• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • Tagged with
  • 11
  • 8
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impact of Physical Properties of Silica on the Reaction Kinetics of Silica Supported Metallocenes and Polyethylene Morphology / L'impact des propriétés physiques des métallocènes supportés par la silice sur la cinétique de polymérisation de l'éthylène et les propriétés de polyéthylène

Bashir, Muhammad Ahsan 29 November 2016 (has links)
Les polyolefins représentent plus de la moitié de la production mondiale de plastiques et 80% de ces polymères sont produits avec des catalyseurs hétérogènes de type Phillips, Ziegler-Natta et métallocènes. En effet, un bon fonctionnement des unités du fait d'un faible encrassement du réacteur ou des autres équipements de l'unité, une activité stable, une bonne morphologie particulaire des polymères et un une densité apparente élevée sont obtenus en utilisant des catalyseurs hétérogènes. D'un autre côté l'hétérogénéisation d'un catalyseur s'accompagne d'une diminution de l'activité et d'un élargissement de la distribution de masses molaires qui est parfois non désiré car cela peut influencer l'aptitude à la transformation et les propriétés mécaniques des polyoléfines. Plusieurs explications ont été avancées dans la littérature afin d'expliquer l'effet de l'immobilisation d'un catalyseur ce qui inclut la résistance diffusionnelle au transport du (des) (co)- monomère(s) vers le site actif et la modification du comportement du catalyseur conduisant à plusieurs espèces actives. Néanmoins l'ensemble de ces explications est en connexion avec les propriétés physiques du support (tailles des particules, surface spécifique, volume poreux, diamètre des pores…) car ce dernier peut en effet impacter la nature des espèces actives ainsi que leur dispersion et la diffusion des monomères. Les catalyseurs métallocène sont considérés comme mono-site et tout changement dans la nature du site actif au cours de son immobilisation et toute résistance au transfert de matière peuvent être détectés par un élargissement de la distribution des masses molaires. Le présent travail a pour objet d'étudier les effets des propriétés physiques des catalyseurs métallocènes supportés sur silice concernant la cinétique de polymérisation et les caractéristiques des polymères produits. Pour cela le traitement thermique de la silice a été fixé à 600°C afin de contrôler son état de surface tandis que la quantité de catalyseur supporté a été gardée autant que possible constante. De plus les protocoles de polymérisation en phases suspension et gaz ont été fixés après avoir évalué différentes conditions de polymérisation et différents composés alkylaluminium. Cette étude systématique a permis d'attribuer les différences observées en termes de cinétique de réaction des catalyseurs métallocènes à la différence des paramètres physiques des silices utilisées comme support et par conséquent à la résistance diffusionnelle au transport du (des) (co)-monomère(s) au(x) site(s) actif(s) durant la polymérisation / Polyolefins account for more than half of the world’s plastic production and about 80% of these polyolefins are commercially produced with heterogeneous olefin polymerization catalysts such as Phillips, Ziegler-Natta and metallocenes. Trouble-free plant operation due to low fouling of the reactor or other plant equipment, relatively stable catalytic activity, good polymer morphology and high polymer bulk densities can be achieved by employing heterogeneous olefin polymerization catalysts. On the other hand, heterogenization of the olefin polymerization catalysts lead to drastic reduction in their activities and broadening of the polymer molar mass distribution which is undesirable in some cases because it can influence the processability and mechanical properties of the polyolefin grade. Various explanations have been proposed in the open literature to explain these effects of catalyst immobilization which mainly include existence of diffusion resistance to (co)-monomer(s) transport at the active sites during polymerization and the change of the active site(s) behavior due to immobilization leading to multiple site types on the final supported catalyst. Nevertheless, both of these explanations have a connection with the physical properties (e.g., particle size, surface area, pore volume, pore diameter etc.) of the support because the support can impact the nature of the final active species formed on it, dispersion of the active species throughout the support particles and, last but not the least, the intraparticle diffusion of (co)-monomer(s) during polymerization. Metallocenes are considered as single-site catalysts and any changes in the nature of the active site(s) upon their immobilization on a support or during the course of polymerization due to mass transfer resistance can be detected from the broadening of polyolefin molar mass distribution. Therefore, the present work is an attempt to study the effects of physical properties of silica supported metallocenes on their ethylene polymerization kinetics as well as on the morphology of the produced polyethylene. For this purpose, the surface chemistry of the used commercial silica supports was fixed by dehyroxylating all of them at 600 °C, whereas, the final metal loadings of the supported catalysts were nearly kept constant by preparing them under identical conditions. Furthermore, slurry and gas phase polymerization protocols along with the used aluminum alkyl scavenger (which can also induce chemical effects on the catalytic behavior of supported metallocenes) were also fixed by testing different polymerization protocols and scavengers. Such systematic study has allowed us to attribute the observed differences in the reaction kinetics of the supported metallocenes, explicitly, to the differences in the physical parameters of the silica supports and, consequently, to the existence of diffusion resistance to (co) monomer(s) transport at the active site(s) during the course of polymerization
2

