• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 7
  • 6
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 85
  • 24
  • 21
  • 20
  • 19
  • 15
  • 13
  • 12
  • 11
  • 10
  • 10
  • 10
  • 10
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Approaches to Tailoring the Structure and Properties of Polyethylene

Li Pi Shan, Colin January 2002 (has links)
Alternative methods to control the molecular weight and short chain branching distribution of polyethylene were investigated. The ability to produce polyolefins with multimodal microstructural distributions using single catalyst/single reactor set-up is very attractive and could, in principle, be used to produce polyolefin resins with advanced molecular architecture. In this thesis, resins with controlled microstructures were produced, characterized and properties tested in order to develop a better understanding of polymerization structure-property relationships. Copolymerizations of ethylene and 1-hexene were carried out with an in-situ supported metallocene catalyst. Copolymers were produced with different alkylaluminum activators and the effect on molecular weight and short chain branching distributions was examined. It was found that different activator types produce polymer with unimodal and narrow molecular weight distributions but with very different short chain branching distributions. Each activator exhibits unique comonomer incorporation characteristics to produce bimodal short chain branching distributions with the use of a single activator. By using individual and mixed activator systems, it is possible to control the short chain branching distributions of the resulting copolymers while maintaining narrow molecular weight distributions. To further investigate the capabilities of this in-situ supported catalyst system, an experimental design was carried out to study the effect of polymerization conditions on the catalyst activity and microstructure of poly(ethylene-co-1-octene). The parameters investigated were: polymerization temperature, monomer pressure, chain transfer to hydrogen, comonomer/ethylene feed ratio and concentration of alkylaluminum. The effect of each parameter on the catalyst activity, comonomer incorporation and molecular weight distribution was investigated. The results obtained were not typical of a conventional single-site catalyst. The copolymerization system was sensitive to all of the parameters and many interactions were evident. The most prominent effect was the catalyst response to temperature. As the temperature was decreased, the short chain branching distributions of the copolymers became broad and bimodal. Overall, it was found that a wide range of microstructures could be produced, ranging from copolymers with low and high 1-octene content with unimodal to broad short chain branching distributions, and from low to high molecular weight with narrow to broad molecular weight distributions. To examine the effect of these broad short chain branching distributions on the polymer properties, a series of poly(ethylene-co-1-hexene) resins with very distinct, and in some cases bimodal crystalline distributions, were synthesized. The attractive feature of the resins in this study is that their molecular weight distributions are similar but each possesses a different short chain branching distribution, thus effectively minimizing the effect of molecular weight on the properties investigated. It was found that the tensile properties of a copolymer could be controlled by the ratio of the crystalline species present in the sample. In this study, a balance of stiffness and toughness was exhibited by a copolymer containing a large proportion of crystalline material and a small fraction of material of lower crystallinity. A series of poly(ethylene-co-1-octene) resins with tailored molecular weight and short chain branching distributions were synthesized with a heterogeneous metallocene catalyst in a two-stage polymerization process. Blends of high molecular weight copolymer and low molecular weight homopolymer and reverse blends of low molecular weight copolymer and high molecular weight homopolymer were produced. The physical properties of these resins were tested for their dynamic mechanical (tensile) and rheological properties. Increasing the copolymer content in the blend resulted in a decrease in stiffness. However, the energy dampening properties of these blends benefit from the presence of the copolymer. It was also confirmed that the melt flow properties of polymers mostly depend on their molecular weight distribution. Regardless of the comonomer content, the melt viscosities decreased with the addition of low molecular weight polymer.
52

