Spelling suggestions: "subject:"pine"" "subject:"pin""
11 |
Effet des agonistes des TRL sur la production des FRO par la NADPH oxydase des polynucléaires neutrophiles humains / The Effect of TRL-Agonists on the Production of ROS by NADPH Oxidase of Human NeutrophilsMakni Maalej, Karama 07 September 2012 (has links)
Le polynucléaire neutrophile (PN) humain est une cellule phagocytaire qui constitue une des premières barrières de défense de l’organisme contre les agents pathogènes. Sa stimulation par des facteurs chimioattractants, provoque sa migration de la circulation sanguine vers le foyer inflammatoire. Dans le site inflammatoire, les PN reconnaissent l’agent pathogène par l'intermédiaire d'opsonines, des fractions résultant de l'activation du complément et par l’intermédiaire de motifs de reconnaissance conservés au cours de l’évolution des agents pathogènes qui se lient à des récepteurs de la famille Toll (Toll-like receptors ; TLR). Le contact du pathogène avec le PN va provoquer sa phagocytose et sa destruction par la libération de molécules contenues dans les granules du PN et par la production de formes réactives de l’oxygène (FRO) par un complexe enzymatique la NADPH phagocytaire composée au repos de de protéines cytosoliques (p40phox, p47phox, p67phox et Rac 2) et membranaires (gp91phox et p22phox formant le cytochrome b558). Un des événements majeur de l’activation de la NADPH oxydase est la phosphorylation de certains composants cytosoliques comme la p47phox ou la p67phox ce qui conduit à la translocation de ces protéines vers le cytochrome b558 membranaire et permet d’activer l’enzyme pour la production de FRO. L’hyperactivation de cette enzyme ou son « priming » consiste en une pré-activation du PN par des agents dit « primants » tels que des cytokines (TNFα, GM-CSF, IL-1), des chimiokines comme l’IL-8, des molécules lipidiques (PAF et LTB4), ou encore des endotoxines bactériennes LPS, agoniste de TLR4. Les TLR sont des récepteurs exprimés à la surface de nombreuses cellules dont les cellules immunitaires ; ils détectent des motifs conservés au cours de l’évolution des agents pathogènes appelés PAMPs pour "pathogen-associated molecular patterns", des protéines modifiées reconnues comme étrangères, des lipides oxydés, des ligands endogènes. Quelques agonistes des TLR comme le LPS ont été décrits pour induire un priming de la production des FRO par les PN. D’autres ont été connus par leur pouvoir activateur de la NADPH oxydase des PN. Le CL097 (Imidazoquinoline : agoniste des TLR7/8) était l’agoniste des TLR induisant le plus fort effet de « priming » par les PN stimulés par le fMLP. Le CL097 induit la phosphorylation de la p47phox sur la sérine 345. Cette phosphorylation implique des MAPKinases ERK1/2 et de la p38MAPK. La phosphorylation de ce site induit le changement de conformation de la p47phox sous l’action d’une proline isomérase Pin1. Ce changement de conformation favorise la phosphorylation des autres sites (Ser-315, Ser-328) et par conséquent l’activation de la NADPH oxydase. La comparaison de l’effet du CL097 à deux agonistes reconnaissant l’un le TLR7, l’autre le TLR 8 a montré que l’action du CL097 dépendait du TLR8. Le zymosan non opsonisé (agoniste de TLR2) stimule l’activation de la NADPH oxydase des neutrophiles. IL induit la phosphorylation de la p47phox au niveau des Ser-345, -315 et -328. Ces phosphorylations font intervenir