• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • Tagged with
  • 9
  • 9
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Physique des Objets Substellaires: Intérieurs, Atmosphères, Evolution

Guillot, Tristan 04 June 2003 (has links) (PDF)
Toutes les étoiles visibles à l'œil nu doivent leur brillance momentanée aux réactions nucléaires qui ont lieu dans leur intérieur. Ceci en fait des joyaux dans notre ciel nocturne, mais les amènera à une fin tragique, dans laquelle elles exploseront pour devenir soit des naines blanches dégénérées, des étoiles à neutrons ou des trous noirs. Une autre population, plus nombreuse, mais à peine visible, a choisi de vivre une vie morne mais tranquille et quasiment éternelle: ses individus font attention à ne pas devenir dépendant de l'hydrogène pour briller. Certains, dans leur jeunesse, consument des substances moins énergétiques telles que le deutérium et le lithium, mais épuisent rapidement leur stock. En conséquence, ils se refroidissent et se contractent progressivement, gardant intacts la plupart des éléments qui les ont formés. Ces naines brunes et planètes géantes forment une nouvelle classe d'objets astronomiques. Ils comblent un fossé entre les étoiles et les planètes de notre Système Solaire. Leur étude nous informe sur nos origines, sur la formation des étoiles et des planètes. Elle nous aide aussi à comprendre et/ou tester des théories allant de la physique à haute pression, à la dynamique atmosphérique, en passant par les effets de marées, la chimie, la formation de nuages...etc. Ce cours est focalisé sur quelques aspects physiques liés à l'étude théorique de ces objets substellaires: Je détaille leur évolution hydrostatique et sa modélisation, ce que nous savons de Jupiter, Saturne, Uranus et Neptune, de leur structure interne, comment les nuages façonnent leur apparence et contrôlent leur refroidissement, ce que nous pouvons apprendre des observations des naines brunes et exoplanètes, et les conséquences des découvertes récentes sur notre vision de la formation planétaire.
2

ONDES ET INSTABILITÉS BASSE-FRÉQUENCE DANS UN PLASMA GYROTROPE. APPLICATION À L'INSTABILITÉ D'INTERCHANGE DANS LES MAGNÉTOSPHERES DES PLANETES GÉANTES

André, Nicolas 24 November 2003 (has links) (PDF)
Les magnétosphères en rotation rapide des planètes géantes (Jupiter, Saturne) contiennent de nombreuses sources de plasma situées très à l'intérieur du système magnétosphérique. Le plasma créé localement au voisinage de ces sources est cependant observé dans toutes les régions de ces magnétosphères, mettant en évidence la nécessité d'un mécanisme de transport radial du plasma à travers le système. Cette thèse s'intéresse à l'étude théorique de l'instabilité d'interchange, une instabilité de type Rayleigh-Taylor dans laquelle les forces centrifuges jouent le rôle de la gravité, et généralement invoquée pour expliquer le transport radial à l'oeuvre dans les magnétosphères de Jupiter et de Saturne. <br> Afin de prendre en compte la nature des plasmas magnétosphériques, peu collisionnels, un formalisme exact d'étude linéaire des ondes et instabilités basse-fréquence dans les plasmas gyrotropes a été développé. Ce formalisme permet notamment de considérer les effets des forces non-électromagnétiques (force de gravitation, centrifuge et de Coriolis), les paramètres de la stratification (gradients et courbure) et certains effects cinétiques (résonance Landau). <br> Ce formalisme est dans un premier temps validé dans le cas des plasmas homogènes, avant d'être appliqué au cas des plasmas stratifiés. Les modes les plus influencés par la stratification du milieu, dénommés modes de quasi-interchange, y sont identifiés en termes de mode d'Alfvén, mode magnétosonore lent et mode miroir, suivant la terminologie classique en milieu homogène. Les critères d'instabilité des différents modes de quasi-interchange sont entièrement obtenus de manière analytique et sont appliqués au cas du plasma multi-espèces présent dans le tore de plasma du satellite Io de Jupiter, tel que décrit à travers les observations des sondes Voyager et Galileo. <br> Enfin, en attendant les observations de la mission Cassini en 2004 pour appliquer ces résultats dans l'environnement spatial de Saturne, son survol de Jupiter en décembre 2000 - janvier 2001 est présenté brièvement. L'analyse des données champ magnétique obtenues lors de ce survol nous permet de mettre en évidence profondément dans la magnétogaine jovienne des signatures observationnelles du mode miroir, identifié auparavant à l'aide de notre formalisme théorique.
3

