• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • Tagged with
  • 17
  • 17
  • 17
  • 9
  • 8
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Bienen, Wespen und ihre Gegenspieler in Kaffee-Anbausystemen auf Sulawesi: Bestäubungserfolg, Interaktionen, Habitatbewertung / Bees, wasps, and their natural enemies in coffee systems of Sulawesi: Pollination efficiency, interactions, habitat evaluation

Klein, Alexandra-Maria 23 May 2003 (has links)
No description available.
12

The effects of soil warming on flowering phenology, reproductive strategy and attractiveness to pollinators in the herb Cerastium fontanum (Caryophyllaceae)

Johner, Julia January 2019 (has links)
Phenotypic plasticity plays an important role in organisms’ adaptability to environmental change such as global warming caused by greenhouse-gas emissions. One plastic response to increased temperatures is for organisms to shift their phenology. It is of great concern that the phenologies of interacting species, such as plants and pollinators, may be shifting at different rates, causing temporal mismatches, which for plants can lead to unsuccessful reproduction. The “reproductive assurance hypothesis” states that plants capable of self-pollination should be under high selection to employ this as their main reproductive strategy in the event of pollinator scarcity to ensure reproduction, and consequently invest less in attracting pollinators. This study examines how soil warming in the Hengill geothermal area in Iceland affects the flowering phenology, reproductive strategy and investment in attractiveness to pollinators in the self-compatible herb Cerastium fontanum (Caryophyllaceae), when grown in a common garden in Stockholm, Sweden. Previous research showed that C. fontanum from warmed soils flowered earlier in situ than plants from colder soils, and later when grown in a common environment. In this study, C. fontanum plants collected along a temperature gradient followed the same counter-gradient pattern, where plants from warmer soils flowered later than plants from colder soils. Soil temperature at site of origin positively affected flower number but had no effect on flower size, seed production from autogamous self-pollination or visitation rate. Based on my findings it does not appear that C. fontanum, despite having an earlier flowering phenology in situ, is under any selection to alter its reproductive strategy or investment in attractiveness to pollinators when grown in a common temperature, and therefore it seems unlikely that plants are experiencing a temporal mismatch with insect pollinators. However, it would be worthwhile to conduct a similar experiment in Iceland to better understand how an earlier flowering affects pollination systems.
13

The conservation value of habitat remnants for flower visiting insects in the lowlands of the Cape Floristic Region

Vrdoljak, Sven Michael 12 1900 (has links)
Thesis (PhD(Agric) (Conservation Ecology and Entomology))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: See full text document for abstract / AFRIKAANSE OPSOMMING: sien volteks dokument vir die opsomming
14

Pollination ecology of Trachymene incisa (Apiaceae): Understanding generalised plant-pollinator systems