respectivement les MAPK ERK1/2 et p38, une protéine tyrosine kinase et les PKC. En plus cet agoniste active la petite protéine cytosolique Rac2, nécessaire à l’activation de la NADPH oxydase des PN. Ces données permettraient d’identifier de nouvelles cibles thérapeutiques de première importance afin de moduler les réponses inflammatoires pathologiques. / Superoxide anion production by the neutrophil NADPH oxidase plays a key role in host defense; however, excessive superoxide production is believed to participate to inflammatory reactions. Neutrophils express several TLR that recognize a variety of microbial motifs or agonists. The interaction between TLR and their agonists is believed to help neutrophils to recognize and to eliminate the pathogen. However, the effects of some TLR agonists on the NADPH oxidase activation and the mechanisms controlling these effects have not been elucidated. In this study, we show that the TLR7/8 agonist CL097 by itself did not induce NADPH oxidase activation in human neutrophils, but induced a dramatic increase of fMLF-stimulated activation. Interestingly, CL097 induced cytochrome b558 translocation to the plasma membrane and the phosphorylation of the NADPH oxidase cytosolic component p47phox on Ser345, Ser328 and Ser315. Phosphorylations of Ser328 and Ser315 were significantly increased in CL097-primed and fMLF-stimulated neutrophils. Phosphorylation of Ser345, Ser328 and Ser315 was decreased by inhibitors of p38MAPK and the ERK1/2-pathway. Phosphorylation of Ser328 was decreased by a PKC inhibitor. Genistein, a braod range protein tyrosine kinase inhibitor, inhibited the phosphorylation of these serines. Our results also show that CL097 induced proline isomerase (Pin1) activation and that juglone, a Pin1 inhibitor, inhibited CL097-mediated priming of fMLF-induced p47phox phosphorylation and superoxide production. These results show that activation of TLR7/8 in human neutrophils induces hyper-activation of the NADPH oxidase by stimulating the phosphorylation of p47phox on selective sites, and suggest that p38MAPK, ERK1/2, PKC and Pin1 control this process.Zymosan a cell-wall preparation from saccharomyces cerevisiae is largely used to activate neutrophils in its opsonized form. In this study, we show that non-opsonized zymosan induced ROS production by human neutrophils. Interestingly, zymosan induced the phosphorylation of the NADPH oxidase cytosolic component p47phox on Ser345, Ser328 and Ser315; and activation of the GTPase Rac2. Phosphorylation of p47phox as well as Rac2 activation were inhibited by genistein a broad range protein tyrosine kinase inhibitor. Wortmannin a PI3Kinase inhibitor, inhibited phosphorylation of p47phox on Ser328 and Ser315 and Rac2 activation. SB203580 and UO126, inhibitors of p38MAPK and ERK1/2-pathway respectively, inhibited phosphorylation of p47phox on Ser345. GF109203X a PKC inhibitor inhibited phosphorylation on Ser328 and Ser315. Zymosan-induced ROS production was inhibited by genistein, wortmannin, SB203580, UO126 and GF109203X. These results show that zymosan induced ROS production by NADPH oxidase in human neutrophils via the phosphorylation of p47phox and Rac2 activation. Our results also suggest that a protein tyrosine kinase and PI3Kinase control p47phox phosphorylation and Rac2 activation while p38MAPK, ERK1/2 and PKC are involved in zymosan-induced p47phox phosphorylation.