Approaches to Tailoring the Structure and Properties of Polyethylene

Li Pi Shan, Colin January 2002 (has links)
Alternative methods to control the molecular weight and short chain branching distribution of polyethylene were investigated. The ability to produce polyolefins with multimodal microstructural distributions using single catalyst/single reactor set-up is very attractive and could, in principle, be used to produce polyolefin resins with advanced molecular architecture. In this thesis, resins with controlled microstructures were produced, characterized and properties tested in order to develop a better understanding of polymerization structure-property relationships. Copolymerizations of ethylene and 1-hexene were carried out with an in-situ supported metallocene catalyst. Copolymers were produced with different alkylaluminum activators and the effect on molecular weight and short chain branching distributions was examined. It was found that different activator types produce polymer with unimodal and narrow molecular weight distributions but with very different short chain branching distributions. Each activator exhibits unique comonomer incorporation characteristics to produce bimodal short chain branching distributions with the use of a single activator. By using individual and mixed activator systems, it is possible to control the short chain branching distributions of the resulting copolymers while maintaining narrow molecular weight distributions. To further investigate the capabilities of this in-situ supported catalyst system, an experimental design was carried out to study the effect of polymerization conditions on the catalyst activity and microstructure of poly(ethylene-co-1-octene). The parameters investigated were: polymerization temperature, monomer pressure, chain transfer to hydrogen, comonomer/ethylene feed ratio and concentration of alkylaluminum. The effect of each parameter on the catalyst activity, comonomer incorporation and molecular weight distribution was investigated. The results obtained were not typical of a conventional single-site catalyst. The copolymerization system was sensitive to all of the parameters and many interactions were evident. The most prominent effect was the catalyst response to temperature. As the temperature was decreased, the short chain branching distributions of the copolymers became broad and bimodal. Overall, it was found that a wide range of microstructures could be produced, ranging from copolymers with low and high 1-octene content with unimodal to broad short chain branching distributions, and from low to high molecular weight with narrow to broad molecular weight distributions. To examine the effect of these broad short chain branching distributions on the polymer properties, a series of poly(ethylene-co-1-hexene) resins with very distinct, and in some cases bimodal crystalline distributions, were synthesized. The attractive feature of the resins in this study is that their molecular weight distributions are similar but each possesses a different short chain branching distribution, thus effectively minimizing the effect of molecular weight on the properties investigated. It was found that the tensile properties of a copolymer could be controlled by the ratio of the crystalline species present in the sample. In this study, a balance of stiffness and toughness was exhibited by a copolymer containing a large proportion of crystalline material and a small fraction of material of lower crystallinity. A series of poly(ethylene-co-1-octene) resins with tailored molecular weight and short chain branching distributions were synthesized with a heterogeneous metallocene catalyst in a two-stage polymerization process. Blends of high molecular weight copolymer and low molecular weight homopolymer and reverse blends of low molecular weight copolymer and high molecular weight homopolymer were produced. The physical properties of these resins were tested for their dynamic mechanical (tensile) and rheological properties. Increasing the copolymer content in the blend resulted in a decrease in stiffness. However, the energy dampening properties of these blends benefit from the presence of the copolymer. It was also confirmed that the melt flow properties of polymers mostly depend on their molecular weight distribution. Regardless of the comonomer content, the melt viscosities decreased with the addition of low molecular weight polymer.
53

Single-Site Olefin Polymerization Catalysts via the Molecular Design of Porous Silica

McKittrick, Michael W. 25 March 2005 (has links)
The major goals of this work were to: develop a new methodology for the preparation of site-isolated catalytic sites on a silica surface, prepare the first truly single-site supported metallocene/CGC polymerization catalyst, and develop structure-reactivity relationships for these new systems. To synthesize these novel catalysts, the approach taken was to develop a protocol which allows for the synthesis of an aminosilica material with isolated, uniform amine sites. This patterned aminosilica was then used as a scaffold to support a constrained geometry catalyst. These functionalizations occurred at essentially a quantitative level, in stark contrast to previous literature reports. The patterned catalysts were evaluated in the polymerization of ethylene and compared to densely loaded literature materials. Overall, it was found the patterned materials were 5-10 times more active than traditional immobilized CGC catalysts. The patterned catalysts were also found to be effective catalysts for the copolymerization of norbornenes (including functionalized norbornenes) and ethylene, the first reported use of a tethered CGC for the production of ethylene-norbornene copolymers. The control materials were inactive in these polymerizations, providing further evidence that the patterning protocol allows for the synthesis of unique highly active, isolated catalytic sites. Various structural components of the immobilized CGC developed in this work were tested for their impact on catalyst synthesis and reactivity in ethylene polymerizations. The results showed the patterned materials in general behaved according to the trends seen in homogeneous CGC polymerizations. These results, while congruent with similar homogeneous CGC studies, are in direct conflict with previous work on supported CGCs reported in the literature. This discrepancy is likely the result of the difference between the isolated, possibly single-site patterned catalysts developed in the course of this work and the multi-sited catalysts prepared by traditional supporting protocols. This also further illustrates the difficulty in developing structure-reactivity relationships when ill-defined solid catalysts are used.
54

