. Our knowledge concerning the effect of UV radiation has advanced considerably in the past decade and my research findings contribute to the better understanding of protective mechanisms of marine fish. The correlations I have found between UV attenuation/exposure, depth, and longitude of sampled individuals lead me to believe that mucus UV absorbing MAA compounds are a highly efficient adaptive defence.
93

Modelling and elucidation of photoreaction kinetics : applications and actinometry using nifedipine, nisoldipine, montelukast, fluvoxamine and riboflavin

Maafi, Wassila January 2016 (has links)
The kinetics of drugs photodegradation have traditionally been treated using thermal kinetic analysis methods consisting most commonly in zero and first order kinetics. These treatment strategies were shown to lack specificity and present a number of limitations when applied to photoreactions kinetics. Nevertheless, these methods have widely been used due to a lack of integrated rate-laws for the majority of photoreactions types, in turn, due to the presence of a variable time-dependent factor in most photoreactions rate-laws that prevents their mathematical integration. To address these limitations, a new methodology for the development and validation of semi-empirical integrated rate-laws that faithfully describe photoreactions kinetics and photoreactions simulated cases generated by numerical integration methods (NIMs), is hereby presented. Using this methodology, a new kinetic order was ascribed to photoreactions namely the Φ-order kinetics. Semi-empirical integrated rate-laws were, thus, developed for three photoreaction types namely, unimolecular, AB(1Φ), photoreversible ,AB(2Φ), and consecutive, AB4(4Φ), photoreactions. The proposed models were further tested experimentally on drugs following these photodegradation mechanisms using; nifedipine and nisoldipine for unimolecular photoreactions; montelukast and fluvoxamine for photoreversible reactions; and riboflavin for consecutive photoreactions. The developed models not only accurately described the photoreaction kinetics of these drugs but also allowed the determination of all the kinetic parameters that characterise them. Furthermore, the above studied drugs were shown to act as precise and simple actinometers when analytically treated with the Φ-order kinetic methods, hereby presented. A universal standard method for the precise and worldwide reproducible study of drugs stability and compounds photoreactions, based on monochromatic irradiation and Φ-kinetics data analysis, is also detailed and adopted throughout the thesis. Finally, two new kinetic parameters namely, the pseudo-rate-constant and pseudo-initial velocity have been identified and shown to be more reliable and accurate in the description and universal comparison of photoreactions kinetics.
94

Stable Isotopes and Metabolite Profiles as Physiological Markers for the Drought Stress Sensitivity in Douglas-Fir Provenances (Pseudotsuga menziesii (MIRB.) FRANCO)

Jansen, Kirstin 17 December 2018 (has links)
In Mitteleuropa werden zukünftig häufigere Trocken- und Hitzeperioden mit wirtschaftlichen Einbußen in der Waldwirtschaft erwartet. Die Douglasie (Pseudotsuga menziesii (Mirb.) Franco) wird als Alternative für die wirtschaftlich bedeutsame, jedoch trockenheitsempfindliche Fichte diskutiert (Picea abies (L.) H.Karst.). Zwei Unterarten, die Küsten- (FDC) und die Inlandsdouglasie (FDI), sind im ausgedehnten natürlichen Verbreitungsgebiet in Nordamerika beheimatet, welches ein großes Potenzial für die Auswahl produktiver und trockenresistenter Herkünfte bietet. Unser Ziel war, die Trockenreaktion verschiedener Douglasienherkünfte unter Verknüpfung morphologischer und physiologischer Parameter und die der Trockenheitsresistenz bzw. -empfindlichkeit zugrundeliegenden Mechanismen zu erforschen. Ein Herkunftsversuch in Südwestdeutschland ermöglichte die Untersuchung 50-jähriger Douglasien verschiedener Herkünfte entlang eines Höhengradienten. Unter kontrollierten Bedingungen simulierten wir die Effekte einer Hitzewelle auf Jungbäume zweier Provenienzen. Wir analysierten die Kohlenstoff- und Sauerstoff-Stabilisotopenzusammensetzung, den Gaswechsel der Blätter, Veränderungen im Stoffwechsel und das Baumwachstum. Unsere Ergebnisse zeigen bei FDC aus humiden Regionen hohe Wachstumseinbußen unter Trockenheit und moderat bis stark verringerte stomatäre Leitfähigkeit, unterstützt durch Photoprotektion. FDC aus Regionen mit starker Sommertrockenheit reagierten kaum mit Stomataschluss und Wachstumseinbußen auf Trockenheit, jedoch mit starker Osmoregulation und Monoterpen-Emissionen, welche zur Trockenresistenz beitragen könnten. FDI aus einer ariden Region zeigten hohe An, geringes Wachstum und stark antioxidative und photoprotektive Mechanismen. Die Herkünfte unterscheiden sich stark in ihrer Trockenreaktion und ihren Schutzmechanismen. Der Anbau trockenresistenter Herkünfte wird an Standorten von Vorteil sein, für die eine Häufung von ariden Sommerperioden vorhergesagt wird. / In Central Europe, more frequent periods of dry and hot weather are expected in the future with economic losses in the forestry sector. Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) is discussed as a timber species alternative to the economically important but drought-sensitive spruce (Picea abies (L.) H. Karst.). Two subspecies, the coastal (FDC) and the interior Douglas-fir (FDI), are native to an extensive natural range in North America, offering a great potential for the selection of productive and drought tolerant provenances. Our goal was to investigate the drought response of different Douglas-fir provenances on the morphological and physiological level, as well as the mechanisms underlying drought resistance or susceptibility. A provenance trial in southwestern Germany established in 1958 allowed the study of 50-year-old Douglas-fir trees of diverse provenances along a height gradient. Under controlled conditions, we simulated the effects of a heat wave on young trees of two provenances. We analyzed carbon and oxygen stable isotopic composition, leaf gas exchange, changes in metabolism and tree growth. FDC from humid regions responded to drought with strong growth decline and a medium to strong stomatal closure, supported by enhanced instantaneous photoprotection. FDC from regions with very dry summer conditions showed a small growth decline and anisohydric regulation of stomatal conductance under drought, supported by high levels of osmotic adjustment. High monoterpene emissions might contribute to the drought resistance. FDI from an arid region showed high assimilation rates, low growth potential and a high antioxidant, photoprotective, drought and heat protective potential. The provenances differ greatly in their dry reaction and their protective mechanisms. The cultivation of drought resistant crops will be beneficial at sites predicted to accumulate arid summer periods.

Page generated in 0.0717 seconds