Spelling suggestions: "subject:"piézoélectriques""
11 |
Homogénéisation et simulation numérique de structures piézoélectriques perforées et laminéesMECHKOUR, Houari 19 November 2004 (has links) (PDF)
Cette thèse est consacrée à l'étude asymptotique et l'homogénéisation de l'équation de la piézoélectricité, dans le cas de coefficients rapidement oscillants et des structures périodiquement perforées. L'étude consiste à développer deux approches; théorique et numérique. <br /><br />Dans l'approche théorique, on établit le problème homogénéisé et les tenseurs effectifs, ainsi que leurs propriétés pour une structure tridimensionnelle perforée, quand la période tend vers zéro. En se basant sur la même méthodologie, on traite le cas d'une plaque mince et d'une coque de Koiter périodiques, lorsque l'épaisseur et la période tendent vers zéro.<br /><br />Le deuxième volet comporte la simulation numérique du comportement macroscopique de quelques structures piézoélectriques particulières, en l'occurrence : le piézocomposite perforé et le piézocomposite laminé. Cette simulation trouve un intérêt pour de nouvelles applications dans ce type de structures, notamment l'hydrophonie, l'imagerie biomédicale et le contrôle des vibrations (filtrage spatial).
|
12 |
Céramiques piézoélectriques : le titanate de baryum dopé pour transducteurs acoustiques / Piezoelectric ceramics : doped barium titanate for acoustic transducer applicationsUl, Rémy 27 September 2018 (has links)
Des céramiques piézoélectriques sans-plomb de composition (CazBa1-z)(Ti1-x-wCoxNbw)O3- ont étésynthétisées e Li2O ou de Li2CO3des matériaux denses à une température de 1100 °C au lieu des 1300 °C usuellement requis pour fritter leBaTiO3.fonctionnelles : le coefficient piézoélectrique d33 et le coefficient de couplage kp atteignent respectivement255 pC/N et 43,5%. De plus, un recuit sous O2 des échantillons dopés au cobalt mène à un d33 = 265 pC/Net à un kp = 42,8%.En fonction de la nature des dopants, un caractère « doux » ou « dur » a été observé dans les céramiquespiézoélectriques. Le dopage par les ions Co/Li mène à un comportement « dur » et provoque desphénomènes de vieillissement. On observe ainsi pour un BT:Co,Li vieilli, un cycle P = f(E) àdouble boucle ou déformé pour des échantillons respectivement non-polarisés ou polarisés. Les cyclescours du temps. Ce champ inCes phénomènes particuliers sont dus à la formation de dipôle de défaut (MTi VO )x causée parin, les grandes valeurs ducoefficient de qualité mécanique (Qmsynthétisées vis-à-vis de fortes contraintes, mécanique ou électrique. Cela rend ces matériaux compétitifscomparés au PZT 4 pour des applications de type transduction acoustique. / (CazBa1-z)(Ti1-x-wCoxNbw)O3- lead-free piezoelectric ceramics were prepared using solid-state reaction. Theuse of a Li2O or Li2CO3 sintering aid enables one to obtain dense ceramics at a temperature of 1100 °Cinstead of the 1300°C used for BaTiO3 in conventional sintering. Insertion of Li/Ca/Co/Nb in the perovskitestructure improves functional properties: for micrograin-size ceramics, a piezoelectric charge constant andelectromechanical coupling factor of d33 = 255 pC/N and kp = 43,5% were reached, respectively.Furthermore, a thermal annealing of the cobalt doped sample under O2 atmosphere led to d33 = 265 pC/Nand kp = 42,8%.Soft/hard characteristics of the piezoelectric ceramics are observed depending on the dopant ions. The Co/Liacceptor dopants lead to hard piezoelectric ceramics and aging phenomena. The aged BT:Co,Li exhibitsdouble loops and a distorted hysteresis cycle for non-poled and poled ceramics, respectively. Distortedhysteresis loops for BT:Co,Li show an increased internal bias field with aging time. Insertion of donordopants such as niobium ions significantly reduces the internal field. These behaviors are related to thepresence of defect dipoles (MTi VO )x due to the insertion of acceptor dopants in the B sites following theoxygen vacancies to equilibrate charge compensation. The high mechanical quality factors (Qm > 1000)obtained for the doped BaTiO3 ceramics affords stability against mechanical stress and electrical stress of upto 400 VRMS/mm, which makes these materials competitive with PZT4 for acoustic transducer applications.
