• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 6
  • 4
  • Tagged with
  • 25
  • 25
  • 14
  • 14
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Polynômes orthogonaux avec argument matriciel et les semigroupes associés

Balderrama, Cristina 03 July 2009 (has links) (PDF)
Dans ce travail, nous construisons et étudions des familles de polynômes orthogonaux généralisés définis dans l'espace des matrices hermitiennes qui sont associées à une famille de polynômes orthogonaux sur R. Nous considérons plusieurs normalisations pour ces polynômes, et obtenons des formules classiques à partir des formules correspondantes pour des polynômes définis sur R. Nous construisons également des semi-groupes d'opérateurs associés aux polynômes orthogonaux généralisés, et donnons l'expression du générateur infinitésimal de ce semi-groupe ; nous prouvons que ce semi-groupe est markovien dans les cas classiques. En ce qui concerne les expansions d-dimensionnelles de Jacobi nous étudions les notions d'intégrale fractionnelle (potentiel de Riesz), de potentiel de Bessel et de dérivées fractionnelles. Nous donnons une nouvelle décomposition de l'espace L2 associé à la mesure de Jacobi d-dimensionnelle, et obtenons un analogue du théorème du multiplicateur de Meyer dans ce cadre. Nous étudions aussi les espaces de Jacobi-Sobolev.
2

Polynômes orthogonaux

Lavoie, Mathieu 23 April 2018 (has links)
Les polynômes orthogonaux sont introduits par la théorie de Sturm-Liouville, puis les équivalences existantes entre leurs définitions classiques sont montrées. Certains résultats de base de la théorie sont ensuite décortiqués. On termine en introduisant des résultats préliminaires de la théorie analytique des polynômes, qui étudie les liens entre les coefficients d'un polynôme, ses zéros et ses points critiques.
3

Polynômes orthogonaux simultanés et systèmes dynamiques infinis

Bourreau, Emmanuel 10 May 2002 (has links) (PDF)
Je définis tout d'abord les polynômes vectoriels orthogonaux relativement à une matrice r x s de mesures ou de poids et je rappelle les propriétés habituelles : la récurrence à r+s+1 termes, le théorème de Shohat-Favard ou l'égalité de Christoffel-Darboux. Ces polynômes permettent, par l'utilisation d'approximants de Padé, de caractériser l'ensemble résolvant de l'opérateur aux différences associé aux récurrences. Cette caractérisation a déjà été donnée par Duren mais la démonstration utilisée ici est novatrice. Je définis ensuite des fonctions homographiques sur l'ensemble des matrices $r\times s$. J'uniformise ainsi tous les cas connus de fractions continues: scalaire, vectoriel ou matriciel. Elles permettent aussi de démontrer un théorème d'accélération de convergence de fractions continues matricielles, généralisation d'un théorème similaire pour les fractions généralisées donné par de Bruin et Jacobsen. J'utilise alors les polynômes vectoriels pour calculer les coefficients de récurrence d'autres polynômes par l'algorithme de Chebyshev modifié vectoriel, généralisation du cas scalaire pour lequel nous démontrons des critères de stabilité. Finalement, l'algorithme de Chebyshev modifié est utilisé pour étudier l'évolution temporelle du système dynamique semi-infini de Toda-Langmuir. Dans ce système, les particules sont sur le semi-axe réel et elles interagissent suivant une loi exponentielle décroissante. L'approche utilisée pour résoudre le problème est, encore une fois, innovante. En effet, j'étudie seulement les n premières particules et je m'intéresse à l'erreur commise sur l'évolution lorsque l'on tronque le système à N>>n quantités c'est-à-dire que l'on travaille avec un système fini. Je présente l'étude théorique de l'erreur, où je réutilise nos résultats sur la stabilité de l'algorithme de Chebyshev modifié, ainsi que des exemples numériques.
4

Modélisations polynomiales des signaux ECG. Application à la compression.