Davila, Yvonne Caroline January 2006 (has links)
Doctor of Philosophy (PhD) / A renewed focus on generalised pollinator systems has inspired a conceptual framework which highlights that spatial and temporal interactions among plants and their assemblage of pollinators can vary across the individual, population, regional and species levels. Pollination is clearly a dynamic interaction, varying in the number and interdependence of participants and the strength of the outcome of the interaction. Therefore, the role of variation in pollination is fundamental for understanding ecological dynamics of plant populations and is a major factor in the evolution and maintenance of generalised and specialised pollination systems. My study centred on these basic concepts by addressing the following questions: (1) How variable are pollinators in a generalised pollination system? To what degree do insect visitation rates and assemblage composition vary spatially among populations and temporally among flowering seasons? (2) How does variation in pollinators affect plant reproductive success? I chose to do this using a model system, Trachymene incisa subsp. incisa (Apiaceae), which is a widespread Australian herbaceous species with simple white flowers grouped into umbels that attract a high diversity of insect visitors. The Apiaceae are considered to be highly generalist in terms of pollination, due to their simple and uniform floral display and easily accessible floral rewards. Three populations of T. incisa located between 70 km and 210 km apart were studied over 2-3 years. The few studies investigating spatial and temporal variation simultaneously over geographic and yearly/seasonal scales indicate that there is a trend for more spatial than temporal variation in pollinators of generalist-pollinated plants. My study showed both spatial and temporal variation in assemblage composition among all populations and variation in insect visitation rates, in the form of a significant population by year interaction. However, removing ants from the analyses to restrict the assemblage to flying insects and the most likely pollinators, resulted in a significant difference in overall visitation rate between years but no difference in assemblage composition between the Myall Lakes and Tomago populations. These results indicate more temporal than spatial variation in the flying insect visitor assemblage of T. incisa. Foraging behaviour provides another source of variation in plant-pollinator interactions. Trachymene incisa exhibits umbels that function as either male or female at any one time and offer different floral rewards in each phase. For successful pollination, pollinators must visit both male and female umbels during a foraging trip. Insects showed both preferences and non-preferences for umbel phases in natural patches where the gender ratio was male biased. In contrast, insects showed no bias in visitation during a foraging trip or in time spent foraging on male and female umbels in experimental arrays where the gender ratio was equal. Pollinator assemblages consisting of a mixture of different pollinator types coupled with temporal variation in the assemblages of populations among years maintains generalisation at the population/local level. In addition, spatial variation in assemblages among populations maintains generalisation at the species level. Fire alters pollination in T. incisa by shifting the flowering season and reducing the abundance of flying insects. Therefore, fire plays an important role in maintaining spatial and temporal variation in this fire-prone system. Although insect pollinators are important in determining the mating opportunities of 90% of flowering plant species worldwide, few studies have looked at the effects of variation in pollinator assemblages on plant reproductive success and mating. In T. incisa, high insect visitation rates do not guarantee high plant reproductive success, indicating that the quality of visit is more important than the rate of visitation. This is shown by comparing the Agnes Banks and Myall Lakes populations in 2003: Agnes Banks received the highest visitation rate from an assemblage dominated by ants but produced the lowest reproductive output, and Myall Lakes received the lowest visitation rate by an assemblage dominated by a native bee and produced the highest seedling emergence. Interestingly, populations with different assemblage composition can produce similar percentage seed set per umbel. However, similar percentage seed set did not result in similar percentage seedling emergence. Differences among years in reproductive output (total seed production) were due to differences in umbel production (reproductive effort) and proportion of umbels with seeds, and not seed set per umbel. Trachymene incisa is self-compatible and suffers weak to intermediate levels of inbreeding depression through early stages of the life cycle when seeds are self-pollinated and biparentally inbred. Floral phenology, in the form of synchronous protandry, plays an important role in avoiding self-pollination within umbels and reducing the chance of geitonogamous pollination between umbels on the same plant. Although pollinators can increase the rate of inbreeding in T. incisa by foraging on both male and female phase umbels on the same plant or closely related plants, most consecutive insect movements were between plants not located adjacent to each other. This indicates that inbreeding is mostly avoided and that T. incisa is a predominantly outcrossing species, although further genetic analyses are required to confirm this hypothesis. A new conceptual understanding has emerged from the key empirical results in the study of this model generalised pollination system. The large differences among populations and between years indicate that populations are not equally serviced by pollinators and are not equally generalist. Insect visitation rates varied significantly throughout the day, highlighting that sampling of pollinators at one time will result in an inaccurate estimate and usually underestimate the degree of generalisation. The visitor assemblage is not equivalent to the pollinator assemblage, although non-pollinating floral visitors are likely to influence the overall effectiveness of the pollinator assemblage. Given the high degree of variation in both the number of pollinator species and number of pollinator types, I have constructed a model which includes the degree of ecological and functional specialisation of a plant species on pollinators and the variation encountered across different levels of plant organisation. This model describes the ecological or current state of plant species and their pollinators, as well as presenting the patterns of generalisation across a range of populations, which is critical for understanding the evolution and maintenance of the system. In-depth examination of pollination systems is required in order to understand the range of strategies utilised by plants and their pollinators, and I advocate a complete floral visitor assemblage approach to future studies in pollination ecology. In particular, future studies should focus on the role of introduced pollinators in altering generalised plant-pollinator systems and the contribution of non-pollinating floral visitors to pollinator assemblage effectiveness. Comparative studies involving plants with highly conserved floral displays, such as those in the genus Trachymene and in the Apiaceae, will be useful for investigating the dynamics of generalised pollination systems across a range of widespread and restricted species.
15

Pollination ecology of Trachymene incisa (Apiaceae): Understanding generalised plant-pollinator systems