|
13 |
Conception de microgénérateurs intégrés pour systèmes sur puce autonomesMarzencki, M. 30 March 2007 (has links) (PDF)
Cette thèse explore la thématique des microsystèmes autonomes, notamment la problématique de leur alimentation en énergie. Jusqu'à présent, l'énergie nécessaire pour faire fonctionner ces dispositifs était fournie par une source finie, par exemple une batterie électrochimique. Cela implique, qu'après un certain temps, le réservoir doit être rempli, sinon le dispositif cesse de fonctionner. De plus, un compromis doit être fait entre la taille et la durée de vie du système. L'objectif de ce travail est d'étudier la possibilité d'alimenter de tels systèmes à partir de l'énergie des vibrations mécaniques ambiantes. Nous nous sommes focalisés sur la miniaturisation du dispositif de récupération d'énergie, et sur la possibilité de son élaboration en employant les techniques de micro fabrication et les couches minces piézoélectriques. L'utilisation d'un dispositif de type MEMS permettrait de créer des systèmes autonomes sur une seule puce (SoC) où dans un boîtier (SoP). Au cours de cette thèse nous avons créé des modèles analytiques et par éléments finis des structures de générateurs piézoélectriques. Nous avons conçu et fabriqué les dispositifs en utilisant deux matériaux piézoélectriques : le nitrure d'aluminium (AlN) et le zirconate titanate de plomb (PZT). Nous avons démontré que de telles structures peuvent fournir une puissance de l'ordre de quelques microwatts. De plus, avec des circuits spécifiques de gestion de puissance elles permettent de charger des dispositifs de stockage à partir des vibrations d'une très faible amplitude. Les dispositifs présentés sont pour le moment les seuls microgénérateurs piézoélectriques au monde adaptés aux vibrations ambiantes. Cette thèse s'inscrit dans le cadre du projet VIBES (VIBration Energy Scavenging) qui est un STREP du sixième programme cadre de l'Union Européenne (IST-1-STREP-507911).
|
14 |
Optimisation de transducteurs piézoélectriques pour la génération d'ondes guidéesYazdanpanah Moghadam, Peyman January 2015 (has links)
Résumé : Les systèmes de surveillance de santé structurale sont proposés pour la détection d’endommagement dans les infrastructures qui dépassent leur durée de vie en utilisant les ondes guidées (GW). Les ondes guidées peuvent parcourir de longues distances et sont sensibles à une variété d’imperfections. Les transducteurs piézoélectriques sont communément utilisés pour générer et mesurer les ondes guidées dans des structures minces. Comme la détection du défaut et sa localisation sont souhaitées, la nature de la génération des ondes guidées sous forme de plusieurs modes implique une complexité supérieure dans le traitement du signal. Pour remédier à cette limitation, une nouvelle méthode est présentée ici pour la génération des ondes guidées par sélection de mode, et un nouveau transducteur piézoélectrique est ensuite conçu, fabriqué et testé.
Tout d'abord, la génération des ondes guidées par optimisation systématique du profil interfacial de la contrainte de cisaillement en mode sélectif est étudiée. En utilisant le principe de superposition, une méthode d'analyse est d'abord développée pour la modélisation de la génération des ondes guidées par un nombre fini de segments de contrainte de cisaillement uniforme, chacun contribuant à un profil élémentaire d’une contrainte constante de cisaillement. Sur cette base, deux fonctions coût sont définies afin de minimiser les modes indésirables et amplifier le mode sélectionné et le problème d'optimisation est résolu avec un cadre d'optimisation d’algorithme génétique parallèle. Les avantages de cette méthode par rapport à d'autres approches de conception de transducteurs classiques sont (1) la contrainte de cisaillement peut être explicitement optimisée à la fois pour exciter un mode et supprimer d'autres modes indésirables, (2) la taille de la zone d'excitation n’est pas limitée et l’excitation en mode sélectif est toujours possible, même si la largeur d'excitation est inférieure à toutes les longueurs d'onde excitées, et (3) la sélectivité est accrue et la largeur de bande est étendue.