Physique des plasmas denses : le mélange hydrogène-hélium dans les intérieurs planétaires

Soubiran, François 04 October 2012 (has links) (PDF)
Les conditions thermodynamiques régnant au sein des planètes géantes telles que Jupiter, Saturne et bon nombre des exoplanètes découvertes quotidiennement, impliquent que les interactions entre particules - atomes, ions, électrons - sont prépondérantes dans les enveloppes planétaires, principalement composées d'hydrogène et d'hélium, et déterminent les propriétés mécaniques et thermiques de ces objets. La caractérisation de ces plasmas denses est donc cruciale pour comprendre la structure et l'évolution de ces planètes géantes. Les simulations ab initio, utilisant la théorie de la fonctionnelle de la densité, ont montré leurs performances pour la caractérisation des espèces pures dans leur phase plasma dense, en reproduisant correctement les résultats des expériences de chocs par laser haute-puissance. Néanmoins, des écarts importants perdurent entre modèles planétaires et observations. Ils sont attribués à la non-idéalité du mélange H-He et de possibles transitions de phase. Dans ce travail de thèse, ces méthodes numériques ab initio ont été appliquées au cas des mélanges H-He. L'étude thermodynamique a révélé des déviations sensibles par rapport aux prédictions obtenues pour des mélanges idéaux. Par ailleurs, les calculs des propriétés de transport (conductivité électrique, thermique, propriétés optiques...) ont montré une transition isolant-conducteur du mélange, notamment par l'ionisation de l'hydrogène. Celle-ci s'accompagne, dans un certain domaine de paramètres, d'une séparation de phase entre l'hydrogène conducteur et l'hélium neutre. Ces calculs ont également permis d'établir des diagnostics pour les expériences laser, afin de pouvoir corroborer cet ensemble de résultats et obtenir, à terme, une équation d'état fiable du mélange H-He, applicable aux planètes géantes.
4

Physique des plasmas denses : le mélange hydrogène-hélium dans les intérieurs planétaires / Dense plasma physics : the hydrogen-helium mixtures in planetary interiors

Soubiran, François 04 October 2012 (has links)
Les conditions thermodynamiques régnant au sein des planètes géantes telles que Jupiter, Saturne et bon nombre des exoplanètes découvertes quotidiennement, impliquent que les interactions entre particules – atomes, ions, électrons – sont prépondérantes dans les enveloppes planétaires, principalement composées d'hydrogène et d'hélium, et déterminent les propriétés mécaniques et thermiques de ces objets. La caractérisation de ces plasmas denses est donc cruciale pour comprendre la structure et l'évolution de ces planètes géantes. Les simulations ab initio, utilisant la théorie de la fonctionnelle de la densité, ont montré leurs performances pour la caractérisation des espèces pures dans leur phase plasma dense, en reproduisant correctement les résultats des expériences de chocs par laser haute-puissance. Néanmoins, des écarts importants perdurent entre modèles planétaires et observations. Ils sont attribués à la non-idéalité du mélange H-He et de possibles transitions de phase. Dans ce travail de thèse, ces méthodes numériques ab initio ont été appliquées au cas des mélanges H-He. L'étude thermodynamique a révélé des déviations sensibles par rapport aux prédictions obtenues pour des mélanges idéaux. Par ailleurs, les calculs des propriétés de transport (conductivité électrique, thermique, propriétés optiques...) ont montré une transition isolant-conducteur du mélange, notamment par l'ionisation de l'hydrogène. Celle-ci s'accompagne, dans un certain domaine de paramètres, d'une séparation de phase entre l'hydrogène conducteur et l'hélium neutre. Ces calculs ont également permis d'établir des diagnostics pour les expériences laser, afin de pouvoir corroborer cet ensemble de résultats et obtenir, à terme, une équation d'état fiable du mélange H-He, applicable aux planètes géantes. / The thermodynamical conditions inside the giant planets - like Jupiter, Saturn or many of the daily discovered exoplanets – are such that the interactions between particles – atoms, ions, electrons – are highly dominant in the physics of giant planets envelope s, mostly made of hydrogen and helium in a plasma phase. The heat and mechanical properties of these planets are mainly determined by these interactions. Thus, it is of crucial interest to study these dense plasmas to understand the structure and the evolution of the giant planets. The dense plasma phase of the pure compounds has been successfully characterized by ab initio simulations using density functional theory. For instance, they correctly reproduced the results obtained in high-power laser chock experiments. Nevertheless, large discrepancies remain between planetary models and observations. A proposed hypothesis is a strong influence of the H-He mixture non-ideality and possible phase separations. In this work, these ab initio numerical methods have been applied to the H-He mixtures. The thermodynamical study has shown sensitive deviations from ideal mixtures. The estimates of the transport properties (electrical and heat conductivities, optical properties...) indicate an insulator-conductor transition in the mixture, associated with hydrogen ionization. In some conditions, demixing of conducting hydrogen and neutral helium has also been observed. These computations have allowed us to determine pathways to verify our results through laser experiments. This is the first step in the establishment of a reliable equation of state of H-He mixtures, usable in giant planets modeling.
5