|
12 |
Roles for Pin1 in Modulating Cells of the Innate Immune SystemBarberi, Theresa January 2011 (has links)
<p>Pin1 is a ubiquitously expressed phosphorylation-specific prolyl isomerase that regulates substrate function by catalyzing the cis-trans isomerization of prolyl bonds. Through this modulation, Pin1 has been shown to influence the stability, localization, and/or activity of a diverse set of protein substrates that participate in a variety of cellular responses, such as cell cycle progression, modulation of cell stress, and apoptosis. In addition to extensive studies in non-hematopoietic cells, Pin1 has also been shown to regulate immune cell function. Indeed, Pin1 participates in germinal center B cell development and eosinophil granulocyte survival. It also facilitates cytokine production in T cells, eosinophil granulocytes, and plasmacytoid dendritic cells. Through specific activities such as these, Pin1 has been demonstrated to modulate responses to viral challenge, respiratory allergens, and organ transplantation. </p><p>Due to previously described functions of Pin1 in regulating cells of both the innate and adaptive immune system, we predicted that Pin1 would participate in systemic inflammatory responses. Upon inducing systemic inflammation in mice, we observed a profound reduction in circulating cytokine concentrations in Pin1-null mice compared to WT mice. This result prompted further investigations, which are described in chapter 3 and chapter 4 of this dissertation. In chapter 3, we evaluate the potential contribution of macrophages to the defects we observe in LPS-challenged Pin1-null mice. Using primary macrophages, bone marrow-derived macrophages, and MEF, we ultimately exclude a role for Pin1 in modulating LPS-induced production of pro-inflammatory cytokines in these cells. In chapter 4, we uncover a defect in the accumulation of conventional dendritic cells (cDC) in LPS-challenged Pin1-null mice. Upon more careful examination of spleen cDC subsets in Pin1-null mice, we discovered a defect in the CD8+ subset. Experiments described in this chapter collectively indicate a role for Pin1 in preferentially modulating late stages of development of the CD8+ subset of cDC. Consistent with such a defect, the expansion of adoptively transferred WT CD8+ T cells was less robust in Pin1-null mice than WT mice upon infection with the bacterium Listeria monocytogenes . At the end of chapter 4, we provide evidence that Pin1 facilitates the degradation of the hematopoietic transcription factor PU.1, and propose that deregulation of PU.1 expression may be one mechanism by which Pin1 modulates CD8+ cDC development. The work described in this dissertation began by evaluating a potential role for Pin1 in modulating pro-inflammatory cytokine production in macrophages; ultimately, however, we uncovered a novel role for Pin1 in preferentially modulating the development of the CD8+ subset of cDC. The results presented herein expand the current understanding of DC development and further implicate Pin1 as an important modulator of both innate and adaptive immune responses.</p> / Dissertation
|
13 |
Auxin-cytokinin interactions in the control of shoot branchingShimizu-Sato, Sae, Tanaka, Mina, Mori, Hitoshi, 森, 仁志 03 1900 (has links)
Open Access Article
|
14 |
FRETバイオセンサーを用いた生体イメージングによる代謝状態の可視化と代謝調節機構の解明小長谷, 有美 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(生命科学) / 甲第21927号 / 生博第412号 / 新制||生||54(附属図書館) / 京都大学大学院生命科学研究科高次生命科学専攻 / (主査)教授 松田 道行, 教授 影山 龍一郎, 教授 垣塚 彰 / 学位規則第4条第1項該当 / Doctor of Philosophy in Life Sciences / Kyoto University / DFAM
|
15 |
Příprava HEK293 buněčné linie exprimující transportér auxinu PIN7 a testování inhibitorů přenosu auxinu / Preparation of HEK293 cell line expressing auxin transporter PIN7 and testing of inhibitors of auxin transportPetermannová, Romana January 2015 (has links)
Auxin is one of the most important plant hormones, which provides development of a plant. PIN1 and PIN7 proteins belong to the PIN family of transporters which is among the most important auxin efflux carriers. This thesis deals with the of AtPIN1 and AtPIN7 auxin efflux carriers (from Arabidopsis thaliana) in human embryonic kidney 293 cell line. Biological activity of these proteins was tested by using radiolabeled auxins accumulation. Further inhibitors of auxin transport have been tested - NPA, CHPAA and BFA.
|
16 |
Úloha CRMP2 vo vývoji nervového systému. / The role of CRMP2 in the nervous system development.Žiak, Jakub January 2020 (has links)
Regulation of axon guidance and pruning of inappropriate synapses is key to development of neural circuits. Secreted semaphorins are integral part of both processes. Collapsin response mediator protein 2 (CRMP2) has been shown to regulate axon guidance by mediating Semaphorin 3A (Sema3A) signaling, however, nothing is known about its role in the synapse pruning. Similarly, it is also not known if CRMP2 mediates signals from other semaphorins. We herein studied CRMP2 protein and revealed its role in growth and pruning of selected axons and dendrites. In newly generated crmp2-/- and crmp2a-/- mice we demonstrate that CRMP2 has a moderate effect on Sema3A-dependent axon guidance in vivo, and its deficiency leads to a mild defect in axon guidance in peripheral nerves and corpus callosum. CRMP2A isoform is specifically involved in development of callosal axons. Surprisingly, we show that crmp2-/- mice display prominent defects in stereotyped axon pruning in hippocampus and visual cortex and altered dendritic spine remodeling, which are consistent with impaired Sema3F signaling and with models of autism spectrum disorder (ASD). Indeed, we demonstrate that CRMP2 mediates Sema3F signaling in primary neurons and that crmp2-/- mice display ASD-related social behavior changes in early postnatal period as well...