La méthode analytique et les fonctions coût sont ensuite développées pour concevoir un transducteur piézoélectrique à éléments multiples (MEPT) simple et performant. Une méthode numérique est tout d'abord mise au point pour extraire la contrainte interfaciale entre un seul élément piézocéramique et une structure d'accueil et ensuite utilisée comme entrée d'un modèle analytique pour prédire la propagation des ondes guidées à travers l'épaisseur d'une plaque isotrope. Deux nouvelles fonctions coût sont proposées pour optimiser la contrainte de cisaillement interfaciale pour supprimer le(s) mode(s) indésirable(s) et maximiser un mode désiré. Simplicité et faible coût de fabrication sont deux principales cibles visées dan la conception du MEPT. Un prototype TPEM est ensuite fabriqué à l'aide de micro-usinage laser. Une procédure expérimentale est présentée afin de valider les performances de la TPEM comme une nouvelle solution pour la génération des ondes guidées en mode sélectif. Des essais expérimentaux illustrent la forte capacité du TPEM pour la génération des ondes guidées en mode sélectif, puisque le mode indésirable est supprimé par un facteur allant jusqu'à 170 fois par rapport aux résultats obtenus avec un seul piézocéramique. / Abstract : Structural Health Monitoring (SHM) systems are being proposed for damage detection of infrastructures that exceed their life using ultrasonic Guided waves (GWs). GWs can travel over long distances and are sensitive to variety of defects. Piezoelectric transducers (PZTs) are commonly used to generate and measure GWs in plate-like structures. As damage detection and localization is sought, the multi-mode nature of GW generation involves higher complexity in signal processing. To overcome this limitation, a new method is presented here for modeselective GW generation, and a novel mode-selective PZT is then designed, manufactured and tested.
First, mode-selective generation of GWs by systematic optimization of the interfacial shear stress profile is investigated. Using the superposition principle, an analytical method is first developed for modeling GWs generation by a finite number of uniform shear stress segments, each contributing with a constant elementary shear stress profile. Based on this, two cost functions are defined in order to minimize the undesired modes and amplify the selected mode and the optimization problem is solved with a parallel Genetic Algorithm (GA) optimization framework. Advantages of this method over more conventional transducers tuning approaches are that (1) the shear stress can be explicitly optimized to both excite one mode and suppress other undesired modes, (2) the size of the excitation area is not constrained and mode-selective excitation is still
possible even if excitation width is smaller than all excited wavelengths, and (3) the selectivity is increased and the bandwidth extended. The analytical method and objective functions are then developed to design a novel and costeffective multi-element piezoelectric transducer (MEPT). A numerical method is first developed to extract the interfacial stress between a single piezoceramic element and a host structure and
then used as the input of an analytical model to predict the GW propagation through the
thickness of an isotropic plate. Two novel objective functions are proposed to optimize the interfacial shear stress for both suppressing unwanted mode(s) and maximizing a desired mode. Simplicity and low manufacturing cost are two main targets driving the design of the MEPT. A prototype MEPT is then manufactured using laser micro-machining. An experimental procedure is presented to validate the performances of the MEPT as a new solution for mode-selective GW generation. Experimental tests illustrate the high capability of the MEPT for mode-selective GW generation, as unwanted mode is suppressed by a factor up to 170 times compared with the results obtained with a single piezoceramic.
