• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 14
  • 8
  • 8
  • 7
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Phylogenetische Heterogenität der 7S-RNAs von Eukaryonten

Koper-Emde, Dorota. January 2004 (has links) (PDF)
Bochum, Univ., Diss., 2004. / Computerdatei im Fernzugriff.
2

Phylogenetische Heterogenität der 7S-RNAs von Eukaryonten

Koper-Emde, Dorota. January 2004 (has links) (PDF)
Bochum, Universiẗat, Diss., 2004.
3

Genetic requirements for growth of Salmonella typhimurium lacking the proofreading subunit of DNA polymerase III

Lancy, Edward Donald, Jr. January 1990 (has links)
No description available.
4

The role of DNA polymerase III in DNA repair and mutagenesis in Escherichia coli and Salmonella typhimurium

Slater, Steven Charles January 1994 (has links)
No description available.
5

Etude de la localisation à grande échelle de la machinerie de transcription de classe III, et de sa relation avec le facteur de transcription TFIIS dans les cellules souches embryonnaires de souris / Genomic binding of Pol III transcription machinery and relationship with TFIIS transcription factor distribution in mouse embryonic stem cells

Carriere, Lucie 29 September 2011 (has links)
Chez les eucaryotes, l’ARN polymérase (RNAP) III transcrit les ARN de transferts, l’ARN ribosomique 5S, et plusieurs douzaines d’autres ARNs non traduits. Le génome des mammifères contient plusieurs milliers d’éléments répétés, les SINEs. In vitro, leur transcription dépend de la RNAP III. Le taux de transcription de la RNAP III détermine la croissance et la prolifération cellulaires, sa dérégulation a été associée à de nombreux cancers. Afin de caractériser la distribution sur l’ensemble du génome de la RNAP III et de ses facteurs de transcription TFIIIB et TFIIIC, nous avons développé un protocole très spécifique de ChIP-seq en tandem. Nous avons déterminé l’ensemble des gènes liés par la RNAP III dans les cellules souches embryonnaires de souris. Cet ensemble est bien inférieur au nombre de gènes prédits dans le génome. Nous avons également observé la RNAP III et ses facteurs de transcription liés à 30 régions non annotées, seule une d’entre elles est conservée chez l’humain. Un très faible nombre de SINEs sur un demi-million prédits est associé à la RNAP III. Notre étude révèle de nombreux sites liés uniquement par TFIIIC, nommés « extra-TFIIIC loci », ETC chez la levure. Ces sites sont associés à la protéine CTCF, et à la cohésine. La cohésine occupe les sites liés par CTCF, et contribue à la formation de boucles ADN, associées à la répression ou à l’activation de l’expression des gènes. Ces données suggèrent que TFIIIC peut jouer un rôle dans l’organisation de l’architecture chromosomique chez les souris. Nous avons également démontré que TCEA1, l’isoforme ubiquitaire de TFIIS, le facteur d’élongation de la RNAP II, est associée aux gènes actifs de classe III. Ceci suggére que TFIIS est un facteur de transcription de classe III. Finalement, la distribution de TFIIS aux gènes de classe II indique que le recrutement de TFIIS n’est pas suffisant pour contrôler la transition de la RNAP II pausée en 5’ des gènes en élongation. / In eukaryotes, RNA polymerase (RNAP) III transcribes the tRNAs, the 5S ribosomal RNA and a half a dozen known untranslated RNA. Mammalian genome contains several thousand of repeated elements, the Short interspersed repetitive elements (SINE). In vitro, they are transcribed by RNAP III. RNAP III transcription levels determine cell growth and proliferation and, importantly, its deregulation is associated with cancer. Looking at the genome-wide distribution of RNAP III and its transcription factors, TFIIIB and TFIIIC, we develop a highly specific tandem ChIP-sequencing method. We have determined the set of genes that are transcribed by RNAP III in mouse embryonic stem cells. We discovered that not all known class III genes were transcribed in ES cells. We also observed that RNAP III and its transcription factors were present at thirty unannotated sites on the mouse genome, only one of which was conserved in human. Only a couple of hundreds of SINEs out of more than half a million are associated with RNAP III in mouse ES cells. Our study reveals numerous ‘TFIIIC-only’ sites, called ETC for extra-TFIIIC loci in yeast. These sites are correlated with association of CTCF and the cohesin. Cohesin has been shown to occupy sites bound by CTCF and to contribute to DNA loop formation associated with gene repression or activation. This observation suggests that TFIIIC may play a role in chromosome organization in mouse. We also demonstrated that TCEA1, the ubiquitous isoform of TFIIS RNAP II elongation factor, is associated with active class III genes suggesting that TFIIS is a RNAP III transcription factor in mammals. Finally, the distribution of TFIIS on RNAP II-transcribed genes indicated that its recruitment does not control the transition of RNAP II paused at genes 5’ end into elongation.
6