Efeitos da descarga corona em superfície de polipropileno em temperatura ambiente e acima / Effects of corona discharge on polypropylene surface at room temperature and above

Sena, Hildo Costa de 17 August 2018 (has links)
Orientador: João Sinézio de Carvalho Campos / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química / Made available in DSpace on 2018-08-17T16:49:59Z (GMT). No. of bitstreams: 1 Sena_HildoCostade_M.pdf: 22003439 bytes, checksum: 1eca2b2806567e926cea6f94abd18776 (MD5) Previous issue date: 2011 / Resumo: Este trabalho avalia o efeito do tratamento por descarga corona em temperatura ambiente e acima para promover aumento da energia de superfície em filmes de polipropileno (PP). Submeteram-se amostras de polipropileno ao tratamento corona em sistema com geometria ponta-plano e utilizou-se de tensão de polarização dos eletrodos em 5kV . Avaliaram-se os efeitos do tratamento corona através de medidas de ângulo de contato pelo método da gota séssil, em função dos parâmetros: tempo de tratamento corona (2s a 90s), temperatura das amostras de polipropileno (25_C e 55_C) e distância entre os eletrodos (3mm e 5mm). Os resultados indicam influência significativa do tempo de tratamento corona e da distância intereletrodos. Ademais, o tratamento corona aumenta a energia de superfície dos filmes observada através da diminuição do valor do ângulo de contato entre amostra e gota d'água (inicialmente 88_ sem tratamento e 50_ após corona com 3mm de distância entre os eletrodos). Dentre os parâmetros e condições estudadas a temperatura não apresenta influência nos valores de ângulo de contato a fim de mudar a energia de superfície dos filmes. Em adição as medidas de ângulo de contato, medem-se propriedades físico-químicas da superfície do PP através da obtenção dos espectros dos filmes por espectrometria de infravermelho com transformações de Fourier (FT-IR) e de micrografias obtidas por microscopia eletrônica exploratória (MEV). A energia de superfície (antes e após tratamento corona) foi determinada utilizando-se os seguintes métodos: tensão superficial crítica (c), equação de estado (EE) e as aproximações de Owens/ Wendt (OW), Wu (Wu) e van Oss/ Chaudhury/ Good (VCG). A partir destes métodos encontra-se que: foram observadas diferenças entre os espectros de FT-IR obtidos nas diferentes condições de tratamento estudadas quando associadas a modificação por corona sob temperatura acima da ambiente (55_C _ 2_C). Alterações na topografia dos filmes de PP foram observadas após tratamento por descarga corona através da formação de grânulos, depressões, eriçamento e protuberâncias na superfície destes. Melhorias na energia livre superficial dos filmes de PP foram observadas após tratamento corona e variou aproximadamente de 36,9mN=m para 47,9mN=m em filmes sem tratamento superficial e após 10s de tratamento por descarga corona quando determinada através da aproximação de VCG, respectivamente / Abstract: The present study evaluates the effect of corona discharge treatment at room temperature and above in order to promote an increase of surface energy of polypropylene films. Polypropylene samples were subjected to corona treatment in tip-plane geometry system using bias voltage of 5kV between the electrodes. The effects of corona treatment were assessed by contact angle measurements using the sessile drop method, taking in account the following parameters: corona treatment time (2s to 90s), temperature of polypropylene samples (25_C and 55_C) and distance between the electrodes (3mm and 5mm). The results indicate significant influence of treatment time and the distance between the electrodes. Moreover, the corona treatment increases the surface energy of the films which was observed by decreasing the value of the contact angle between thesample and drop of water (initially 88_ without treatment and 50_ after corona with 3mm gap between the electrodes). Among the parameters and conditions studied, the temperature does not influence the values of contact angle in order to change the surface energy of the films. In addition the measures of contact angle, were carried out measures of physicochemical properties of the PP surface by obtaining the spectra of the films by infrared spectrometry with Fourier transformed (FT-IR) and micrographs obtained by scanning electron microscopy (SEM). The surface energy (before and after corona treatment) was determined using the following methods: critical surface tension (c), equation of state (EE) and approaches from Owens/ Wendt (OW), Wu (Wu) and van Oss/ Chaudhury/ Good (VCG). From these methods is turning out that: there were differences between the spectra obtained at different FT-IR treatment conditions studied when associate the corona modification at above room temperature (55_C _ 2_C). Changes in the topography of the films PP were observed after treatment by corona discharge due to formation of granules, depressions, bristling and bumps on their surface. Improvements in surface free energy of the PP films were observed after corona treatment, around from about 36,9mN=m in films without surface treatment up to 47,9mN=m after 10s of corona discharge when determined by VCG approach / Mestrado / Ciencia e Tecnologia de Materiais / Mestre em Engenharia Química
55