Tchiotsop, Daniel 15 November 2007 (has links) (PDF)
La compression des signaux ECG trouve encore plus d'importance avec le développement de la télémédecine. En effet, la compression permet de réduire considérablement les coûts de la transmission des informations médicales à travers les canaux de télécommunication. Notre objectif dans ce travail de thèse est d'élaborer des nouvelles méthodes de compression des signaux ECG à base des polynômes orthogonaux. Pour commencer, nous avons étudié les caractéristiques des signaux ECG, ainsi que différentes opérations de traitements souvent appliquées à ce signal. Nous avons aussi décrit de façon exhaustive et comparative, les algorithmes existants de compression des signaux ECG, en insistant sur ceux à base des approximations et interpolations polynomiales. Nous avons abordé par la suite, les fondements théoriques des polynômes orthogonaux, en étudiant successivement leur nature mathématique, les nombreuses et intéressantes propriétés qu'ils disposent et aussi les caractéristiques de quelques uns de ces polynômes. La modélisation polynomiale du signal ECG consiste d'abord à segmenter ce signal en cycles cardiaques après détection des complexes QRS, ensuite, on devra décomposer dans des bases polynomiales, les fenêtres de signaux obtenues après la segmentation. Les coefficients produits par la décomposition sont utilisés pour synthétiser les segments de signaux dans la phase de reconstruction. La compression revient à utiliser un petit nombre de coefficients pour représenter un segment de signal constitué d'un grand nombre d'échantillons. Nos expérimentations ont établi que les polynômes de Laguerre et les polynômes d'Hermite ne conduisaient pas à une bonne reconstruction du signal ECG. Par contre, les polynômes de Legendre et les polynômes de Tchebychev ont donné des résultats intéressants. En conséquence, nous concevons notre premier algorithme de compression de l'ECG en utilisant les polynômes de Jacobi. Lorsqu'on optimise cet algorithme en supprimant les effets de bords, il dévient universel et n'est plus dédié à la compression des seuls signaux ECG. Bien qu'individuellement, ni les polynômes de Laguerre, ni les fonctions d'Hermite ne permettent une bonne modélisation des segments du signal ECG, nous avons imaginé l'association des deux systèmes de fonctions pour représenter un cycle cardiaque. Le segment de l'ECG correspondant à un cycle cardiaque est scindé en deux parties dans ce cas: la ligne isoélectrique qu'on décompose en séries de polynômes de Laguerre et les ondes P-QRS-T modélisées par les fonctions d'Hermite. On obtient un second algorithme de compression des signaux ECG robuste et performant.
5

Amarrage de protéines flexibles en utilisant des expansions en séries de polynômes / Docking Flexible Proteins using Polynomial Expansions.