Study of RPC32α, subunit of the RNA polymerase III, in a tumor model / Etude de la régulation de RPC32alpha, sous-unité de l'ARN polymérase III, dans des modèles tumoraux

Bretting, Wiebke 11 December 2017 (has links)
Les ARN polymérases sont des acteurs indispensables de la transcription. Chez les eucaryotes il existe trois ARN polymérases (I, II et III). La ARN polymérase III (Pol III) possède 17 sous-unités, dont une qui existe sous deux formes: RPC32α et RPC32β. Seulement une des deux formes peut être intégrée dans la Pol III, créant ainsi deux polymérases différentes Pol IIIα et Pol IIIβ. Alors que RPC32β est présent dans les cellules somatiques, RPC32α est exprimé surtout dans des cellules souches et des cellules tumorales. Aujourd’hui rien n’est connu sur leurs rôles respectifs. Le cancer du sein est un problème majeur de santé publique car c’est le cancer féminin le plus fréquent. Plusieurs types de cancer du sein sont identifiés selon la présence ou absence de certains récepteurs hormonaux. Des cancers qui testent négative pour le récepteur d’oestrogène et de progestérone et qui ne surexpriment pas le récepteur pour les facteurs de croissance épidermiques humains 2 (HER2) sont appelés triple-négative. Ils ont un pronostique peu favorable, due à l’agressivité de ce type de cancer et un manque de thérapie cibles. Pour étudier le rôle de RPC32α il fallait identifier un model tumorale. En collaboration avec Jean-Paul Feugeas (INSERM UMR 1098) une étude transcriptomique a été fait sur 2627 échantillons cliniques de tissus de sein. L’étude montre que RPC32α est surexprimé dans les cancers triple-négative, alors que son homologue RPC32β est surexprimé dans les tissues normaux. Une analyse sur six lignées de cancer du sein et une ligné non-tumorale ont pu confirmer les résultats de l’analyse transcriptomique. Le modèle de cancer du sein a donc été validé. Une caractérisation des différentes lignées de cancer du sein a démontré que d’autres sousunités de la Pol III n’étaient pas surexprimées dans les cancers triple-négative. La surexpression de RPC32α n’était donc pas une conséquence d’une hyperactivité de la Pol III. Une analyse des transcrits synthétisé par la Pol III a montré que en générale les transcrits de la Pol III étaient plus fortement exprimé dans les cancers triple-négative que dans d’autres cancers. Afin d’étudier l’implication de RPC32α dans les phénomènes de tumorisation, plusieurs lignées cellulaires dépourvues de RPC32alpha ont été créé utilisant la technique CRISPRCAS9. L’absence de RPC32α n’a pas induit une augmentation de transcription ni de l’ARN de 4 RPC32α, ni de celle de RPC32β. Il n’existe donc pas de boucle de rétroaction pour RPC32α et les deux homologues ne sont pas co-régulés. Plusieurs, mais pas tous les transcrits synthétisé par la Pol III ont une expression fortement baissé dans les lignées mutants. Le fait que pas tous les transcrits ne soit affectés par la perte de RPC32α, indique qu’il existe une spécificité de transcription pour Pol IIIα et Pol IIIβ. Les cellules des linges mutants ne présentaient pas de phénotype différent des cellules mères et la croissance était la même dans toutes les lignées. Par contre les tests de croissance en agar-mou ont révélé que les lignées mutants formaient 85% de moins de colonies, indiquant que RPC32α est nécessaire pour la croissance tumorigénique in vitro. Pour tester l’effet de la perte de RPC32α sur la croissance tumorigénique in vivo, des cellules mutants et des cellules mères ont été injecté dans des souris. Les souris greffées avec des cellules mutantes montrent un départ de tumorisation retardé. Au bout de six semaines elles avaient de tumeurs deux fois plus petit que les souris avec des cellules mères. Après ablation de la tumeur primaire, les souris ont été surveillées pour l’apparition de métastases. Quatre semaines