Davila, Yvonne Caroline January 2006 (has links)
Doctor of Philosophy (PhD) / A renewed focus on generalised pollinator systems has inspired a conceptual framework which highlights that spatial and temporal interactions among plants and their assemblage of pollinators can vary across the individual, population, regional and species levels. Pollination is clearly a dynamic interaction, varying in the number and interdependence of participants and the strength of the outcome of the interaction. Therefore, the role of variation in pollination is fundamental for understanding ecological dynamics of plant populations and is a major factor in the evolution and maintenance of generalised and specialised pollination systems. My study centred on these basic concepts by addressing the following questions: (1) How variable are pollinators in a generalised pollination system? To what degree do insect visitation rates and assemblage composition vary spatially among populations and temporally among flowering seasons? (2) How does variation in pollinators affect plant reproductive success? I chose to do this using a model system, Trachymene incisa subsp. incisa (Apiaceae), which is a widespread Australian herbaceous species with simple white flowers grouped into umbels that attract a high diversity of insect visitors. The Apiaceae are considered to be highly generalist in terms of pollination, due to their simple and uniform floral display and easily accessible floral rewards. Three populations of T. incisa located between 70 km and 210 km apart were studied over 2-3 years. The few studies investigating spatial and temporal variation simultaneously over geographic and yearly/seasonal scales indicate that there is a trend for more spatial than temporal variation in pollinators of generalist-pollinated plants. My study showed both spatial and temporal variation in assemblage composition among all populations and variation in insect visitation rates, in the form of a significant population by year interaction. However, removing ants from the analyses to restrict the assemblage to flying insects and the most likely pollinators, resulted in a significant difference in overall visitation rate between years but no difference in assemblage composition between the Myall Lakes and Tomago populations. These results indicate more temporal than spatial variation in the flying insect visitor assemblage of T. incisa. Foraging behaviour provides another source of variation in plant-pollinator interactions. Trachymene incisa exhibits umbels that function as either male or female at any one time and offer different floral rewards in each phase. For successful pollination, pollinators must visit both male and female umbels during a foraging trip. Insects showed both preferences and non-preferences for umbel phases in natural patches where the gender ratio was male biased. In contrast, insects showed no bias in visitation during a foraging trip or in time spent foraging on male and female umbels in experimental arrays where the gender ratio was equal. Pollinator assemblages consisting of a mixture of different pollinator types coupled with temporal variation in the assemblages of populations among years maintains generalisation at the population/local level. In addition, spatial variation in assemblages among populations maintains generalisation at the species level. Fire alters pollination in T. incisa by shifting the flowering season and reducing the abundance of flying insects. Therefore, fire plays an important role in maintaining spatial and temporal variation in this fire-prone system. Although insect pollinators are important in determining the mating opportunities of 90% of flowering plant species worldwide, few studies have looked at the effects of variation in pollinator assemblages on plant reproductive success and mating. In T. incisa, high insect visitation rates do not guarantee high plant reproductive success, indicating that the quality of visit is more important than the rate of visitation. This is shown by comparing the Agnes Banks and Myall Lakes populations in 2003: Agnes Banks received the highest visitation rate from an assemblage dominated by ants but produced the lowest reproductive output, and Myall Lakes received the lowest visitation rate by an assemblage dominated by a native bee and produced the highest seedling emergence. Interestingly, populations with different assemblage composition can produce similar percentage seed set per umbel. However, similar percentage seed set did not result in similar percentage seedling emergence. Differences among years in reproductive output (total seed production) were due to differences in umbel production (reproductive effort) and proportion of umbels with seeds, and not seed set per umbel. Trachymene incisa is self-compatible and suffers weak to intermediate levels of inbreeding depression through early stages of the life cycle when seeds are self-pollinated and biparentally inbred. Floral phenology, in the form of synchronous protandry, plays an important role in avoiding self-pollination within umbels and reducing the chance of geitonogamous pollination between umbels on the same plant. Although pollinators can increase the rate of inbreeding in T. incisa by foraging on both male and female phase umbels on the same plant or closely related plants, most consecutive insect movements were between plants not located adjacent to each other. This indicates that inbreeding is mostly avoided and that T. incisa is a predominantly outcrossing species, although further genetic analyses are required to confirm this hypothesis. A new conceptual understanding has emerged from the key empirical results in the study of this model generalised pollination system. The large differences among populations and between years indicate that populations are not equally serviced by pollinators and are not equally generalist. Insect visitation rates varied significantly throughout the day, highlighting that sampling of pollinators at one time will result in an inaccurate estimate and usually underestimate the degree of generalisation. The visitor assemblage is not equivalent to the pollinator assemblage, although non-pollinating floral visitors are likely to influence the overall effectiveness of the pollinator assemblage. Given the high degree of variation in both the number of pollinator species and number of pollinator types, I have constructed a model which includes the degree of ecological and functional specialisation of a plant species on pollinators and the variation encountered across different levels of plant organisation. This model describes the ecological or current state of plant species and their pollinators, as well as presenting the patterns of generalisation across a range of populations, which is critical for understanding the evolution and maintenance of the system. In-depth examination of pollination systems is required in order to understand the range of strategies utilised by plants and their pollinators, and I advocate a complete floral visitor assemblage approach to future studies in pollination ecology. In particular, future studies should focus on the role of introduced pollinators in altering generalised plant-pollinator systems and the contribution of non-pollinating floral visitors to pollinator assemblage effectiveness. Comparative studies involving plants with highly conserved floral displays, such as those in the genus Trachymene and in the Apiaceae, will be useful for investigating the dynamics of generalised pollination systems across a range of widespread and restricted species.
16