|
15 |
Récupération d'énergie issue des déformations de structures aéronautiques à l'aide de matériaux piézoélectriquesDebeaux, Sébastien January 2012 (has links)
Résumé: La maintenance des structures aéronautiques (fuselage, ailes) est une opération majeure très onéreuse. Elle requiert l'immobilisation des appareils ainsi que le démontage de certaines de leurs parties afin de procéder à leur inspection. Pour permettre une surveillance in situ, des capteurs et actionneurs ont peu à peu été intégrés aux structures aéronautiques. L'utilisation de capteurs et actionneurs sans fil est attirante du fait qu'elle n'implique pas de câblage des noeuds (gain de poids et de coût). Ces noeuds doivent néanmoins être auto-alimentés afin d'être réellement viables_ L'idée est donc de convertir l'énergie mécanique (vibrations) disponible dans les structures d'avions en électricité en utilisant des matériaux piézoélectriques. Les travaux effectués dans ce mémoire permettent d'évaluer le potentiel des récupérateurs d'énergie basés sur les déformations (différents des récupérateurs inertiels) pour alimenter des noeuds sans fil embarqués sur des structures d'avions. Pour cela, des modèles simples sont utilisés pour décrire le comportement dynamique typique des parties de l'avion : une poutre représente l'aile soumise à des charges aérodynamiques et une plaque représente un panneau de fuselage soumis à des champs de pression (bruit de jet et couche limite turbulente). Des matériaux piézoélectriques aussi différents que le PZT monolithique, le composite piézo-fibres et le Polyfluorure de Vinylidêne (PVDF) sont testés dans le but d'évaluer l'influence de leurs caractéristiques (taille, polarisation, capacité, forme des électrodes...) sur la puissance électrique récupérée. Les résultats montrent que pour une excitation aéronautique typique de la poutre (10 Hz et 56 udef), l'énergie produite est de l'ordre de 40 mi pour le PZT monolithique pour une durée de charge de 7 minutes. D'après la littérature, cette énergie est suffisante pour faire des transmissions RF (25 pi). Mais pour d'autres types d'excitations (par exemple le buit de bruit de jet des réacteurs d'avion), il faudra 25 minutes pour produire une énergie de 1 mJ pour le même type de piézoélectrique. L'inconvénient est qu'il faudra attendre de nombreuses secondes avant de charger la batterie du récupérateur d'énergie. Si l'on considère que plusieurs autres organes devront consommer de l'énergie en parallèle, le temps en chaque cycle pourra être de plusieurs minutes. Par conséquent, les récupérateurs d'énergie basés sur les déformations peuvent être utilisés pour alimenter des nœuds sans fil même s'ils ne permettent pas des mesures en temps réel. Cependant, cette approche est une manière simple et pratique de collecter de l'énergie que les autres types de récupérateurs (inertiel, solaire...) puisqu'elle nécessite seulement le collage du matériau piézoélectrique sur la surface vibrante. Enfin, il en ressortira des conseils de dimensionnement pour ce type de récupérateur afin d'en optimiser l'utilisation à partir d'une excitation donnée.||Abstract: Aerospace structural maintenance (fuselage, wings) is a major component of operational costs which requires aircraft to be grounded and some of its parts to be dismantled in order to proceed to inspection. In order to allow in situ monitoring, Structural Health Monitoring (SHM) has been proposed where sensors and actuators are integrated on the structure. To avoid extensive wiring of the nodes, wireless sensors and actuators are attractive but should be self powered to fully benefit from them. One idea is to convert the mechanical energy (vibrations) available all over an aircraft into electricity using piezoelectric materials. This work investigates the potential of strain-based energy harvesters (as opposed to inertial harvesters) to supply wireless nodes on typical aircraft structures. A simple model is used to describe typical dynamic behavior of aircraft components: a beam representing the whole wing subjected to aerodynamic loading and a plate representing a fuselage panel subjected to pressure fields (jet noise and turbulent boundary layer). Various configurations of piezoelectric materials are tested such as bulk PZT, PZT fiber composite and Polyvinylidene Fluoride (PVDF) in order to evaluate the influence of their characteristics (size, polarization, electrodes' shape, capacitance...) on the harvested power. The results show that for a typical aerospace excitation of the beam (10 Hz and 56 mudef), the energy produced is up to 40 mJ with bulk PZT for a 7 minutes loading time. From the literature, this appears sufficient for RF transmission (25 muJ). For other excitation sources (for instance jet noise), the energy produced is up to only 1 mJ with bulk PZT for a 25 minutes loading time. The drawback is that we should wait for several seconds in order to charge the harvester's battery. And, considering that many other components than the RF transceiver will require energy in the meantime, the time laps between two' measures could increase to several minutes. Therefore, strain-based energy harvester could be used for supplying wireless sensor nodes but they would not allow real time measurement. However this approach is a simple and convenient way to scavenge energy compared to other kinds of harvesters (inertial, solar...) since it amounts to bonding a piezoelectric material on a flexible surface. Some design advices are eventually proposed for this kind of harvesters. They could be used for designing a harvester able to produce desired power from a known excitation.[symboles non conformes]
|
16 |
Développement d'un système d'alimentation d'un noeud de capteur sans fils à partir d'un récupérateur piézoélectrique pour des applications dans l'automobileSridi, Mohamed January 2015 (has links)
Le développement intensif de l’électronique à très faible consommation énergétique et des technologies de communication sans fils ont permis l’apparition des nœuds de capteur sans fils dans plusieurs domaines. Un nœud de capteur sans fils devrait être un système autonome. Néanmoins, les batteries sont utilisés jusqu’à aujourd’hui pour son alimentation. L’utilisation des batteries comme source d’énergie présente des défis majeurs tels que le coût de remplacement et d’entretien. L’objectif de ce projet est de valider la possibilité d’alimentation d’un nœud de capteur sans fils à partir de l’énergie vibratoire à travers un récupérateur piézoélectrique. Un système d’alimentation complet d’un nœud de capteur sans fils contient le transducteur piézoélectrique, une unité de gestion de puissance et un élément de stockage.
Ce mémoire de maîtrise présente les travaux élaborés dans le but de définir une configuration bien adaptée d’un système d’alimentation autonome complet. La réalisation de ce projet a nécessité le développement d’un démonstrateur expérimental du système en se basant sur des composants commerciaux. Ce démonstrateur a permis de valider la faisabilité du système de récupération d’énergie vibratoire pour des excitations qui peuvent exister dans le domaine de l’automobile en termes de fréquence de résonance et amplitudes d’accélération. Tout d’abord, les besoins énergétiques du nœud de capteur à alimenter et du circuit de gestion de puissance sélectionné ont été caractérisés expérimentalement en établissant une communication entre le nœud et une station de base. À partir de ces résultats, le transducteur piézoélectrique et l’élément de stockage adéquats ont été déterminés. Dans notre cas, le transducteur piézoélectrique choisi est soumis à une excitation harmonique d’amplitude 0.3 g et de fréquence de 65.8 Hz. Il alimentait le nœud de capteur sans fils développé opérant à une période de transmission de 17s à travers le circuit de gestion de puissance de faibles pertes favorisant le transfert optimal d’énergie entre l’entrée et la sortie du système. La fonctionnalité du système a été mise en évidence et une méthodologie comportant les différentes considérations à tenir en compte lors de développement de ce type de système a été proposée.
Il est démontré que l’étude énergétique du système est un atout pour son développement. En effet, le design du transducteur piézoélectrique doit être fait de telle façon que la puissance générée par le récupérateur piézoélectrique soit supérieure à la puissance requise par le reste du système. Pour cela, la source de vibration doit être caractérisée en termes de fréquence et amplitude d’accélération. La puissance totale requise par le nœud de capteur et le circuit de gestion de puissance doit être déterminée. Le dimensionnent de l’élément de stockage doit aussi tenir compte de l’énergie totale requise par la charge.