plus tard les souris greffées avec des cellules mutantes avaient 100 fois moins de métastases que les souris contrôles. Ces résultats montrent que RPC32α est nécessaire pour la tumorisation in vitro et in vivo. La protéine semble surtout jouer un rôle dans la formation des métastases, qui sont un des problèmes majeurs dans le traitement des cancers. / The RNA polymerases are key players of transcription. Eukaryotes have three RNA polymerases (I, II and III). The RNA polymerase III (Pol III) has 17 subunits, one of which exists in two alternative forms: RPC32α and RPC32β. Only one of the two forms can be integrated into the enzymes, thus generating either Pol IIIα or Pol IIIβ. While RPC32β is found in all somatic cells, RPC32α is expressed in stem cells and tumor cells. To date nothing is known of their respective roles. Breast cancer is one of the major public health problems, as it is the most common cancer in women. Several types of breast cancers are distinguished, according to the presence or absence of hormonal receptors. Cancers that test negative for estrogen receptors, progesterone receptors and that do not overexpress the human epidermal growth factor receptor 2, are called triple-negative breast cancers. They tend to have a poor prognosis, due to the aggressive nature of the cancer and the lack of targeted therapies. To study the role of RPC32α, a tumor model needed to be identified. In collaboration with Jean-Paul Feugeas (INSERM UMR 1098) a transcriptomic study was performed on 2627 clinical breast tissue samples. The study showed that RPC32α was overexpressed in triplenegative breast cancer, whereas RPC32β was overexpressed in normal tissue. A study on six breast cancer cell lines and one non-tumorigenic line confirmed the results of the transcriptomic study. The breast cancer model was thus validated. A characterization of different breast cancer cell lines showed that other Pol III subunits were not overexpressed in triple-negative breast cancer. The overexpression of RPC32α was therefore not a mere consequence of a Pol III hyperactivity. An analysis of the transcripts synthesized by Pol III showed that overall the Pol III transcript levels were elevated in triplenegative breast cancer compared to other breast cancer subtypes. In order to study the role of RPC32α in tumorigenesis, several RPC32α knock-out cell lines were created using CRISPR-Cas9. The loss of RPC32α did not induce an increase in transcription of the RNAs of RPC32α or RPC32β. This shows that no feed-back loop exists for RPC32α and that the two homologues are not co-regulated. Various Pol III transcripts showed decreased expression levels in the knock-out cell lines. Yet not all transcripts were reduced in the absence of RPC32α. This indicates that some sort of transcription specificity must exist for Pol IIIα and Pol IIIβ. The knock-out cell lines did not show any alterations in their phenotype or growth rates. However, in soft agar assays the knock-out cell lines produced 85% less colonies than the mother cell line. This proves that RPC32α is necessary for tumorigenic growth in vitro. To find out if RPC32α was also necessary for tumorigenic growth in vivo, knock-out and wild type cells were injected into mice. The mice grafted with knock-out cells showed a slowed onset of tumor growth. After six weeks, the mice injected with knock-out cells had tumors half the size of the mice injected with wild type cells. The primary tumor was ablated and mice were tracked for metastasis. Four weeks later, mice injected with RPC32α knock-out cells had 100 times less metastasis than the control group. These results show that RPC32α is necessary for tumorigenic growth in vitro and in vivo. The protein seems also to be implicated in the formation of metastasis, which are one of the greatest problems in cancer treatment today.
7