The effect of formulation and processing conditions on the morphology, physical, mechanical, and thermal properties of polyolefin elastomer and natural rubber foams

Rostami-Tapeh-Esmaeil, Ehsan 05 October 2023 (has links)
Titre de l'écran-titre (visionné le 27 septembre 2023) / Avec le développement toujours croissant des sciences et des technologies, ainsi que de la prise de conscience sociale, de plus en plus d'exigences sont imposées à la production et aux propriétés de tous les matériaux, en particulier les mousses polymériques. En particulier, les mousses de caoutchouc, comparées aux mousses thermoplastiques en général, ont une plus grande flexibilité, une résistance à l'abrasion, des capacités d'absorption d'énergie, un meilleur rapport résistance-poids et une résistance à la traction plus élevés, ce qui conduit à leur utilisation généralisée dans plusieurs applications telles que l'isolation thermique, l'absorption d'énergie, les capteurs de pression, les absorbants, etc. Pour contrôler la microstructure des mousses de caoutchouc conduisant à d'excellentes propriétés physiques et mécaniques, deux types de paramètres jouent un rôle important. La première catégorie est liée à la formulation, y compris le caoutchouc (type et grade), ainsi que le type et la teneur en accélérateurs, charges et agents moussants. La deuxième catégorie est associée aux paramètres de fabrication tels que le procédé de mise en œuvre (injection, extrusion, compression, etc.), ainsi que différentes conditions liées au moussage (température, pression, nombre d'étapes et temps). Dans ce travail, l'effet de ces différents paramètres liés à la formulation et aux conditions de moussage sur les propriétés morphologiques, mécaniques physiques et thermiques des mousses de caoutchouc/élastomères est étudié. Le projet est divisé en deux parties principales en fonction des types de matrices : les élastomères polyoléfiniques (POE) et le caoutchouc naturel (NR). Tout d'abord, l'effet de différents agents moussants à base d'azodicarbonamide (ADC) est examiné dans les mousses POE et 4 phr (parties par cent caoutchouc) est sélectionné comme, concentration optimale en fonction du meilleur comportement morphologique et du point de vue économique. Ensuite, l'effet de la température de moulage, comprenant la température moyenne (T[indice avg]) et la différence de température (ΔT), sur la morphologie, les propriétés mécaniques (traction, compression et dureté) et la conductivité thermique des mousses POE est étudié. Deux séries d'échantillons sont produites en fixant T[indice avg] avec différents ΔT ou en fixant différents ΔT conduisant à différentes T[indice avg]. Les analyses morphologiques ont montré que deux ou trois régions à l'intérieur des mousses sont produites en fonction des conditions de moulage, chaque région ayant une structure cellulaire différente en termes de taille de cellule, densité de cellules et géométrie de cellules. Les résultats montrent une plage de densité (0,55-0,72 g/cm³), de module de traction (0,44-0,70 MPa) et de module élastique de compression (0,35-0,71 MPa) avec une conductivité thermique comprise entre 0,125 et 0,180 W/m.K. Dans la deuxième partie du projet, la teneur optimale en agent moussant p,p'-oxybis(benzène-sulfonyle hydrazide) (OBSH), la température et le temps de moussage sont obtenus respectivement à 6.5 phr, 150°C et 36 min pour les mousses NR préparées avec 40 phr de noir de carbone (CB). Ensuite, l'influence du remplacement du CB par des nanoparticules de silice (SiO₂) recyclées est étudiée. La concentration totale de nanocharges est fixée à 40 phr, tandis que le rapport CB/silice est modifié de 40/0 à 0/40. La mousse NR basée sur un système hybride (20/20) produit une structure plus homogène, améliorant l'étape de nucléation des cellules, conduisant à la plus petite taille de cellule (18 µm) et à la densité de cellule la plus élevée (8,8×10³ cellules/mm³) en raison de l'interaction réduite entre les charges et d'une meilleure dispersion des particules. Cette morphologie cellulaire améliorée génère des performances mécaniques et d'isolation thermique supérieures, y compris le module de compression le plus élevé (2,7 MPa), la résistance à la compression (1,9 MPa) et la résilience (96,6%) combinées avec la conductivité thermique la plus faible (0,114 W/m.K) à une densité de 0,652 g/cm³. Néanmoins, la mousse avec 40 phr de silice présente