|
17 |
Microscale shock tube / Micro-tube à chocMirshekari, Gholamreza January 2008 (has links)
Abstract : This project aims at the simulation, design, fabrication and testing of a microscale shock tube. A step by step procedure has been followed to develop the different components of the microscale shock tube and then combine them together to realize the final device. The document reports on the numerical simulation of flows in a microscale shock tube, the experimental study of gas flow in microchannels, the design, microfabrication, and the test of a microscale shock tube. In the first step, a one-dimensional numerical model for simulation of transport effects at small-scale, appeared in low Reynolds number shock tubes is developed. The conservation equations have been integrated in the lateral directions and threedimensional effects have been introduced as carefully controlled sources of mass, momentum and energy, into the one-dimensional model. The unsteady flow of gas behind the shock wave is reduced to a quasi-steady laminar flow solution, similar to the Blasius solution. The resulting one-dimensional equations are solved numerically and the simulations are performed for previously reported low Reynolds number shock tube experiments. Good agreement between the shock structure simulation and the attenuation due to the boundary layers has been observed. The simulation for predicting the performance of a microscale shock tube shows the large attenuation of shock wave at low pressure ratios. In the next step the steady flow inside microchannels has been experimentally studied. A set of microchannels with different geometries were fabricated. These microchannels have been used to measure the pressure drop as a function of flow rate in a steady compressible flow. The results of the experiments confirm that the flow inside the microscale shock tube follows the laminar model over the experiment's range of Knudsen number. The microscale shock tube is fabricated by deposition and patterning of different thin layers of selected materials on the silicon substrate. The direct sensing piezoelectric sensors were fabricated and integrated with microchannels patterned on the substrate. The channels were then covered with another substrate. This shock tube is 2000 µm long and it has a 2000 µm wide and 17 µm high rectangular cross section equipped with 5 piezoelectric sensors along the tube. The packaged microscale shock tube was installed in an ordinary shock tube and shock waves with different Mach numbers were directed into the channel. A one-dimensional inviscid calculation as well as viscous simulation using the one-dimensional model have also been performed for the above mentioned geometry. The comparison of results with those of the same geometry for an inviscid flow shows the considerable attenuation of shock strength and deceleration of the shock wave for both incident and reflected shock waves in the channel. The comparison of results with numerically generated results with the one-dimensional model presents good agreement for incident shock waves. // Résumé : Ce projet vise à la simulation, la conception, la fabrication et l'essai d'un tube à choc a l'échelle micrométrique. Une procédure étape par étape a été suivie pour développer les différentes composantes du tube à choc à l'échelle micrométrique, puis les assembler pour la réalisation finale du dispositif. Le document rend compte de la simulation numérique, de l'étude expérimentale de l'écoulement du gaz dans les microcanaux, de la conception, de la microfabrication, et de l'essai d'un tube à choc à l'échelle micrométrique. Dans la première étape, un modèle numérique unidimensionnel pour la simulation des effets de transport à des petites échelles dans des tubes à choc à faible nombre de Reynolds, est développé. Les équations de conservation ont été intégrés latéralement et les effets tridimensionnels ont été mis en place avec des sources bien contrôlées de masse, du moment et de l'énergie, dans un modelé à une dimension. L'écoulement non stable du gaz après le choc est réduit à un flux laminaire quasi permanent, solution similaire à la solution de Blasius. Les équations unidimensionnelles résultantes sont résolues numériquement et des simulations sont effectuées pour des expériences précédemment rapportées de tube à choc en faible nombre de Reynolds. II y a une bonne correspondance entre la structure du choc et la simulation. L'atténuation due à la couche limite a été observée. La simulation pour prédire les performances d'un tube à choc à l'échelle micrométrique a montré la grande atténuation de l'onde de choc à faible taux de pression. Dans l'étape suivante, le flux constant à l'intérieur des microcanaux a été étudié expérimentalement. Quelques microcanaux avec différentes géométries ont été fabriqués. Ces microcanaux ont été utilises pour mesurer la chute de pression en fonction du débit dans un écoulement compressible flux stable. Les résultats de l'expérience confirment que l'écoulement à l'intérieur du tube à choc à l'échelle micrométrique suit le modèle laminaire sur un large éventail de nombre de Knudsen. Le tube à choc à l'échelle micrométrique est fabrique par les dépôts et gravure des différentes couches minces de certains matériaux sur un substrat de silicium. Des capteurs piézoélectriques à détection directe sont fabriques et intégrés avec les microcanaux caïques sur le substrat. Les canaux sont ensuite recouverts d'un autre substrat. Le tube à choc est long de 2000 µm et a une section rectangulaire de 2000 µm de large et 17 µm de haut et es téquipé avec 5 capteurs piézoélectriques dans le tube. Le tube à choc à l'échelle micrométrique est installé dans un tube à choc standard afin d'entre exposés à une onde de choc avec différents nombres de Mach. Un calcul unidimensionnel inviscide ainsi que la simulation visqueuse avec le modèle unidimensionnel a aussi été effectué pour cette géometrie. La comparaison des résultats avec ceux obtenus avec la même géométrie avec avec un flux Inviscid montre une large atténuation de la force de choc et une décélération de l'onde de choc pour les deux ondes de choc incidentes et réfléchies dans le canal. La comparaison de résultats avec les résultats générés numériquement par modèle unidimensionnel pressent un bon accord pour onde de choc de l'incident.