Modèle de comportement pour la modélisation du thermoformage de feuilles plastiques multicouches / Constitutive law for modeling multilayered thermplastic sheets thermoforming

Oueslati, Zied 03 July 2015 (has links)
Les Thermoplastique Polyoléfine (TPO) se sont avérés très intéressants pour les applications automobiles. Les caractéristiques mécaniques de ces matériaux sont en bon accord avec le contexte environnemental et économique de la dernière décennie. En fait, au-delà de leur coût et recyclabilité, ils permettent un gain de poids important, une excellente flexibilité de conception et de hautes qualité en terme d'apparence ou de caractéristiques tactiles et olfactives. Le but de cette étude était de modéliser le comportement des nouvelles feuilles de TPO pour les applications de thermoformage. Le matériau étudié peut atteindre de très hautes valeurs d'allongement (jusqu’à 800%) et se distingue par une isotropie transverse. Afin de prédire correctement la distribution de l'épaisseur des pièces thermoformées finales, des essais detraction uniaxiale ont été menés le long des directions longitudinale, transversale et diagonale et à 5 températures différentes de ambiante à 120 °C. Un nouveau modèle hyperélastique isotrope transverstal a été développé. Les paramètres matériau à chacune des températures ont été identifiés en utilisant des méthodes inverses, et de bons résultats ont été obtenus. La procédure d'identification s'est avéré être difficile en raison de la grande sensibilité des paramètres et les problèmes d'instabilité en grandes déformations. Des techniques de mesures champ de déplacement 3D ont finalement été menées et associés à un test de thermoformage afin de valider la procédure matériel d'identification. / Thermoplastic PolyOiefin (TPO) materials have shown great interest for automotive applications. The mechanical characteristics of these materials are in good agreements with the environmental and economical context of the last decade. ln fact, beyond their cost and recyclability, they allow important weight gain, excellent design flexibility, and high quality whether in term of appearance or tactile and olfactory perceptions. The aim of this study was to model the behavior of new TPO sheets for thermoforming applications. The studied material can reach very high stretch ranges (up to 800%) and was found to be transversely isotropie. ln order to properly predict the thickness distribution of the final thermoformed parts, uniaxial tensile tests were performed along the longitudinal, transverse and diagonal directions, at 5 different temperatures from ambient to 120°C. A new transversely isotropic hyperelastic model was developed using User Subroutines in Abaqus software. The material parameters at each temperature have been identified using inverse methods, and good results have been obtained. The identification procedure has shown to be difficult because of the high sensitivity of the material parameters and the instability problems at high stretch ranges. 3D displacement field techniques were finally conducted and associated to a thermoforming test in order to validate the material parameter identification procedure.
56