Inner structure and atmospheric dynamics of gaseous giant planets / Structure interne et dynamique atmosphérique des planètes géantes gazeuses

Debras, Florian 21 December 2018 (has links)
Lors de cette thèse, je me suis attaché à améliorer notre connaissance des planètes géantes, depuis notre voisine Jupiter jusqu’aux exoplanètes lointaines : les Jupiter chauds. Grâce aux nouvelles observations gravitationnelles extrêmement fines du satellite Juno, entré en orbite autour de Jupiter en juillet 2016, il est possible d’améliorer significativement les modèles de structure interne de la planète. Cependant, cela ne peut se faire qu’à condition d’avoir une méthode suffisamment précise pour exploiter au maximum les données. J’ai donc étudié la méthode des sphéroides de Maclaurin concentriques et ses limitations. A l’aide des connaissances contemporaines sur les équations d’état, les propriétés diffusives et les transition ou séparation de phase entre l’Hydrogène et l’Hélium, il m’a alors été possible de produire de nouveaux modèles de Jupiter. Arriver à combiner les observations gravitationnelles de Juno et les abondances d’éléments observées par Galiléo n’a pu se faire qu’en décomposant Jupiter en au moins 4 zones, de l’enveloppe externe jusqu’au coeur compact. J’ai montré que la taille de ce coeur compact était dégénérée avec la variation d’entropie à l’intérieur de la planète.La structure interne des Jupiter chauds quant à elle est très dépendante de leur dynamique atmosphérique, qui entraîne une inflation de leur rayon. J’ai étudié les atmosphères de ces planètes à l’aide du modèle de circulation globale de l’Université d’Exeter et d’un code linéaire que j’ai développé, appelé ECLIPS3D. La caractéristique la plus importante de la circulation atmosphérique est la présence d’un jet superrotatif, étendu en latitude.J’ai donc étudié la création de ce jet à l’aide d’arguments théoriques pour s’assurer de sa pertinence physique. L’étude de la solution linéaire dépendante du temps, associée à des arguments numériques sur la convergence de quantité de mouvement par les vents verticaux m’ont permis d’établir une compréhension globale, cohérente de l’accélération de la superrotation dans l’atmosphère de ces planètes.Avec ce travail, j’ai amélioré ma compréhension théorique des planètes géantes et développé des codes qui peuvent être utilisés pour améliorer nos connaissances sur la structure interne et la dynamique atmosphérique des planètes géantes, que ce soit Jupiter, Saturne ou les Jupiter chauds. / Through this thesis, I have been motivated by the will to improve our knowledge of giant planets, from our neigh- bouring Jupiter to the far away worlds across the galaxy: hot Jupiters.With the latest, extremely precise observations of the satellite Juno, new models of the interior of Jupiter can be derived. A precise enough method is required to take full advantage of these outstanding data, and I therefore studied the concentric Maclaurin spheroid method and its limitations.With contemporary understanding on the equations of state, diffusive properties and phase transition/separation of hydrogen and helium, I could then focus on producing new interior models of Jupiter. Combining the gravitational observations of Juno with the elemental observations of Galileo has proven to be a complicated task, which required to decompose the planet into at least four regions from the outer envelope to the inner, compact core. I have shown that the size of the compact core is degenerated with the entropy variation within the planet.Concerning hot Jupiters, I have reminded of the need to understand their atmospheric dynamics to constrain their interior structure, as the wind circulation can lead to an inflation of their radius. Studying numerically their at- mospheric dynamics was performed with the University of Exeter’s global circulation model as well as with the development of a linear solver that I called ECLIPS3D. An important, robust feature is the presence of a broad equatorial superrotation in the atmosphere of these planets.Finally, I have explored the spin up of this superrotation on theoretical grounds, to assess its physical relevance. I have calculated the linear time dependent solution to show the importance of differential drag and radiative damp- ing, and have used numerical simulations to highlight the importance of vertical momentum acceleration. Globally, a coherent picture of the initial spin up of superrotation was obtained.Through this work, I have improved my theoretical understanding of giant planets and developed various codes that can be used to study and improve our knowledge of the interior structure and atmospheric dynamics of giant planets, from Jupiter and Saturn to hot Jupiters.
6