|
18 |
La mesure en laboratoire de la vitesse de propagation des ondes de cisaillementEthier, Yannic A January 2009 (has links)
La vitesse de propagation des ondes de cisaillement, V[indice inférieur s], est une propriété caractéristique du sol dans le domaine élastique. Elle est directement reliée au module de cisaillement maximal en ne faisant intervenir uniquement que sa masse volumique. V[indice inférieur s] est mesurée à très petites déformations et en conséquence, il s'agit d'un paramètre qui permet de caractériser le sol d'un point de vue mécanique, sans affecter ses propriétés. L'intérêt de l'utilisation de V[indice inférieur s] comme paramètre de caractérisation géotechnique devient de plus en plus important, surtout avec le développement des méthodes de mesures in situ de ce paramètre, notamment celles utilisant les ondes de surface, qui s'effectuent sans intrusion. Or, pour tirer pleinement avantage des mesures de V[indice inférieur s] in situ, il est essentiel de caractériser en laboratoire les sols en termes de V[indice inférieur s] en fonction des propriétés géotechniques plus usuelles comme par exemple l'indice des vides, la résistance au cisaillement, la contrainte de préconsolidation, etc. Les principales méthodes de mesures de V[indice inférieur s] en laboratoire sont revues.La popularité des bilames piézoélectriques s'explique par la simplicité apparente du concept et de l'appareillage, et par la possibilité d'utiliser ces dispositifs dans la plupart des essais usuels. Les limitations associées à l'utilisation de ces dispositifs sont par ailleurs abordées, tant du point de vue des équipements que de l'interprétation des mesures qui se traduisent par des imprécisions importantes, inacceptables dans une perspective de caractérisation. Il est donc apparu pertinent de proposer une configuration originale d'éléments piézoélectriques et nécessaire d'établir une nouvelle méthode d'interprétation. Des modélisations numériques de même que neuf essais de consolidation dans une cellule oedométrique spécialement équipée d'anneaux piézoélectriques ont permis de développer le concept et de tester différentes méthodes d'interprétation.La méthode d'interprétation proposée reconnaît l'existence d'un déphasage qui doit être pris en compte.La performance du nouveau système est démontrée à l'aide de modélisations numériques et de deux essais additionnels en laboratoire impliquant plusieurs séquences de chargement/déchargement sur deux échantillons argileux différents. Le système proposé permet de mesurer V[indice inférieur s] avec plus de précision et de fiabilité sur un échantillon très court, soit environ 1,5 cm de hauteur, comme ceux normalement utilisés dans un essai de consolidation sur l'argile. Des mesures de V[indice inférieur s] pourront être examinées notamment en fonction de l'état de densité du sol, dans une perspective de valorisation de ce paramètre pour fins de caractérisation.