|
17 |
PP2A Regulates Phosphorylation-Dependent Isomerization of Cytoplasmic and Mitochondrial-Associated ATR by Pin1 in DNA Damage ResponsesMakinwa, Yetunde, Cartwright, Brian M., Musich, Phillip R., Li, Zhengke, Biswas, Himadri, Zou, Yue 28 August 2020 (has links)
Ataxia telangiectasia and Rad3-related protein (ATR) is a serine/threonine-protein kinase of the PI3K family and is well known for its key role in regulating DNA damage responses in the nucleus. In addition to its nuclear functions, ATR also was found to be a substrate of the prolyl isomerase Pin1 in the cytoplasm where Pin1 isomerizes cis ATR at the Ser428-Pro429 motif, leading to formation of trans ATR. Cis ATR is an antiapoptotic protein at mitochondria upon UV damage. Here we report that Pin1’s activity on cis ATR requires the phosphorylation of the S428 residue of ATR and describe the molecular mechanism by which Pin1-mediated ATR isomerization in the cytoplasm is regulated. We identified protein phosphatase 2A (PP2A) as the phosphatase that dephosphorylates Ser428 following DNA damage. The dephosphorylation led to an increased level of the antiapoptotic cis ATR (ATR-H) in the cytoplasm and, thus, its accumulation at mitochondria via binding with tBid. Inhibition or depletion of PP2A promoted the isomerization by Pin1, resulting in a reduction of cis ATR with an increased level of trans ATR. We conclude that PP2A plays an important role in regulating ATR’s anti-apoptotic activity at mitochondria in response to DNA damage. Our results also imply a potential strategy in enhancing cancer therapies via selective moderation of cis ATR levels.
|
18 |
Phosphorylation-Dependent Pin1 Isomerization of ATR: Its Role in Regulating ATR’s Anti-Apoptotic Function at Mitochondria, and the Implications in CancerMakinwa, Yetunde, Musich, Phillip R., Zou, Yue 30 April 2020 (has links)
Peptidyl-prolyl isomerization is an important post-translational modification of protein because proline is the only amino acid that can stably exist as cis and trans, while other amino acids are in the trans conformation in protein backbones. This makes prolyl isomerization a unique mechanism for cells to control many cellular processes. Isomerization is a rate-limiting process that requires a peptidyl-prolyl cis/trans isomerase (PPIase) to overcome the energy barrier between cis and trans isomeric forms. Pin1, a key PPIase in the cell, recognizes a phosphorylated Ser/Thr-Pro motif to catalyze peptidyl-prolyl isomerization in proteins. The significance of the phosphorylation-dependent Pin1 activity was recently highlighted for isomerization of ATR (ataxia telangiectasia- and Rad3-related). ATR, a PIKK protein kinase, plays a crucial role in DNA damage responses (DDR) by phosphorylating hundreds of proteins. ATR can form cis or trans isomers in the cytoplasm depending on Pin1 which isomerizes cis-ATR to trans-ATR. Trans-ATR functions primarily in the nucleus. The cis-ATR, containing an exposed BH3 domain, is anti-apoptotic at mitochondria by binding to tBid, preventing activation of pro-apoptotic Bax. Given the roles of apoptosis in many human diseases, particularly cancer, we propose that cytoplasmic cis-ATR enables cells to evade apoptosis, thus addicting cancer cells to cis-ATR formation for survival. But in normal DDR, a predominance of trans-ATR in the nucleus coordinates with a minimal level of cytoplasmic cis-ATR to promote DNA repair while preventing cell death; however, cells can die when DNA repair fails. Therefore, a delicate balance/equilibrium of the levels of cis- and trans-ATR is required to ensure the cellular homeostasis. In this review, we make a case that this anti-apoptotic role of cis-ATR supports oncogenesis, while Pin1 that drives the formation of trans-ATR suppresses tumor growth. We offer a potential, novel target that can be specifically targeted in cancer cells, without killing normal cells, to significantly reduce the adverse effects usually seen in cancer treatment. We also raise important issues regarding the roles of phosphorylation-dependent Pin1 isomerization of ATR in diseases and propose areas of future studies that would shed more understanding on this important cellular mechanism.