Modélisation du transfert radiatif dans les atmosphères de Jupiter et Saturne : application à l'étude des chevauchements des raies Lyman alpha, beta et gamma de l'hydrogène atomique avec des raies des systèmes de Lyman et Werner de l'hydrogène moléculaire

Barthelemy, Mathieu 17 December 2003 (has links) (PDF)
L'étude du rayonnement UV de la haute atmosphère des planètes géantes ne peut se faire qu'à l'aide de techniques de transfert radiatif. Ces hautes atmosphères étant constituées essentiellement d'hydrogène, il convient d'étudier les raies de la série de Lyman de l'hydrogène atomique. Cependant, la présence dans ces atmosphères, de H et de H2, génère des chevauchements, entre les raies de la série de Lyman et les bandes de l'hydrogène moléculaire. Nous avons modélisé les effets de ces chevauchements pour les raies Lyman alpha, beta et gamma. On constate que ces effets sont souvent importants surtout à cause de l'auto-absorption des raies dues à H2 à la fois sur Jupiter et Saturne. On peut obtenir via cette méthode, des informations sur l'état et les concentrations de l'hydrogène moléculaire et atomique, en particulier les températures vibrationnelles de l'hydrogène moléculaire. Cette technique pourra être étendue aux zones aurorales et éventuellement aux planètes extrasolaires.
7

Infuence of volatiles transport in disks on giant planets composition / L'influence du transport des volatiles dans les disques sur la composition des planètes géantes

Ali Dib, Mohamad 21 September 2015 (has links)
Ce manuscrit présente des travaux originaux sur la théorie de la formation des planètes.Le but fondamental est de connecter la composition chimique des planètes géantes etdes petits corps avec les processus physiques et chimiques prenant lieu dans le disqueprotoplanétaire.1. Dans le chapitre 1 j'introduis les propriétés fondamentales des disques protoplané-taires ainsi que les bases de la théorie de formation des planètes.2. Dans le chapitre 2 j'attaque le problème du rapport C/O supersolaire mesurérécemment dans WASP 12b. J'élabore un modèle qui suit la distribution et transportde l'eau et du CO gazeux et solides à travers leurs di_usion, condensation,coagulation, gaz drag et sublimation afin de quantifer la variation du rapport C/Odans le disque en fonction du temps et de la distance. Mon modèle montre que,au fur et à mesure du temps, les vapeurs vont être enlever de l'intérieur de leurlignes de glaces respectives, avec le vapeur CO enlevé beaucoup plus lentement quela vapeur d'eau. Cette effet va augmenter le rapport C/O à l'intérieur de la lignede glace de l'eau d'une valeur initiale solaire (0.55) vers une valeur au voisinagede l'unité, permettant de former des planètes géantes avec des rapports C/O _ 1,comme WASP 12b. Je fnis ce chapitre en discutant les preuves observationnellesde cette enlèvement des vapeurs à l'intérieur des lignes de glaces.3. Dans le chapitre 3 j'utilise le même modèle pour interpréter la composition chimiqued'Uranus et Neptune. Je montre comment la formation de ces deux planètessur la sur-densité de glaces prédite par mon modèle sur la ligne de glace de CO peutexpliquer pourquoi ces planètes sont à la fois riches en carbone, pauvres en azote etavec des valeurs D/H sous-cométaires.4. Dans le chapitre 4 je change de sujet vers les propriétés chimiques des météoriteschondritiques, surtout leurs rapports D/H. J'utilise un modèle de disques à 2 couches(actif et morte) avec une code d'évolution D/H pour vérifier si les profiles thermiquesnon monotone trouvés dans ces disques peuvent expliquer la large gamme des valeursD/H trouvé entre les différents familles chondritiques. Je finis ce chapitre en discutantles implications de ce modèle des disques contenant des zones mortes sur laformation de Jupiter.5. Finalement je résume nos résultats dans Conclusions & perspectives, et finis enposant des questions que j'espère voir résolus prochainement. / In this manuscript I present multiple original works on planets formation theory. Themain goal is to connect the chemical composition of giant planets and small bodies to thephysical and chemical processes taking place in the protoplanetary disk.1. In chapter 1 I introduce the fundamental properties of disks and the basics ofplanets formation theory.2. In chapter 2 I tackle the supersolar C/O and subsolar C/H ratios measured recentlyin WASP 12b. I elaborate a model that tracks water and CO vapors and icesevolution through di_usion, condensation, coagulation, gas drag and sublimation inorder to quantify the variation of the C/O ratio as a function of distance and time.My model shows that, over time, vapors will get permanently depleted inside oftheir respective snowlines with CO getting depleted much slower than water. Thiswill increase the C/O ratio inside of the water snowline from the solar value of 0.55to near unity, allowing the formation of giant planets with C/O _ 1, such as WASP12b. I end this chapter by discussing the observational proofs for the existence ofsuch vapor depletions inside the icelines3. In chapter 3 I use the same model to interpret the chemical composition of Uranusand Neptune. I show how the formation of both planets on the CO snowline's icesoverdensity predicted by this model can explain why both planets are rich in carbon,poor in nitrogen and have subcometary D/H ratios.4. In chapter 4 I shift the discussion to the chemical properties of chondritic meteorites,mainly their D/H ratios. I use a snapshot from a layered (active + dead)zones disk model with a D/H ratio evolution code to check if the non monotonicthermal pro_les in these disks can explain the wide range of D/H ratios measuredin the di_erent chondritic families. I end this chapter by discussing the implicationsof the dead zone disk models for the formation of Jupiter.5. I _nally summarize my results in Conclusions & perspectives, and _nish bypointing out several relevant open questions to be hopefully resolved soon.
8