|
19 |
Micromembranes résonantes à actionnement et détection piézoélectriques intégrés pour la détection de molécules biologiques en temps réelAyela, Cedric 20 December 2007 (has links) (PDF)
Les avantages liés à la réduction de taille et la microfabrication, caractéristiques des microsystèmes électromécaniques (MEMS), sont favorables à l'utilisation de microstructures dans le domaine des biocapteurs. Dans ce contexte, nous avons développé des micromembranes résonantes à actionnement et détection intégrés, par l'intermédiaire d'une couche piézoélectrique (PZT), pour la transduction d'une reconnaissance biologique. Après la fabrication de matrices de micromembranes par les techniques de microfabrication, des travaux de caractérisation statique ont permis d'appréhender le comportement initial des structures et de déterminer les propriétés du matériau piézoélectrique. Ces optimisations ont ensuite servi de base pour la caractérisation dynamique des micromembranes, qui correspond à leur mode de fonctionnement en tant que capteur de masse. Ainsi, après la validation de l'actionnement intégré des structures et la détection des fréquences de résonance par les deux effets piézoélectriques, la génération optimisée de spectres a permis de développer une électronique spécifique aux structures et de les calibrer en masse pour la détermination de la sensibilité dans l'air : Sair=-15 pg/(mm².Hz). La caractérisation dynamique approfondie a permis enfin d'aborder l'utilisation des membranes en tant que biocapteur pour deux types d'application : une première orientée diagnostic par la détection spécifique en temps-réel et en milieu liquide d'anticorps alors que la seconde application concerne la combinaison des micromembranes avec des polymères à empreinte moléculaire (MIP). Cette seconde application, orientée analyse environnementale, permet de profiter des avantages liés aux MIP, tels que la stabilité et la structuration des polymères, avec ceux des micromembranes, tels que la sensibilité et le multiplexage intégré. Ces travaux correspondent à la démonstration des capacités de micromembranes résonantes pour la détection fiable, sensible, intégrée et multiplexée de biom olécules.
|
20 |
Caractérisation des matériaux piézoélectriques dédiés à la génération des décharges plasmas pour applications biomédicalesKahalerras, Mohamed khaled 22 February 2018 (has links) (PDF)
Les transformateurs piézoélectriques se positionnent aujourd’hui comme une alternativetechnologique séduisante face aux solutions classiquement utilisées pour la génération desplasmas froids. Leur haute permittivité, leur faible tension d’alimentation et leur capacité deminiaturisation en font une solution sérieuse et originale pour de nombreuses applications faiblespuissances, notamment dans le domaine biomédical pour la stérilisation, le traitement de surfaceet la décontami-nation des instruments médicaux. Dans le cadre d'un fonctionnement engénérateur plasma, la conversion électromécanique au sein du transformateur s’accompagne depertes mécaniques et diélectriques, souvent converties en chaleur. À ces effets s'ajoute l’influenceproprement dite de la décharge sur le comportement électrique du dispositif. L’évolutiondynamique et fortement non-linéaire de la décharge entraine un comportement méconnu desgrandeurs électriques. Par conséquent, l’étage d’alimentation du transformateur constitue un sujetd’étude au même titre que le transformateur lui-même. De plus, étant donné la configuration duprocessus de génération, qui positionne le matériau piézoélectrique comme source et siège de ladécharge plasma, il devient nécessaire d’analyser la viabilité du dispositif. L’ionisation du milieugazeux environnant le générateur provoque des effets électroniques complexes, susceptiblesd’entrainer des dépôts de matière à la surface du matériau ou d’en éroder la surface. C’est dansce cadre, à l’interface entre le génie électrique et la science des matériaux, que s’articule cettethèse. Une première partie est destinée au développement d’un outil de commande numérique dugénérateur par une boucle de verrouillage de phase, assurant sa continuité de fonctionnementface aux variations des conditions opératoires. Par la suite, une modélisation du générateurplasma dans des configurations proches des décharges à barrières diélectriques est effectuée ;des simulations permettent une estimation de la puissance de décharge à partir d’uneidentification expérimentale des paramètres du modèle. Dans un deuxième temps, nouscherchons à établir une corrélation entre la structure du matériau et ses propriétés électriques ens’appuyant sur une méthodologie de caractérisation multi-échelle, avant et après déchargeplasma. L'étude se focalise principalement sur l'évolution en surface de la structure cristalline et lacomposition chimique, en liaison avec les propriétés fonctionnelles du transformateur aprèsgénération de la décharge. Enfin, une étude en température porte sur l’investigation des effetsd’auto-échauffement du générateur dans ce mode de fonctionnement
|
Page generated in 0.0599 seconds