Investigations on the stereoselective polymerization of α-olefins by single-site group IV metal catalysts / Investigations sur la polymérisation stéréoséléctive d'α-oléfines par des catalyseurs mono-site de métaux du groupe IV

Theurkauff, Gabriel 16 December 2014 (has links)
Les travaux présentés dans ce manuscrit ont trait à la catalyse de polymérisation des α-oléfines sont présentés en 4 parties distinctes. La première est consacrée à l'étude d'un système catalytique pour la production de polypropylène élastomère. L'analyse poussée des polymères produits et la caractérisation complète des catalyseurs utilisés a permis de montrer la présence de deux homopolymères sous forme de blende. La seconde partie porte sur la copolymérisation de monomères bifonctionnels vinyl-vinylidène avec le propylène. La caractérisation des polymères a permis de révéler la réactivité particulière des liaisons vinylidène et d'étudier l'influence du catalyseur utilisé sur le mécanisme de la polymérisation. La troisième partie s'intéresse à la caractérisation des espèces active en polymérisation et à l'étude des mécanismes d'activation et de désactivation des catalyseurs métallocènes. La synthèse et la caractérisation d'espèces cationiques, l'étude de leur comportement dynamique en solution, ainsi que l'évaluation de leur productivité en polymérisation ont permis d'établir un lien entre les propriétés électrophiles de ces espèces et de leur activité en polymérisation. La dernière partie porte sur l'homopolymérisation d'α-oléfines encombrées. La recherche d'un catalyseur suffisamment productif nous a amené à tester plusieurs catalyseurs présentant des structures différentes. L'absence de catalyseur productif soulève l'hypothèse d'interactions désactivantes entre le catalyseur et le monomère. / The work presented in the manuscript focus on α-olefin polymerization catalysis, and is divided into four distinct parts. The first part is dedicated to the study of catalytic systems for the production of elastomeric polypropylene. The analysis of the produced polymers and the characterization of the catalysts showed the presence of two homopolymers as a blend in the elastomeric polypropylene. The second part focuses on the copolymerization of bifunctionnal vinyl-vinylidene monomers with propylene. The characterization of the polymers revealed the reactivity of the vinylidène bonds and showed different polymerization mechanisms for the different catalysts. The third part reports a study on the activation and deactivation pathways of the active species in polymerization. The characterization of model cationic species and the study of their behavior in solution and in polymerization showed the relationship between the electrophilicity of the species and its productivity in propylene polymerization. The last part is dedicated to the polymerization of hindered α-olefins. The quest for a productive catalyst led to test various single site catalysts with different structures. Deactivating interactions between the monomers and the catalyst are supposed to explain the low productivity of the tested catalysts.
57

Study of ethylene/propylene polymerization, using a 4th generation Ziegler-Natta catalyst: Effect of external donor and feed ratio on polymerization