un module de compression (26%) et une résistance à la compression (15%) plus élevés par rapport à l'échantillon de référence ayant 40 phr de CB, principalement en raison de sa densité de réticulation plus élevée. Enfin, la silice recyclée, étant une alternative appropriée et durable au CB à base de pétrole, montre des propriétés mécaniques et d'isolation thermique supérieures par rapport à une qualité commerciale de silice pour les mousses NR. / With the ever-increasing development in science and technology, as well as social awareness, more requirements are imposed on the production and property of all materials, especially polymeric foams. In particular, rubber foams, compared to thermoplastic foams in general, have higher flexibility, resistance to abrasion, energy absorption capabilities, improved strength-to-weight ratio and tensile strength leading to their widespread use in several applications such as thermal insulation, energy absorption, pressure sensors, absorbents, etc. To control the rubber foams microstructure leading to excellent physical and mechanical properties, two types of parameters play important roles. The first category is related to formulation including the rubber (type and grade), as well as the type and content of accelerators, fillers and foaming agents. The second category is associated to processing parameters such as the processing method (injection, extrusion, compression, etc.), as well as different conditions related to foaming (temperature, pressure, number of stage and time). In this work, the effect of different parameters related to the formulation and foaming condition on the morphological, mechanical, physical and thermal properties of rubber/elastomer foams is investigated. The project is divided into two main parts depending on the rubber matrix: polyolefin elastomers (POE) and natural rubber (NR). Firstly, the effect of different azodicarbonamide (ADC) as foaming agent is examined in the POE foams and 4 phr (parts per hundred rubber) is selected as optimum concentration based on better morphological behavior and economical aspect. Then the effect of molding temperature, including the average temperature (T[subscript avg]) and temperature difference (ΔT), on the POE foams morphology, mechanical properties (tensile, compression and hardness) and thermal conductivity is studied. Two series of samples are produced by fixing T[subscript avg] with different ΔT or setting different ΔT leading to different T[subscript avg]. The morphological analyses showed that two or three regions inside the foams are produced depending on the molding conditions, each region having different cellular structure in terms of cell size, cell density and cell geometry. The results show a range of density (0.55-0.72 g/cm³), tensile modulus (0.44-0.70 MPa) and compression elastic modulus (0.35-0.71 MPa) with a thermal conductivity between 0.125 and 0.180 W/m.K. In the second part of project firstly the optimum p,p'-oxybis(benzene-sulfonyl hydrazide) (OBSH) content as foaming agent, foaming temperature and foaming time are obtained as 6.5 phr, 150°C and 36 min, respectively, for NR foams prepared with 40 phr of carbon black (CB). Afterwards, the effect of replacing CB by recycled silica (SiO₂) nanoparticles is studied. The total nanofillers concentration is fixed at 40 phr, while the CB/silica ratio is changed from 40/0 to 0/40. The NR foam based on a hybrid system (20/20) produces a more homogeneous structure improving the cell nucleation step leading to the smallest cell size (18 µm) and highest cell density (8.8×10³ cells/mm³) due to reduced filler-filler interactions and better particles dispersion. This improved cellular morphology generates superior mechanical and thermal insulation performance, including the highest compression modulus (2.7 MPa), compressive strength (1.9 MPa) and resilience (96.6%) combined with the lowest thermal conductivity (0.114 W/m.K) at a density of 0.652 g/cm³. Nevertheless, the foam with 40 phr silica displays higher compressive modulus (26%) and compression strength (15%) compared to the reference sample having 40 phr CB, mainly due to its higher crosslink density. As a final comparison, the recycled silica, being a suitable and sustainable alternative to petroleum-based CB, shows superior mechanical and thermal insulation properties compared to a commercial grade of silica for NR foams.
3