Hoffmann, Alexandre 01 February 2018 (has links)
La biologie structurale est la branche de la biologie qui étudie la structure et l'organisation spatiale des macromolécules.La biologie structurale concerne en particulier la détermination à l'échelle atomiquede la structure 3D, aux changement de conformation des macromolécules, et à la dynamique de ces structures.De nos jours, les techniques expérimentales modernes telles que la résonance magnétique nucléaire, la cristallographie aux rayons X et plus récemmentla microscopie cryoélectronique peuvent produire des cartes de densité à haute résolution, qui combinées aux informations sur la séquence d'une moléculepermettent aux biologistes de résoudre les structures 3D de la molécule à l'étude.Cependant, dans certains cas, la résolution des cartes de densité n'est pas suffisante.Dans un tel cas, on alignegénéralement des sous-unités individuelles, obtenues à haute résolution, dans la carte de densité de base résolution.Mentionnons qu'il est également également possible de déterminer la structure 3D d'un assemblage biologique en ancrant plusieurs sous-unités ensemble.C'est cependant un problème beaucoup plus difficile.Ces problèmes d'amarrage et d'alignement peuvent être formulés comme un problème d'optimisation dont la fonction de coût est écrite comme la corrélation croisée de deux autres fonctions.Les algorithmes d'ancrage originaux ont été formulés comme des problèmes de "clé et verrou", dans lesquels les protéines étaient considérées comme des corps rigides.Il est cependant naïf de considérer les macromolécules comme des corps rigides. Les protéines sont flexibles et peuventsubir de grands changements conformationnels lors de la liaison à d'autres molécules. Considérer les problèmes d'ancrage comme des problèmes de"clé et verrou" n'est donc pas suffisant.Une méthode d'ancrage flexible standard utilise donc l'approche "aligner puis affiner", qui, dans certains cas, peut omettre de bonnes conformations.Cette thèse se concentre sur deux axes principaux.Le premier axe est le développement d'une nouvelle méthode qui échantillonne de manière exhaustive les mouvements de corps rigides et les mouvements collectifs, calculés par analyse en modes propres (AMP).Nous présentons d'abord une méthode qui utilise la transformée de Fourier rapide pour échantillonner une approximation quadratique de la fonction coût. Ensuite, la méthode effectuela recherche flexible en maximisant l'approximation quadratique de la fonction de coût dans un certain domaine de recherche. Cette méthode garantit de trouver la meilleure conformation flexible.Nous présentons ensuite une version en itterative de notre algorithme, qui trouve les mouvements collectifs qui maximisent le score d'amarrage par rapport aux degrés de liberté (DDLs) du corps rigide.La méthode échantillonne de manière exhaustive à la fois les mouvements de corps rigides et les mouvements collectifs en maximisant le maximum lisse selon les DDls correspondant aux transformations rigides de la fonction coût.Les deux méthodes ont été appliquées à des problèmes d'alignement sur des exemples réels et artificiels.De plus, nous présentons un exemple dans lequel l'approche "aligner puis raffiner" n'est pas capable de trouver la bonne conformation tandis quenotre méthode peut trouver ladite conformation.Le deuxième axe est le développement d'une nouvelle extrapolation des mouvements calculés par l'AMP.Nous montrons qu'il est possible, avec des calculs minimaux, d'extrapoler les mouvements instantanés calculés par l'AMP dans le sous espaces des rotations-traslations des blocs (RTB) comme une rotationpresque pure autour d'un certain axe.Nous avons appliqué cette méthode appelée NOLB sur différents systèmes biologiques et avons pu, d'une part, récupérer des mouvements biologiquement pertinents et d'autre part démontrer que la méthode NOLB génère des structures avec une meilleure topologie qu'une méthode d'AMP linéaire. / Structural biology is a branch of molecular biology, biochemistry, and biophysics concerned with the molecular structure of macromolecules, how they acquire the structures they have,and how alterations in their structures affect their function.These molecules are a topic of interest because they serve to keep the cellsalive and functioning.Nowadays, modern experimental techniques, such as nuclear magnetic resonance (NMR), X-ray crystallography and more recently cryo-electron microscopy (cryo-EM) canproduce high resolution density maps, which combined with the information about the sequence of a molecule allows biologists to solve thethree-dimensional (3D) structures of the molecule under study. However, when studding large biological assemblies, experimental techniques are notalways able to generate density maps with a high enough resolution. In such a case, one typically fits individual sub-units, which weresolved using at a higher resolution, into the lower-resolution density map.Let us also mention that it is also possible determine the 3D structure of a biological assembly by docking several sub-units together.This is a much more difficult problem though.These docking and fitting problems can be reformulated as an optimization problem whose cost function can be written as the cross-correlation of two functions.The first fitting and docking algorithms were formulated as "lock and key" problems, in which the proteins were considered as rigid body.However, considering macromolecules, especially proteins, as rigid bodies is not realistic.Proteins are indeed flexible and can undergo large conformational changesupon binding to other molecules.Considering docking and fitting problems as "lock and key" problems is therefore not sufficient.Therefore, a standard flexible docking/fitting method first uses a six-dimensional (6D) rigid body docking/fitting algorithm and then flexibly relaxes the top docking/fitting poses.This approach will be thus refereed to as to the fit then refine approach.However, in some cases, such an approach can miss good conformations.This thesis focuses on two main axes.The first axis is the development of a new method that exhaustively samples both rigid-body and collective motions computed via normal mode analysis (NMA).We first present a method that combines the advantages of the Fourier transform (FFT)-based exhaustive search, which samples all the conformations of a system under study on a grid, with a local optimization technique thatguarantees to find the nearest optimal off-grid and flexible conformation.The algorithm first samples a quadratic approximation of a scoring function on a 6D grid. Then, the method performs the flexible search by maximizing the quadratic approximation of the cost functionwithin a certain search space.We then present a multi-step version of our algorithm, which finds the collective motions that maximize the docking score with respect to the rigid-body degrees of freedom (DOFs).The method exhaustively samples both rigid-body and collective motions by maximizing the soft maximum over the rigid body DOFs of the docking/fitting cost function.Both methods were applied to docking problems on both real and artificial example and we were able to design a benchmark in which the fit then refine approach fails at finding the correct conformation whileour method succeeds.The second axis is the development of a new extrapolation of motions computed by NMA.We show that it is possible, with minimal computations, to extrapolate the instantaneous motions computed by NMA in the the rotations-translations of blocks (RTB) subspace as an almost pure rotation around a certain axis.We applied this non-linear block (NOLB) method on various biological systems and were able to, firstly, retrieve biologically relevant motions andsecondly, to demonstrate that the NOLB method generates structures with a better topology than a linear NMA method.
6