|
19 |
Regulation of Inflammtory Activation in Endothelial Cells by PIN1Liu, Tongzheng 15 July 2009 (has links)
No description available.
|
20 |
Pin1 Inhibitors: Towards Understanding the Enzymatic MechanismXu, Guoyan 11 June 2010 (has links)
An important role of Pin1 is to catalyze the cis-trans isomerization of pSer/Thr-Pro bonds; as such, it plays an important role in many cellular events through the effects of conformational change on the function of its biological substrates, including Cdc25, c-Jun, and p53. The expression of Pin1 correlates with cyclin D1 levels, which contributes to cancer cell transformation. Overexpression of Pin1 promotes tumor growth, while its inhibition causes tumor cell apoptosis. Because Pin1 is overexpressed in many human cancer tissues, including breast, prostate, and lung cancer tissues, it plays an important role in oncogenesis, making its study vital for the development of anti-cancer agents.
Many inhibitors have been discovered for Pin1, including 1) several classes of designed inhibitors such as alkene isosteres, non-peptidic, small molecular Pin1 inhibitors, and indanyl ketones, and 2) several natural products such as juglone, pepticinnamin E analogues, PiB and its derivatives obtained from a library screen. These Pin1 inhibitors show promise in the development of novel diagnostic and therapeutic anticancer drugs due to their ability to block cell cycle progression. In order to develop potent Pin1 inhibitors, the concept of transition-state analogues was used for the design of three classes of compounds: ketoamide, ketone, and reduced amide analogues.
Specifically, a convergent synthesis of α-ketoamide inhibitors of Pin1 was developed. An α-hydroxyorthothioester derivative of Ser was reacted directly with an aminyl synthon. The reaction was catalyzed by HgO and HgCl2 to form an α-hydroxyamide. Hydrolysis and coupling were combined in one step in 80% yield. Two diastereomers of a phospho-Ser-Pro α-ketoamide analogue were synthesized. The resulting IC50 values of 100 µM and 200 µM were surprisingly weak for the Pin1 peptidyl-prolyl isomerase.
Diastereomeric ketones were synthesized by coupling cyclohexenyl lithium to the serine Weinreb amide, via the Michael addition of a carboxylate synthon. The IC50 values of the two ketone diastereomers were determined to be 260 μM and 61 μM, respectively.
Five reduced amide inhibitors for Pin1 were synthesized through a selective reduction using borane. The most potent inhibitor was found to be Fmocâ pSerâ Ψ[CH2N]-Proâ tryptamine, which had an IC50 value of 6.3 µM. This represents a 4.5-fold better inhibition for Pin1 than a comparable cis-amide alkene isostere. The co-crystal structure of Acâ pSerâ Ψ[CH2N]-Proâ tryptamine bound to Pin1 was determined to 1.76 Ã resolution.
Towards understanding the two proposed mechanisms of Pin1 catalysis, nucleophilic-additition mechanism and twisted-amide mechanism, three classes of Pin1 inhibitors (ketoamide, ketone, and reduced amide analogues) involving a total of nine compounds were synthesized and evaluated. The weak inhibitory activities of ketoamide and ketone analogues do not support the nucleophilic-addition mechanism, while the twisted-amide mechanism of Pin1 catalysis is promising based on the reduced amide inhibitors with good potencies. / Ph. D.
|
Page generated in 0.0568 seconds