Morphologies induites dans les pieces en polyolefine moulees par injection

Mendoza Monroy, Rennan Alfonso 05 1900 (has links) (PDF)
Des travaux de recherche tentent aujourd'hui de prédire les propriétés mécaniques des polymères semi-cristallins induites par leur mise en forme à l'aide de la mécanique des milieux hétérogènes. Mais l'utilisation de ces modèles micromécaniques nécessite une description dimensionnelle de la morphologie cristalline, aussi bien au niveau lamellaire qu'à l'échelle supérieure des macrostructures cristallines induites. Dans ce contexte scientifique, ce travail de thèse s'est donné pour objectif de caractériser finement les différentes morphologies que l'on peut rencontrer dans l'épaisseur des polypropylène et polyéthylène linéaire injectés, et de déterminer l'influence de certaines conditions de mise en œuvre sur ces morphologies. Les fonctions d'orientation des différents axes cristallographiques ont été déterminées par dichroïsme infrarouge et à partir de figures de pôle obtenues par WAXS sous anode tournante et sous microfaisceau synchrotron. La répartition des amas lamellaires et leurs dimensions ont été déterminées par SAXS. Finalement, la taille des structures cristallines a été caractérisée par microscopie optique en lumière polarisée. L'ensemble des résultats a été utilisé pour générer des modèles morphologiques à travers l'épaisseur des plaques injectées. Des structures morphologiques complexes, induites par la déformation, ont été mis en évidence: des shish-kebabs avec des lamelles filles qui croissent de façon épitaxiale pour le PP, et avec des lamelles torsadées à droites pour le PEhd. Plus généralement, l'orientation de la phase amorphe est faible et l'anisotropie des propriétés mécaniques des polyoléfines est gouvernée par l'orientation élevée de la phase cristalline. L'épaisseur des plaques et la masse molaire du polymère ont une forte influence sur l'orientation moléculaire et les morphologies cristallines obtenues, alors que la vitesse d'injection détermine l'épaisseur des différentes couches morphologiques au travers de l'épaisseur, sans modifier sensiblement ni les niveaux d'orientation moléculaire ni les dimensions lamellaires.
4

Investigations on the stereoselective polymerization of α-olefins by single-site group IV metal catalysts / Investigations sur la polymérisation stéréoséléctive d'α-oléfines par des catalyseurs mono-site de métaux du groupe IV

Theurkauff, Gabriel 16 December 2014 (has links)
Les travaux présentés dans ce manuscrit ont trait à la catalyse de polymérisation des α-oléfines sont présentés en 4 parties distinctes. La première est consacrée à l'étude d'un système catalytique pour la production de polypropylène élastomère. L'analyse poussée des polymères produits et la caractérisation complète des catalyseurs utilisés a permis de montrer la présence de deux homopolymères sous forme de blende. La seconde partie porte sur la copolymérisation de monomères bifonctionnels vinyl-vinylidène avec le propylène. La caractérisation des polymères a permis de révéler la réactivité particulière des liaisons vinylidène et d'étudier l'influence du catalyseur utilisé sur le mécanisme de la polymérisation. La troisième partie s'intéresse à la caractérisation des espèces active en polymérisation et à l'étude des mécanismes d'activation et de désactivation des catalyseurs métallocènes. La synthèse et la caractérisation d'espèces cationiques, l'étude de leur comportement dynamique en solution, ainsi que l'évaluation de leur productivité en polymérisation ont permis d'établir un lien entre les propriétés électrophiles de ces espèces et de leur activité en polymérisation. La dernière partie porte sur l'homopolymérisation d'α-oléfines encombrées. La recherche d'un catalyseur suffisamment productif nous a amené à tester plusieurs catalyseurs présentant des structures différentes. L'absence de catalyseur productif soulève l'hypothèse d'interactions désactivantes entre le catalyseur et le monomère. / The work presented in the manuscript focus on α-olefin polymerization catalysis, and is divided into four distinct parts. The first part is dedicated to the study of catalytic systems for the production of elastomeric polypropylene. The analysis of the produced polymers and the characterization of the catalysts showed the presence of two homopolymers as a blend in the elastomeric polypropylene. The second part focuses on the copolymerization of bifunctionnal vinyl-vinylidene monomers with propylene. The characterization of the polymers revealed the reactivity of the vinylidène bonds and showed different polymerization mechanisms for the different catalysts. The third part reports a study on the activation and deactivation pathways of the active species in polymerization. The characterization of model cationic species and the study of their behavior in solution and in polymerization showed the relationship between the electrophilicity of the species and its productivity in propylene polymerization. The last part is dedicated to the polymerization of hindered α-olefins. The quest for a productive catalyst led to test various single site catalysts with different structures. Deactivating interactions between the monomers and the catalyst are supposed to explain the low productivity of the tested catalysts.
5