Modélisations polynomiales des signaux ECG : applications à la compression / Polynomial modelling of ecg signals with applications to data compression

Tchiotsop, Daniel 15 November 2007 (has links)
La compression des signaux ECG trouve encore plus d’importance avec le développement de la télémédecine. En effet, la compression permet de réduire considérablement les coûts de la transmission des informations médicales à travers les canaux de télécommunication. Notre objectif dans ce travail de thèse est d’élaborer des nouvelles méthodes de compression des signaux ECG à base des polynômes orthogonaux. Pour commencer, nous avons étudié les caractéristiques des signaux ECG, ainsi que différentes opérations de traitements souvent appliquées à ce signal. Nous avons aussi décrit de façon exhaustive et comparative, les algorithmes existants de compression des signaux ECG, en insistant sur ceux à base des approximations et interpolations polynomiales. Nous avons abordé par la suite, les fondements théoriques des polynômes orthogonaux, en étudiant successivement leur nature mathématique, les nombreuses et intéressantes propriétés qu’ils disposent et aussi les caractéristiques de quelques uns de ces polynômes. La modélisation polynomiale du signal ECG consiste d’abord à segmenter ce signal en cycles cardiaques après détection des complexes QRS, ensuite, on devra décomposer dans des bases polynomiales, les fenêtres de signaux obtenues après la segmentation. Les coefficients produits par la décomposition sont utilisés pour synthétiser les segments de signaux dans la phase de reconstruction. La compression revient à utiliser un petit nombre de coefficients pour représenter un segment de signal constitué d’un grand nombre d’échantillons. Nos expérimentations ont établi que les polynômes de Laguerre et les polynômes d’Hermite ne conduisaient pas à une bonne reconstruction du signal ECG. Par contre, les polynômes de Legendre et les polynômes de Tchebychev ont donné des résultats intéressants. En conséquence, nous concevons notre premier algorithme de compression de l’ECG en utilisant les polynômes de Jacobi. Lorsqu’on optimise cet algorithme en supprimant les effets de bords, il dévient universel et n’est plus dédié à la compression des seuls signaux ECG. Bien qu’individuellement, ni les polynômes de Laguerre, ni les fonctions d’Hermite ne permettent une bonne modélisation des segments du signal ECG, nous avons imaginé l’association des deux systèmes de fonctions pour représenter un cycle cardiaque. Le segment de l’ECG correspondant à un cycle cardiaque est scindé en deux parties dans ce cas: la ligne isoélectrique qu’on décompose en séries de polynômes de Laguerre et les ondes P-QRS-T modélisées par les fonctions d’Hermite. On obtient un second algorithme de compression des signaux ECG robuste et performant. / Developing new ECG data compression methods has become more important with the implementation of telemedicine. In fact, compression schemes could considerably reduce the cost of medical data transmission through modern telecommunication networks. Our aim in this thesis is to elaborate compression algorithms for ECG data, using orthogonal polynomials. To start, we studied ECG physiological origin, analysed this signal patterns, including characteristic waves and some signal processing procedures generally applied ECG. We also made an exhaustive review of ECG data compression algorithms, putting special emphasis on methods based on polynomial approximations or polynomials interpolations. We next dealt with the theory of orthogonal polynomials. We tackled on the mathematical construction and studied various and interesting properties of orthogonal polynomials. The modelling of ECG signals with orthogonal polynomials includes two stages: Firstly, ECG signal should be divided into blocks after QRS detection. These blocks must match with cardiac cycles. The second stage is the decomposition of blocks into polynomial bases. Decomposition let to coefficients which will be used to synthesize reconstructed signal. Compression is the fact of using a small number of coefficients to represent a block made of large number of signal samples. We realised ECG signals decompositions into some orthogonal polynomials bases: Laguerre polynomials and Hermite polynomials did not bring out good signal reconstruction. Interesting results were recorded with Legendre polynomials and Tchebychev polynomials. Consequently, our first algorithm for ECG data compression was designed using Jacobi polynomials. This algorithm could be optimized by suppression of boundary effects, it then becomes universal and could be used to compress other types of signal such as audio and image signals. Although Laguerre polynomials and Hermite functions could not individually let to good signal reconstruction, we imagined an association of both systems of functions to realize ECG compression. For that matter, every block of ECG signal that matches with a cardiac cycle is split in two parts. The first part consisting of the baseline section of ECG is decomposed in a series of Laguerre polynomials. The second part made of P-QRS-T waves is modelled with Hermite functions. This second algorithm for ECG data compression is robust and very competitive.
7