Observations millimétriques et submillimétriques des composés oxygénés dans les atmosphères planétaires : préparation aux missions Hershel et ALMA

Cavalie, Thibaut 03 October 2008 (has links)
Les domaines millimétrique et submillimétrique sont des domaines qui permettent de caractériser la physico-chimie des atmosphères planétaires par l'observation des molécules qui les composent. Le télescope spatial Herschel et l'interféromètre ALMA, qui entreront prochainement en service, permettront d'améliorer considérablement notre connaissance des atmosphères planétaires. L'un des principaux objectifs de cette thèse est de développer un modèle d'analyse des observations millimétriques et submillimétriques qui seront effectuées avec Herschel et ALMA. C'est en ce sens que nous détaillons un modèle qui tient compte de la géométrie sphérique des corps observés et des spécificités instrumentales propres aux télescopes utilisés. Dans un premier temps, ce qui a permis notamment de valider notre modèle de transfert radiatif, nous avons étudié l'origine des composés oxygénés dans les atmosphères des planètes géantes. Nous présentons l'analyse d'observations de Saturne et d'Uranus, effectuées avec les télescopes de l'IRAM et du JCMT, pour contraindre les sources de monoxyde de carbone dans ces atmosphères. Nous améliorons ainsi les limites supérieures précédemment publiées et réalisons la première observation du monoxyde de carbone dans l'atmosphère de Saturne dans le domaine submillimétrique. Cette observation prouve l'existence d'une source externe pour ce composé. Nous analysons également des observations récentes de Jupiter, effectuées par le télescope spatial Odin, pour contraindre l'origine externe de l'eau dans la stratosphère de cette planète. Les observations confirment que la chute de la comète Shoemaker-Levy~9 est vraisemblablement la source principale d'eau. Dans un second temps, nous avons appliqué notre modèle à l'étude de la structure thermique et la dynamique de l'atmosphère de Mars, à partir d'observations du monoxyde de carbone. Ces observations sont comparées aux prédictions d'un modèle de circulation générale, ce qui permet de vérifier la validité de ses prédictions et de fournir de nouvelles contraintes observationnelles pour ce type de modélisations. Enfin, nous avons appliqué notre modèle à l'étude des planètes géantes avec le télescope spatial Herschel, dans le cadre du programme-clé de temps garanti du télescope spatial Herschel ``Water and related chemistry in the Solar System''. Nous avons également identifié les améliorations à apporter à notre modèle pour analyser des observations ALMA. / The planetary atmospheres can be characterized by observations carried out in the millimeter and submillimeter wavelength ranges. In a near future, the Herschel Space Observatory as well as the ALMA interferometer will increase our knowledge of the planet atmospheres. One of the main goals of this thesis work consists in developping an analysis tool for millimeter and submillimeter observations, which will be carried out with Herschel and ALMA. The model we have developped takes into account the spherical geometry of the planets and the properties of the telescopes. First, we have studied the origin of oxygen compounds in the atmospheres of the giant planets. We have validated our radiative transfer model from this study. We present the analysis of observations of carbon monoxide in the atmospheres of Saturn and Uranus, which have been carried out with the IRAM and JCMT telescopes, in order to constrain the origin of this compound. We improve existing upper limits and prove the existence of an external source of carbon monoxide in the atmosphere of Saturn from the first observation of this compound at submillimeter wavelengths. We also analyse recent observations from the Odin space telescope of water vapor in the stratosphere of Jupiter to constrain its external source. We confirm that the observed water is probably mostly due to the collision of comet Shoemaker-Levy~9 with the planet. Then, we have used our model in order to study the thermal structure as well as the dynamics of the atmosphere of Mars from carbon monoxide observations. These observations are compared to predictions of a general circulation model to check the consistency of the predictions. They also provide new observational constraints to general circulation models. Finally, we have used our model to study the atmospheres of the giant planets in the frame of the Herschel garanteed time key-program ``Water and related chemistry in the Solar System''. We have also determined the upgrades to implement in our model to analyse ALMA observational data.
9