Développement de nouveaux supports activateurs solides pour la polymérisation des oléfines / Development of new solid activating supports for olefins polymerization

Sauter, Dominique 29 November 2016 (has links)
Résumé confidentiel / Résumé confidentiel
6

Rheology and morphology of polyolefin / functional oligomer blends : application to the formulation of polymer materials / Rhéologie et morphologie de mélanges polyoléfine / oligomère fonctionnel : application à la formulation de matériaux polymères

Robert, Michael 21 March 2019 (has links)
L’objectif de ces travaux était l’utilisation d’oligomères de polyéthylène fonctionnels comme agents d’interface pour la formulation de matériaux polymères. Une première partie s’est portée sur la compréhension de l’évolution de la morphologie de mélanges composés d’une résine polypropylène ou polyéthylène et d’un oligomère de polyéthylène de faible masse molaire au cours de leur mise en œuvre et de leur cristallisation. Il a été constaté qu’un tel oligomère pouvait être incorporé sans difficulté aux résines sélectionnées, et ce grâce à une diffusion rapide ainsi qu’à une bonne miscibilité à l’état fondu. Cependant, il est apparu que ces mélanges étaient sujets à une séparation de phase solide-liquide lors de leur cristallisation, entraînant la formation de matériaux biphasiques à l’état solide. Dans une deuxième partie, un système réactif composé de deux oligomères fonctionnels a été étudié comme une potentielle stratégie de compatibilisation de mélanges polyéthylène/polyamide. Malgré les morphologies et propriétés intéressantes observées, il a été conclu que l’utilisation d’un tel système réactif n’était pas efficace comparé aux agents compatibilisants usuels. Enfin, des oligomères de polyéthylène fonctionnels ont été étudiés en tant qu’agents d’interface dans du polyéthylène renforcé par des fibres de verre dans l’optique d’en améliorer la facilité de mise en œuvre et les propriétés mécaniques. Il a ainsi été démontré que des oligomères avec les fonctionnalités appropriées pouvaient être utilisés comme agents d’interface en réduisant les interactions interparticulaires au cours de la mise en œuvre et en améliorant l’adhésion interfacial matrice-fibre à l’état solide / The objective of this work was to use end-functionalized polyethylene oligomers as interface agents in glass fibre-reinforced thermoplastics as well as compatibilizer precursors in immiscible polymer blends. The first part of this work was focused on the understanding of the morphology developments occurring during the melt processing and crystallization of binary systems where a low molar mass polyethylene oligomer was blended with polypropylene and polyethylene resins. It was found that the polyethylene oligomer was easily incorporated into the selected polyolefins thanks to rapid molecular diffusion and good miscibility in the molten state. However, it appeared that the blends underwent solid-liquid phase separation upon crystallization, leading to biphasic materials in the solid state. In a second part, a reactive system consisting of two functional oligomers was studied as a new strategy for the compatibilization of immiscible polyethylene/polyamide blends. Despite the interesting morphologies and properties observed, it was concluded that the use of such a reactive system did not result in efficient compatibilization compared to commonly used compatibilizer precursors. Lastly, polyethylene oligomers with various functionalities were investigated as interface agents in glass fibre-reinforced polyethylene, with the aim of improving both processability and mechanical properties. It was demonstrated that polyethylene oligomers with adequate functional groups could be successfully used as dispersants by reducing interparticle interactions during melt processing as well as coupling agents improving matrix-filler interfacial adhesion in the solid state
7

Purification de polyoléfines artificiellement polluées : études de l’extraction de composés modèles par CO2 supercritique en autoclave et en extrudeuse bi-vis / Purification of polyolefins artificially contaminated : studies of the extraction of model compounds by supercritical CO2 in batch process and in twin-screw extruder