Statistique d’extrêmes de variables aléatoires fortement corrélées / Extreme value statistics of strongly correlated random variables

Perret, Anthony 22 June 2015 (has links)
La statistique des valeurs extrêmes est une question majeure dans divers contextes scientifiques. Cependant, bien que la description de la statistique d'un extremum global soit certainement une caractéristique importante, celle-ci ne se concentre que sur une seule variable parmi un grand nombre de variables aléatoires. Une question naturelle qui se pose alors est la suivante: ces valeurs extrêmes sont-elles isolées, loin des autres variables ou bien au contraire existe-t-il un grand nombre d'autres variables proches de ces valeurs extrêmes ? Ces questions ont suscité l'étude de la densité d'état de ces événements quasi-extrêmes. Il existe pour cette quantité peu de résultats pour des variables fortement corrélées, qui est pourtant le cas rencontré dans de nombreux modèles fondamentaux. Deux pistes de modèles physiques de variables fortement corrélées pouvant être étudiés analytiquement se démarquent alors: les positions d’une marche aléatoire et les valeurs propres de matrice aléatoire. Cette thèse est ainsi consacrée à l’étude de statistique d’extrêmes pour ces deux modèles de variables fortement corrélées. Dans une première partie, j’étudie le cas où la collection de variables aléatoires est la position au cours du temps d’un mouvement brownien, qui peut être contraint à être périodique, positif... Ce mouvement brownien est vu comme la limite d’un marcheur aléatoire classique après un grand nombre de pas. Il est alors possible d’interprèter ce problème comme celui d’une particule quantique dans un potentiel ce qui permet d’utiliser des méthodes puissantes issues de la mécanique quantique comme l’utilisation de propagateurs et de l’intégrale de chemin. Ces outils permettent de calculer la densité moyenne à partir du maximum pour les différents mouvements browniens contraints et même la distribution complète de cette quantité pour certains cas. Il est également possible de généraliser cette démarche à l’étude de plusieurs marches aléatoires indépendantes ou avec interaction. Cette démarche permet également d’effectuer une étude temporelle, ainsi que de généraliser à l’étude d’autres fonctionnelle du maximum. Dans la seconde partie, j’étudie le cas où la collection de variables aléatoires est composée des valeurs propres d’une matrice aléatoire. Ce travail se concentre sur l’études des matrices des ensembles gaussiens (GOE, GUE et GSE) ainsi qu’à l’étude des matrices de Wishart. L’étude du voisinage de la valeur propre maximale pour ces deux modèles est faite en utilisant une méthode fondée sur les propriétés des polynômes orthogonaux. Dans le cas des matrices gaussiennes unitaires GUE, j’ai obtenu une formule analytique pour la distribution à partir du maximum ainsi qu’une nouvelle expression de la statistique du gap entre les deux plus grandes valeurs propres en termes d’une fonction transcendante de Painlevé. Ces résultats, et plus particulièrement leurs généralisations aux cas GOE, sont alors appliqués à un modèle de verre de spin sphérique en champs moyen. Dans le cas des matrices de Wishart, l’analyse des polynômes orthogonaux dans le régime de double échelle m’a permis de retrouver les différentes statistiques de la valeur propre minimale et également de prouver une conjecture sur la première correction de taille finie pour des grandes matrices de la distribution de la valeur propre minimale dans la limite dite de «hard edge». / Extreme value statistics plays a keyrole in various scientific contexts. Although the description of the statistics of a global extremum is certainly an important feature, it focuses on the fluctuations of a single variable among many others. A natural question that arises is then the following: is this extreme value lonely at the top or, on the contrary, are there many other variables close to it ? A natural and useful quantity to characterize the crowding is the density of states near extremes. For this quantity, there exist very few exact results for strongly correlated variables, which is however the case encountered in many situations. Two physical models of strongly correlated variables have attracted much attention because they can be studied analytically : the positions of a random walker and the eigenvalues of a random matrix. This thesis is devoted to the study of the statistics near the maximum of these two ensembles of strongly correlated variables. In the first part, I study the case where the collection of random variables is the position of a Brownian motion, which may be constrained to be periodic or positive. This Brownian motion is seen as the limit of a classical random walker after a large number of steps. It is then possible to interpret this problem as a quantum particle in a potential which allows us to use powerful methods from quantum mechanics as propagators and path integral. These tools are used to calculate the average density from the maximum for different constrained Brownian motions and the complete distribution of this observable in certain cases. It is also possible to generalize this approach to the study of several random walks, independent or with interaction, as well as to the study of other functional of the maximum. In the second part, I study the case of the eigenvalues of random matrices, belonging to both Gaussian and Wishart ensembles. The study near the maximal eigenvalues for both models is performed using a method based on semi-classical orthogonal polynomials. In the case of Gaussian unitary matrices, I have obtained an analytical formula for the density near the maximum as well as a new expression for the distribution of the gap between the two largest eigenvalues. These results, and in particular their generalizations to different Gaussian ensembles, are then applied to the relaxational dynamics of a mean-field spin glass model. Finally, for the case of Wishart matrices I proposed a new derivation of the distribution of the smallest eigenvalue using orthogonal polynomials. In addition, I proved a conjecture on the first finite size correction of this distribution in the «hard edge» limit.
8