Influence of spatial and temporal factors on plants, pollinators and plant-pollinator interactions in montane meadows of the western Cascades Range

Pfeiffer, Vera W. 01 June 2012 (has links)
Montane meadows comprise less than 5% of the landscape of the western Cascades of Oregon, but they provide habitat for diverse species of plants and pollinators. Little is known about plant-pollinator network structure at these sites. This study quantified plant-pollinator interactions over the summer of 2011, based on six observations of 10 permanent subplots in 15 meadows, stratified by size and isolation. The study examined (1) relationships between richness and abundance of flowers, pollinators, and interactions; (2) distribution of abundance and richness of flowers, pollinators, and interactions with regards to surrounding meadow habitat; (3) change in flower and pollinator abundance over the season; (4) factors associated with the presence of various guilds of pollinators; and (5) the structure of plant-pollinator networks. The study showed that (1) richness of pollinators increased 2x faster than richness of flowers with increased abundance; (2) density of flowers and interactions was positively correlated with meadow size and diversity of pollinators and interactions were both correlated with surrounding habitat at two spatial scales; (3) peak flower abundance coincided with or preceded peaks in pollinator populations; (4) abundance of three guilds of bees exhibited different patterns of association to surrounding habitat and meadow soil moisture corresponding to various dispersal potential and phenology of guild species; and (5) the number of network pairings for plants and pollinators increased with increasing species richness of potential interaction partners and all networks were found to be significantly nested. Results of this study indicate that plant-pollinator networks are complex assemblages of species, in which spatial and temporal patterns of habitat affect species composition and network structure. In particular, flower and pollinator abundance and richness are depressed in small and isolated meadows. Significant nestedness emerged as a pattern of network level organization across the study meadows. / Graduation date: 2013
17

Humming along or buzzing off?: the elusive consequences of plant-pollinator mismatches and factors limiting seed set in the Coast Range of British Columbia

Straka, Jason Ryan 29 November 2012 (has links)
There is concern that climate change may cause mismatches between timing of flowering and activity of pollinators (phenology). However, concluding that mismatches will occur, and have serious consequences for pollination services, requires assumptions that have not yet been tested. I begin by discussing a set of these assumptions, bringing past research into the context of mismatch. Briefly, the assumptions are that 1) dates of first-flowering or emergence (DFFE) correctly describe phenology (and therefore mismatch); 2) differences in DFFE represent the magnitude of mismatch; 3) advancement of DFFE will be the primary phenological change; 4) shifts will be random and independent for each species; 5) populations of plants and pollinators are “bottom-up” regulated by their mutualistic interactions; 6) all interactions are of similar strength and importance; 7) dispersal, and the spatial context of phenological mismatches can be ignored; and ecological processes including 8) phenotypic plasticity and adaptive evolution of phenology, 9) competition and facilitation, and 10) emergence of novel interactions, will not affect mismatches. I then describe novel experiments, which could help to account for some of these assumptions, clarifying the existence and impacts of mismatches. Next, I present an original field experiment on factors affecting seed set in an alpine meadow in the Coast Range of British Columbia, Canada. I found evidence contradicting the assumption that seed set is primarily limited by pollination. My data highlight the roles of phenology, temperature (degree-days above 15°C, and frost hours), and interactions with pollinators (mutualists) and seed-predators (floral antagonists) in driving patterns of seed set. Seed set of early and late-flowering species responded differently to a 400m elevation gradient, which might be explained by phenology of bumble bees. My data suggest that the consequences of mismatch may be smallest for plants that are fly-pollinated and self-fertile. Non-selfing, bee-pollinated species might be more prone to reproductive limitation through mismatch (affected by snowmelt and cumulative degree-days). Plants that are limited by seed-predators might be negatively affected by warming temperatures with fewer frost hours, and extreme events such as late-season frosts and hail storms can prevent plants from setting seed entirely. Overall, my work emphasizes the importance of complementing theory, data-driven simulations, and meta-analyses with experiments carried out in the field. / Graduate

Page generated in 0.2117 seconds