Modélisations photochimiques saisonnières des stratosphères de Jupiter et Saturne / Seasonal photochemical modeling of Jupiter and Saturn’s stratosphere

Hue, Vincent 24 September 2015 (has links)
L’un des objectifs de cette thèse est d’interpréter les observations des principaux hydrocarbures(C2H2 et C2H6) effectuées par Cassini (NASA/ESA) sur Jupiter et Saturne. Les modèles photochimiques à une dimension sont insuffisants pour interpréter ces observations spatialement résolues. J’ai développé le premier modèle photochimique saisonnier à deux dimensions (altitude-latitude) des planètes géantes qui calcule leur composition chimique.En l’absence de transport méridional, la composition chimique de Saturne suit les variations d’ensoleillement. Les abondances de C2H2 et C2H6 mesurées par Cassini (Guerletet al., 2009) sont reproduites jusqu’aux latitudes moyennes, à des pressions supérieures à0,1mbar. Les écarts notés dans l’hémisphère sud suggèrent la présence de dynamique ou d’une chimie entre les ions et les espèces neutres. J’ai couplé, pour la première fois, mon modèle photochimique avec le modèle radiatif de Greathouse et al. (2008). Nous prédisons un décalage du pic saisonnier de température, par rapport aux précédents modèles, d’une demi-saison à haute altitude et aux hautes latitudes.Jupiter présente de faibles variations saisonnières de composition chimique, uniquement contrôlées par son excentricité. Les distributions méridionales observées de C2H2 etC2H6 présentent des tendances opposées (Nixon et al., 2010). Mon modèle est en accord avec les observations de C2H6 lorsque j’invoque une combinaison de diffusion méridionale et de circulation stratosphérique, tout en provoquant un plus grand désaccord avec les observations de C2H2. La chimie ionique pourrait principalement affecter C2H2 et jouer un rôle important dans l’atmosphère de Jupiter. / One of the goals of this thesis is to interpret the observations of the main hydrocarbons(C2H2 and C2H6) from Cassini (NASA/ESA) on Jupiter and Saturn. The one-dimensional photochemical models are insufficient to explain these spatially resolved observations. I have developed the first two-dimensional (altitude-latitude) seasonal photochemical model for the giant planets, which predicts their chemical composition.Without meridional transport, Saturn’s chemical composition follows the insolation variations. The C2H2 and C2H6 abundances measured by Cassini (Guerlet et al., 2009)are reproduced from the equator up to mid-latitudes, at pressures higher than 0.1mbar.At higher latitudes, the disagreements suggest either a stratospheric circulation cell orthe signature of ion-neutral chemistry. For the first time, I have coupled our seasonal photochemical model with the seasonal radiative model of Greathouse et al. (2008). I predict that the seasonal temperature peak is shifted half a season earlier, with respect to previous models, at high latitudes in the higher stratosphere.Jupiter shows weak seasonal variations of chemical composition, only controlled by its orbital eccentricity. The observed meridional distributions of C2H2 and C2H6 show opposition trends (Nixon et al., 2010). C2H6 observed distribution is reproduced when Isuppose a combination of meridional diffusion and stratospheric circulation, while causingat the same time a stronger agreement with the C2H2 observations. Accounting for theion-neutral chemistry might preferentially affect C2H2 and potentially play a key role on hydrocarbon abundances in Jupiter’s stratosphere.

Page generated in 0.4718 seconds