Aspects géométriques et intégrables des modèles de matrices aléatoires

Olivier, Marchal 21 December 2010 (has links) (PDF)
Cette thèse traite des aspects géométriques et d'intégrabilité associés aux modèles de matrices aléatoires. Son but est de présenter diverses applications des modèles de matrices aléatoires allant de la géométrie algébrique aux équations aux dérivées partielles des systèmes intégrables. Ces différentes applications permettent en particulier de montrer en quoi les modèles de matrices possèdent une grande richesse d'un point de vue mathématique. Ainsi, cette thèse abordera d'abord l'étude de la jonction de deux intervalles du support de la densité des valeurs propres au voisinage d'un point singulier. On montrera plus précisément en quoi ce régime limite particulier aboutit aux équations universelles de la hiérarchie de Painlevé II des systèmes intégrables. Ensuite, l'approche des polynômes (bi)-orthogonaux, introduite par Mehta pour le calcul des fonctions de partition, permettra d'énoncer des problèmes de Riemann-Hilbert et d'isomonodromies associés aux modèles de matrices, faisant ainsi le lien avec la théorie de Jimbo-Miwa-Ueno. On montrera en particulier que le cas des modèles à deux matrices hermitiens se transpose à un cas dégénéré de la théorie isomonodromique de Jimbo-Miwa-Ueno qui sera alors généralisé. La méthode des équations de boucles avec ses notions centrales de courbe spectrale et de développement topologique permettra quant à elle de faire le lien avec les invariants symplectiques de géométrie algébrique introduits récemment par Eynard et Orantin. Ce dernier point fera également l'objet d'une généralisation aux modèles de matrices non-hermitien ($\beta$ quelconque) ouvrant ainsi la voie à la ''géométrie algébrique quantique'' et à la généralisation de ces invariants symplectiques pour des courbes ''quantiques''. Enfin, une dernière partie sera consacrée aux liens étroits entre les modèles de matrices et les problèmes de combinatoire. En particulier, l'accent sera mis sur les aspects géométriques de la théorie des cordes topologiques avec la construction explicite d'un modèle de matrices aléatoires donnant le dénombrement des invariants de Gromov-Witten pour les variétés de Calabi-Yau toriques de dimension complexe trois utilisées en théorie des cordes topologiques.
9