Shafagh Dehghani, Seyedeh January 2012 (has links)
A fourth generation multiple site Ziegler-Natta catalyst was used to synthesize ethylene and propylene homo-and copolymers in the presence of hydrogen. This type of catalysts produce polymers with broader molecular weight distribution (MWD), chemical composition distribution (CCD) and stereoregularity than other coordination polymerization catalysts since it has more than one active site. The ratio of propylene/ethylene was varied to study its effect on polymer microstructure. In addition, by having two different electron donors, namely diisopropyldimethoxysilane (P) and dicyclopentyldimethoxysilane (D), the molecular weight distribution (MWD) and stereospecificity of the synthesized polymers were examined. The polymer samples were characterized using 13C-NMR and high-temperature gel permeation chromatography (GPC). Using the 13C-NMR data, the triad distribution for the copolymers and also the isotactic triad distribution for homo-polymers were calculated. The effects of electron donors on different feed ratios of ethylene and propylene in the synthesis were investigated. Co-polymer produced with D-donors showed higher isospecificity and also higher content of ethylene in the final polymer. In contrast, polymers produced using with P-donor showed lower polydispersity indices (PDI), and had higher contents of propylene in final polymer. In addition, the “Deconvolution method” was applied to GPC data in order to determine the number of sites on the Ziegler-Natta catalyst; which showed that 4 active site types were adequate to explain the molecular weight distributions.
58

Miscibility and Structure-Property Relationships in Some Novel Polyolefins

Kamdar, Akshay R. 12 February 2009 (has links)
No description available.
59

Structure-Property Relationships in Composite Layers Polymeric Film/Foam Systems

Lee, Sangjin 08 February 2017 (has links)
No description available.
60

STUDY OF REACTIONS BETWEEN HIGHLY FUNCTIONALIZED LOW MOLECULAR WEIGHT POLYETHYLENE AND POLYAMINES TO PRODUCE THERMOSET MATERIALS

Hameed, Tayyab 04 1900 (has links)
<p>Low molecular weight functionalized polyolefins are mainly used as additives in adhesive formulations, compatibilizing agents and aqueous dispersions. However, the low viscosity and functionality they offer has never been explored to generate high molecular weight products that offer improved processing routes for polyolefins as well as wider applications.</p> <p>The aim of this thesis work was to investigate the preparation and characterization of thermoset material by reactions between a highly functionalized, low viscosity maleic anhydride grafted polyethylene and diamines. Reactions were performed both in solution and in the melt state to generate the target thermoset materials. Products from these reactions were extensively explored using different techniques to understand the reaction kinetics and mechanism. Thermosets generated were also characterized for the degree of crosslinking, thermal, mechanical and thermomechnical properties.</p> <p>Reactions in solution showed that the degree of reaction could be easily controlled by manipulating the concentration of reactants in the reaction mixture. Mixing torque data from the melt blender generated during reactions in the melt phase suggested that reaction between anhydride and amine moieties in these systems happen at much slower rate than widely reported for conventional high molecular weight polymeric systems. Unlike a single or two closely merged peaks in mixing torque associated with melting of polymer and chain extension and crosslinking due to reaction between anhydride and amine functionality widely reported, two separate peaks were observed in this study. A combination of FTIR and insoluble fraction data generated suggested that the first peak observed in mixing torque represents a combination of melting and partial reaction between anhydride and amine functionality. Whereas, the second peak in the mixing torque represents the initiation of crosslinking. The slower kinetics observed in the current investigation was found not to be a consequence of immiscibility of polyether diamine and polyethylene or the relatively higher molecular weight of diamines utilized in some reactions since using a low molecular weight aliphatic diamine, hexamethylenediamine, produced similar trends. FTIR and gel content (insoluble fraction) data generated on the prepolymers by processing them at high temperatures, suggested residual anhydride presence in products which could not be assessed using FTIR. This observation renders the popular monitoring of anhydride peak in such systems to assess the degree of reaction highly questionable. Cured thermosets from the prepolymers produced showed gel fractions of the same scale as in traditional crosslinked products. DSC heat scans on the thermosets showed separate crystal populations for polyethylene in cured and uncured fraction. Dynamic mechanical analysis result showed the thermosets withstood temperature up to 200 °C without failure and a crosslink plateau could be observed following the melting transition. Tensile properties of the thermosets were observed to be promising and composition dependent.</p> <p>These thermosets are expected to extend the polyolefins applications in areas like sealant, adhesive and coatings. The low viscosities of starting materials could also lead to new processing routes for polyolefins.</p> / Doctor of Philosophy (PhD)

Page generated in 0.054 seconds