Ben Said, Anouar 10 March 2016 (has links)
En raison de leurs excellentes propriétés, les polyoléfines telles que le polypropylène et le polyéthylène sont largement utilisées dans des applications d'emballage alimentaire. Cependant, tout au long de leur cycle de vie ou de la première utilisation, les polyoléfines peuvent être exposées à des milieux contaminés qui limitent leur recyclabilité en contact alimentaire. Par conséquence, le recyclage de polyoléfines au contact alimentaire nécessite des niveaux de décontamination rigoureux et donc une technologie de décontamination avancée. L’objectif de ce travail consiste dans un premier temps à étudier la faisabilité et la potentialité de l’extraction par CO2 supercritique en mode batch pour la purification de polyoléfines (extraction d’additifs et de contaminants modèles). On s’est plus particulièrement attaché à étudier l’effet des paramètres du procédé sur la cinétique de l’extraction ainsi que l’influence de l’extraction supercritique sur les comportements rhéologique et thermique des matériaux purifiés. Dans un deuxième temps, on s’est intéressé au développement d’un nouveau procédé continu d’extraction par couplage de l’extraction supercritique et l’extrusion bi-vis. Les résultats les plus importants ont montré la potentialité de l’extraction par CO2 supercritique en mode batch pour la purification de polyoléfines sans influencer significativement les propriétés de la matrice / Due to their excellent properties, polyolefins such as polypropylene and polyethylene are widely used in food packaging applications to preserve and protect foodstuffs. However, throughout their lifecycle or first use, polyolefins can be exposed to contaminated media which limit their recyclability in food contact applications. Therefore, the recycling of polyolefins into direct food contact applications requires rigorous decontamination levels and thus effective and advanced recycling technology. The objective of this work is, at first hand, to study the feasibility and the potential of supercritical CO2 extraction in batch process for the purification of polyolefins (extraction of additives and model contaminants). In the whole, we investigated the effects of process parameters and contaminant structure on the extraction kinetic, and the influence of the supercritical CO2 extraction on the rheological and thermal behaviors of the purified materials. On the other hand, we aimed at the development of a novel continuous extraction process by coupling supercritical extraction technique and twin-screw extrusion. The most significant results showed the potential of supercritical CO2 extraction in batch mode for the purification of polyolefins without influence significantly the matrix properties
8

Catalytic copolymerization of ethylene with various olefins in solution and in emulsion

Skupov, Kirill January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
9

Catalytic copolymerization of ethylene with various olefins in solution and in emulsion

Skupov, Kirill January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
10

High impact polypropylene : structure evolution and impact on reaction / Polypropylène choc : évolution de la structure et de l'impact dans la réaction