Structures algébriques, systèmes superintégrables et polynômes orthogonaux

Genest, Vincent 05 1900 (has links)
Cette thèse est divisée en cinq parties portant sur les thèmes suivants: l’interprétation physique et algébrique de familles de fonctions orthogonales multivariées et leurs applications, les systèmes quantiques superintégrables en deux et trois dimensions faisant intervenir des opérateurs de réflexion, la caractérisation de familles de polynômes orthogonaux appartenant au tableau de Bannai-Ito et l’examen des structures algébriques qui leurs sont associées, l’étude de la relation entre le recouplage de représentations irréductibles d’algèbres et de superalgèbres et les systèmes superintégrables, ainsi que l’interprétation algébrique de familles de polynômes multi-orthogonaux matriciels. Dans la première partie, on développe l’interprétation physico-algébrique des familles de polynômes orthogonaux multivariés de Krawtchouk, de Meixner et de Charlier en tant qu’éléments de matrice des représentations unitaires des groupes SO(d+1), SO(d,1) et E(d) sur les états d’oscillateurs. On détermine les amplitudes de transition entre les états de l’oscillateur singulier associés aux bases cartésienne et polysphérique en termes des polynômes multivariés de Hahn. On examine les coefficients 9j de su(1,1) par le biais du système superintégrable générique sur la 3-sphère. On caractérise les polynômes de q-Krawtchouk comme éléments de matrices des «q-rotations» de U_q(sl_2). On conçoit un réseau de spin bidimensionnel qui permet le transfert parfait d’états quantiques à l’aide des polynômes de Krawtchouk à deux variables et on construit un modèle discret de l’oscillateur quantique dans le plan à l’aide des polynômes de Meixner bivariés. Dans la seconde partie, on étudie les systèmes superintégrables de type Dunkl, qui font intervenir des opérateurs de réflexion. On examine l’oscillateur de Dunkl en deux et trois dimensions, l’oscillateur singulier de Dunkl dans le plan et le système générique sur la 2-sphère avec réflexions. On démontre la superintégrabilité de chacun de ces systèmes. On obtient leurs constantes du mouvement, on détermine leurs algèbres de symétrie et leurs représentations, on donne leurs solutions exactes et on détaille leurs liens avec les polynômes orthogonaux du tableau de Bannai-Ito. Dans la troisième partie, on caractérise deux familles de polynômes du tableau de Bannai-Ito: les polynômes de Bannai-Ito complémentaires et les polynômes de Chihara. On montre également que les polynômes de Bannai-Ito sont les coefficients de Racah de la superalgèbre osp(1,2). On détermine l’algèbre de symétrie des polynômes duaux -1 de Hahn dans le cadre du problème de Clebsch-Gordan de osp(1,2). On propose une q - généralisation des polynômes de Bannai-Ito en examinant le problème de Racah pour la superalgèbre quantique osp_q(1,2). Finalement, on montre que la q -algèbre de Bannai-Ito sert d’algèbre de covariance à osp_q(1,2). Dans la quatrième partie, on détermine le lien entre le recouplage de représentations des algèbres su(1,1) et osp(1,2) et les systèmes superintégrables du deuxième ordre avec ou sans réflexions. On étudie également les représentations des algèbres de Racah-Wilson et de Bannai-Ito. On montre aussi que l’algèbre de Racah-Wilson sert d’algèbre de covariance quadratique à l’algèbre de Lie sl(2). Dans la cinquième partie, on construit deux familles explicites de polynômes d-orthogonaux basées sur su(2). On étudie les états cohérents et comprimés de l’oscillateur fini et on caractérise une famille de polynômes multi-orthogonaux matriciels. / This thesis is divided into five parts concerned with the following topics: the physical and algebraic interpretation of families of multivariate orthogonal functions and their applications, the study of superintegrable quantum systems in two and three dimensions involving reflection operators, the characterization of families of orthogonal polynomials of the Bannai-Ito scheme and the study of the algebraic structures associated to them, the