Chromatin remodelling of ribosomal genes - be bewitched by B-WICH

Vintermist, Anna January 2015 (has links)
Transcription of the ribosomal genes accounts for the majority of transcription in the cell due to the constant high demand for ribosomes. The number of proteins synthesized correlates with an effective ribosomal biogenesis, which is regulated by cell growth and proliferation. In the work presented in this thesis, we have investigated the ribosomal RNA genes 45S and 5S rRNA, which are transcribed by RNA Pol I and RNA Pol III, respectively. The focus of this work is the chromatin remodelling complex B-WICH, which is composed of WSTF, the ATPase SNF2h and NM1. We have studied in particular its role in ribosomal gene transcription. We showed in Study I that B-WICH is required to set the stage at rRNA gene promoters by remodelling the chromatin into an open, transcriptionally active configuration. This results in the binding of histone acetyl transferases to the genes and subsequent histone acetylation, which is needed for ribosomal gene activation. Study II investigated the role of B-WICH in transcription mediated by RNA polymerase III. We showed that B-WICH is essential to create an accessible chromatin atmosphere at 5S rRNA genes, which is compatible with the results obtained in Study 1. In this case, however, B-WICH operates as a licensing factor for c-Myc and the Myc/Max/Mxd network. Study III confirmed the importance and the function of the B-WICH complex as an activator of ribosomal genes. We demonstrated that B-WICH is important for the remodelling of the rDNA chromatin into an active, competent state in response to extracellular stimuli, and that the association of the B-WICH complex to the rRNA gene promoter is regulated by proliferative and metabolic changes in cells. The work presented in this thesis has confirmed that the B-WICH complex is an important regulator and activator of Pol I and Pol III transcription. We conclude that B-WICH is essential for remodelling the rDNA chromatin into a transcriptionally active state, as required for efficient ribosomal gene transcription. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: Manuscript.</p><p> </p>
8

Caractérisation de la régulation de la transcription par l'ARN polymérase III chez Saccharomyces cerevisiae / Characterization of RNA polymerase III transcription regulation in Saccharomyces cerevisiae

Tavenet, Arounie 10 November 2011 (has links)
L’ARN polymérase III synthétise de nombreux petits ARN non traduits, dont les ARNt et l’ARNr 5S, essentiels à la croissance de toute cellule. Dans ce travail, nous nous sommes intéressés à la régulation de la transcription par l’ARN polymérase III chez la levure Saccharomyces cerevisiae. Nous avons détecté Sub1 sur les gènes de classe III in vivo. Nous avons également observé que Sub1 est capable de stimuler la transcription par l’ARN III reconstituée in vitro avec les facteurs TFIIIB et TFIIIC recombinants et avec l’ARN Pol III purifiée. Sub1 stimule deux étapes de la transcription : l’initiation et la réinitiation facilitée. Des expériences supplémentaires nous montrent que la protéine interagit directement avec TFIIIB et TFIIIC. Enfin, nous avons pu constater que la délétion de Sub1 dans la levure conduit à une diminution de la transcription par l’ARN Pol III en phase exponentielle de croissance. Par la suite, nous avons cherché à déterminer quel lien pouvait exister entre l’activateur Sub1 et le répresseur Maf1 de la transcription par l’ARN Pol III. Enfin, nous avons également souhaité identifier d’autres éléments pouvant interagir avec la protéine Sub1 au cours de sa fonction de régulateur. / RNA polymerase III synthetizes many small untranslated RNA, including tRNA and 5S rRNA which are essential to cell growth. In this work, we took an interest in RNA polymerase III transcription regulation in the baker’s yeast, Saccharomyces cerevisiae. We have detected Sub1 on all class III genes in vivo. We also observed that Sub1 is able to stimulate RNA polymerase III transcription which has been reconstituted in vitro with TFIIIB et TFIIIC recombinants factors and purified RNA polymerase III. Sub1 stimulates two steps of RNA polymerase III transcription : initiation and facilitated reinitiation. Supplementary experiments established that Sub1 directly interacts with TFIIIB and TFIIIC transcription factors. Finally, we showed that Sub1 deletion in yeast leads to a decrease in RNA polymerase III transcription during exponential phase. Then, we tried to determine which link could exist between Sub1, the activator, and Maf1, the repressor of RNA polymerase III transcription. Furthermore, we attempted to identify other elements which could interact with Sub1 during transcription regulation.
9

Architecture of RNA polymerase II and RNA polymerase III pre-initiation transcription complexes /

Lee, Sally, January 1997 (has links)
Thesis (Ph. D.)--University of Washington, 1997. / Vita. Includes bibliographical references (leaves [68]-77).
10

Characterization of BRF1, an RNA polymerase III transcription factor /

Colbert, Trenton. January 1997 (has links)
Thesis (Ph. D.)--University of Washington, 1997. / Vita. Includes bibliographical references (leaves [131]-144).

Page generated in 0.0569 seconds