Cancelas Sanz, Aarón José 06 October 2017 (has links)
Les homopolymères à base de polypropylène isotactique (iPP en anglais) ont une rigidité plus élevée que le polyéthylène (PE), mais aussi une dureté limitée, en particulier à températures plus basses. Ceci peut être surmonté en incorporant un élastomère copolymère d'éthylène et de propylène directement dans la matrice semi-cristalline de iPP. De tels mélanges obtenus in situ dans des réacteurs successifs sont bien connus, et leur production nécessite un procédé multi-étapes. De façon succincte, un procédé industriel pour la synthèse de PP choc (hiPP, high impact PP en anglais) implique 2 zones de réaction (chaque zone peut être composée d'un ou plusieurs réacteurs). L’iPP est fabriqué dans la première zone. Les poudres encore actives sont ensuite dégazées et envoyées dans une seconde zone dans laquelle est incorporé un élastomère (généralement un copolymère de propylène et d'éthylène appelé caoutchouc éthylène-propylène (ethylene-propylene rubber (EPR) en anglais). L'homopolymère iPP peut être produit en phase gaz ou en suspension (slurry en anglais) dans un hydrocarbure, alors que l'EPR doit être fabriqué dans un réacteur en phase gaz. Dans la thèse actuelle, nous nous sommes concentrés sur les procédés intégralement en phase gaz. Par conséquent, la morphologie du polypropylène choc (hiPP) dépendra fortement de celle de l'iPP intermédiaire, qui, à son tour, dépendra de la morphologie du précatalyseur. Cependant, le même précatalyseur peut conduire à différentes morphologies d’iPP, selon le protocole d'injection suivi. L'injection de catalyseur est donc un aspect critique de la production du hiPP. Cet aspect a été étudié grâce à la réalisation d'un plan d'expériences de polymérisation du propylène. On a utilisé des catalyseurs supportés Ziegler-Natta (ZN), disponibles commercialement, dans un réacteur à cuve agitée et un réacteur phase gaz à flux stoppé. On a mis en évidence pourquoi la prépolymérisation et le mouillage du catalyseur par un hydrocarbure avant d'être introduits dans le réacteur assurent de hautes activités et un contrôle de la morphologie des particules de polymère tout en produisant l'iPP. Au cours de la production de l’hiPP, la thermodynamique de sorption de la phase gaz a un impact important sur la cinétique d'homopolymérisation et de copolymérisation du propylène. Par exemple, les hydrocarbures supérieurs améliorent la solubilité du propylène dans le polymère (phénomène de «co-solubilité») ce qui conduit à une augmentation de l'activité. De plus, la solubilité et la diffusivité des différents monomères (et de leurs mélanges) utilisés pour produire l’hiPP (propylène, éthylène et mélange éthylène / propylène) dans les poudres dépendent des températures et des pressions auxquelles le procédé est conduit. Les données expérimentales de ces quantités ont été obtenues et des modèles semi-empiriques généralement utilisés dans l'industrie des polyoléfines ont été utilisés pour comprendre leur dépendance à l'égard des conditions du procédé. Finalement, plusieurs poudres d’hiPP ont été obtenues dans le réacteur à cuve agitée avec un catalyseur ZN supporté, en suivant la voie intégrale phase gaz. La morphologie de la matrice iPP et les conditions de la copolymérisation telles que la quantité de copolymère, la température, la pression, la quantité relative d'éthylène par rapport au propylène et la présence d'hydrogène ont été systématiquement variées pour comprendre leur impact sur la répartition du caoutchouc dans la matrice PP. Ce facteur est, à son tour, crucial pour (1) un fonctionnement du procédé industriel optimal, et (2) les propriétés mécaniques recherchées de l'hiPP / Isotactic Polypropylene (iPP) homopolymers have higher stiffness than polyethylene (PE), but also limited toughness, especially at lower temperatures. This can be overcome by incorporating an elastomeric copolymer of ethylene and propylene directly in the semi crystalline iPP matrix. Such in situ reactor blends are well-known, and their production requires of multi-step reaction process. Very briefly, an industrial process for high impact polypropylene (hiPP) products involves 2 reaction zones (each zone can be composed of one or more reactors). iPP is made in the first zone, the still active powders are then degassed and sent to a second zone in which an elastomer (usually a copolymer of propylene and ethylene referred to as Ethylene-Propylene Rubber (EPR)) is made. The iPP homopolymer can be produced in the gas phase or slurry phase, whereas the EPR must be made in a gas phase reactor. In the current thesis, our focus was on an “all gas phase”process.Therefore, the morphology of hiPP will be greatly dependent on that of the intermediate iPP, which in turn, will depend on the precatalyst morphology. However, the same precatalyst can lead to different iPP morphologies, depending on the injection protocol followed. Therefore, catalyst injection is a critical aspect while producing hiPP. Such aspect has been studied by performance of a designed set of propylene polymerization reaction experiments. Commercially available supported Ziegler-Natta (ZN) catalysts along with a lab-scale stirred-bed reactor and a gas phase stopped flow reactor have been used. It is understood why prepolymerization and wetting the catalyst with hydrocarbon before being charged to the reactor ensure high activity and quality morphology while producing iPP. During the production of hiPP, sorption thermodynamics of the gas phase have a big impact on propylene homopolymerization and copolymerization kinetics. For instance, higher hydrocarbons enhance the propylene solubility in polymer (which is known as “cosolubility” phenomenon) which leads to an activity increase. In addition, the solubility and diffusivity of the different monomers used to produce hiPP (propylene, ethylene and ethylene/propylene mixtures) in the powders depend on the temperatures and pressures which the process is conducted at. Experimental data of these quantities was obtained and semi-empirical models generally used in the polyolefin industry were used to understand their dependence on the process conditions. Finally, several hiPP powders were made in the lab-scale stirred-bed reactor with a supported ZN catalyst, following the “all gas phase” route. The morphology of the iPP matrix and conditions during copolymerization such as amount of copolymer, temperature, pressure, relative amount of ethylene to propylene and the presence of hydrogen have been systematically varied to comprehend their impact on the rubber distribution among the PP matrix. The aforementioned factor is, in turn, crucial for (1) a correct industrial process operation, and (2) the mechanical properties sought-after in hiPP

Page generated in 0.0712 seconds