investigation of the relationship between the recoupling of irreducible representations of algebras and superalgebras and superintegrable systems, as well as the algebraic interpretation of families of matrix multi-orthogonal polynomials. In the first part, we develop the physical and algebraic interpretation of the Krawtchouk, Meixner and Charlier families of multivariate orthogonal polynomials as matrix elements of unitary representations of the SO(d + 1), SO(d, 1) and E(d) groups on oscillator states. We determine the transition amplitudes between the states of the singular oscillator associated to the Cartesian and polyspherical bases in terms of the multivariate Hahn polynomials. We examine the 9j coefficients of su(1,1) through the generic superintegrable system on the 3-sphere. We characterize the q-Krawtchouk polynomials as matrix elements of "q-rotations" of U_q(sl_2). We show how to design a two-dimensional spin network that allows perfect state transfer using the two-variable Krawtchouk polynomials and we construct a discrete model of the two-dimensional quantum oscillator using the two-variable Meixner polynomials. In the second part, we study superintegrable systems of Dunkl type, which involve reflections. We examine the Dunkl oscillator in two and three dimensions, the singular Dunkl oscillator in the plane and the generic system on the 2-sphere with reflections. We show that each of these systems is superintegrable. We obtain their constants of motion, we find their symmetry algebras as well as their representations, we give their exact solutions and we exhibit their relationship with the orthogonal polynomials of the Bannai-Ito scheme. In the third part, we characterize two families of polynomials belonging to the Bannai-Ito scheme: the complementary Bannai-Ito polynomials and the Chihara polynomials. We also show that the Bannai–Ito polynomials arise as Racah coefficients for the osp(1,2) superalgebra. We determine the symmetry algebra associated with the dual − 1 Hahn polynomials in the context of the Clebsch-Gordan problem for osp(1,2). We introduce a q -generalization of the Bannai-Ito polynomials by examining the Racah problem for the quantum superalgebra osp_q(1,2). Finally, we show that the q-deformed Bannai-Ito algebra serves as a covariance algebra for osp_q(1,2). In the fourth part, we determine the relationship between the recoupling of representations of the su(1,1) and osp(1,2) algebras and second-order superintegrable systems with or without reflections. We also study representations of Racah–Wilson and Bannai-Ito algebras. Moreover, we show that the Racah Wilson algebra serves as a quadratic covariance algebra for sl(2). In the fifth part, we explicitly construct two families of d-orthogonal polynomials based on su(2). We investigate the squeezed/coherent states of the finite oscillator and we characterize a family of matrix multi-orthogonal polynomials.
10

Inégalités de Landau-Kolmogorov dans des espaces de Sobolev

Abbas, Lamia 18 February 2012 (has links) (PDF)
Ce travail est dédié à l'étude des inégalités de type Landau-Kolmogorov en normes L2. Les mesures utilisées sont celles d'Hermite, de Laguerre-Sonin et de Jacobi. Ces inégalités sont obtenues en utilisant une méthode variationnelle. Elles font intervenir la norme d'un polynômes p et celles de ces dérivées. Dans un premier temps, on s'intéresse aux inégalités en une variable réelle qui font intervenir un nombre quelconque de normes. Les constantes correspondantes sont prises dans le domaine où une certaine forme bilinéaire est définie positive. Ensuite, on généralise ces résultats aux polynômes à plusieurs variables réelles en utilisant le produit tensoriel dans L2 et en faisant intervenir au plus les dérivées partielles secondes. Pour les mesures d'Hermite et de Laguerre-Sonin, ces inégalités sont étendues à toutes les fonctions d'un espace de Sobolev. Pour la mesure de Jacobi on donne des inégalités uniquement pour les polynômes d'un degré fixé par rapport à chaque variable.

Page generated in 0.0657 seconds