11 |
Decaimento dos autovalores de operadores integrais gerados por núcleos positivos definidos / Decay rates for eigenvalues of integral operators generated by positive definite kernelsFerreira, Jose Claudinei 11 February 2008 (has links)
Inicialmente, estudamos alguns resultados clássicos da teoria dos núcleos positivos definidos e alguns resultados pertinentes. Estudamos em seguida, o Teorema de Mercer e algumas de suas generalizações e conseqüências, incluindo a caracterização da transformada de Fourier de um núcleo positivo definido com domínio Rm£Rm, m ¸ 1. O trabalho traz um enfoque especial nos núcleos cujo domínio é um subconjunto não-compacto de Rm £ Rm, uma vez que os demais casos são considerados de maneira extensiva na literatura. Aplicamos esses estudos na análise do decaimento dos autovalores de operadores integrais gerados por núcleos positivos definidos / Firstly, we study some classical results from the theory of positive definite kernels along with some related results. Secondly, we focus on generalizations of Mercer\'s theorem and some of their implications. Special attention is given to the cases where the domain of the kernel is not compact, once the other cases are considered consistently in the literature. We include a characterization for the Fourier transform of a positive definite kernel on Rm£Rm, m ¸ 1. Finally, we apply the previous study in the analysis of decay rates for eigenvalues of integral operators generated by positive definite kernels
|
12 |
Os critérios de Polya na esfera / The Polya criterion on the sphereGuella, Jean Carlo 31 March 2015 (has links)
Neste trabalho apresentamos uma demonstração detalhada para um conhecido teorema de I. J. Schoenberg que caracteriza certas funções positivas definidas em esferas. Analisamos ainda um critério para a obtenção de positividade definida de uma função a partir de condições de suavidade e convexidade dela, em uma tentativa de ratificar alguns resultados da literatura conhecidos como critérios de Pólya. / In this work we present a proof for a famous theorem of Schoenberg on positive definite functions on spheres. We analyze some results that deduce positive definiteness from diferentiability and convexity assumption on the function, an attempt to ratify some Pólya type conjectures found in the literature.
|
13 |
Extension of positive definite functionsNiedzialomski, Robert 01 May 2013 (has links)
Let $\Omega\subset\mathbb{R}^n$ be an open and connected subset of $\mathbb{R}^n$. We say that a function $F\colon \Omega-\Omega\to\mathbb{C}$, where $\Omega-\Omega=\{x-y\colon x,y\in\Omega\}$, is positive definite if for any $x_1,\ldots,x_m\in\Omega$ and any $c_1,\ldots,c_m\in \mathbb{C}$ we have that $\sum_{j,k=1}^m F(x_j-x_k)c_j\overline{c_k}\geq 0$.
Let $F\colon\Omega-\Omega\to\mathbb{C}$ be a continuous positive definite function. We give necessary and sufficient conditions for $F$ to have an extension to a continuous and positive definite function defined on the entire Euclidean space $\mathbb{R}^n$. The conditions are formulated in terms of strong commutativity of some certain selfadjoint operators defined on a Hilbert space associated to our positive definite function.
|
14 |
Decaimento dos autovalores de operadores integrais gerados por núcleos positivos definidos / Decay rates for eigenvalues of integral operators generated by positive definite kernelsJose Claudinei Ferreira 11 February 2008 (has links)
Inicialmente, estudamos alguns resultados clássicos da teoria dos núcleos positivos definidos e alguns resultados pertinentes. Estudamos em seguida, o Teorema de Mercer e algumas de suas generalizações e conseqüências, incluindo a caracterização da transformada de Fourier de um núcleo positivo definido com domínio Rm£Rm, m ¸ 1. O trabalho traz um enfoque especial nos núcleos cujo domínio é um subconjunto não-compacto de Rm £ Rm, uma vez que os demais casos são considerados de maneira extensiva na literatura. Aplicamos esses estudos na análise do decaimento dos autovalores de operadores integrais gerados por núcleos positivos definidos / Firstly, we study some classical results from the theory of positive definite kernels along with some related results. Secondly, we focus on generalizations of Mercer\'s theorem and some of their implications. Special attention is given to the cases where the domain of the kernel is not compact, once the other cases are considered consistently in the literature. We include a characterization for the Fourier transform of a positive definite kernel on Rm£Rm, m ¸ 1. Finally, we apply the previous study in the analysis of decay rates for eigenvalues of integral operators generated by positive definite kernels
|
15 |
Ultraconnected and Critical GraphsGrout, Jason Nicholas 05 May 2004 (has links) (PDF)
We investigate the ultraconnectivity condition on graphs, and provide further connections between critical and ultraconnected graphs in the positive definite partial matrix completion problem. We completely characterize when the join of graphs is ultraconnected, and prove that ultraconnectivity is preserved by Cartesian products. We completely characterize when adding a vertex to an ultraconnected graph preserves ultraconnectivity. We also derive bounds on the number of vertices which guarantee ultraconnectivity of certain classes of regular graphs. We give results from our exhaustive enumeration of ultraconnected graphs up to 11 vertices. Using techniques involving the Lovász theta parameter for graphs, we prove certain classes of graphs are critical (and hence ultraconnected) in the positive definite partial matrix completion problem.
|
16 |
On Semi-definite Forms in AnalysisKlambauer, Gabriel 03 1900 (has links)
Using the representation theory of positive definite sequences some propositions in additive number theory are obtained and H. Bohr's approximation theorem is deduced. A unified approach to theorems by S. Bochner, S, N, Bernstein and H. Hamburger is discussed and some operator versions of numerical moment problems are studied. The Appendix contains comments to J. von Neumann's spectral theorem for self-adjoint operators in Hilbert space. / Thesis / Doctor of Philosophy (PhD)
|
17 |
The Structure of the Class Group of Imaginary Quadratic FieldsMiller, Nicole Renee 24 May 2005 (has links)
Let Q(√(-d)) be an imaginary quadratic field with discriminant Δ. We use the isomorphism between the ideal class groups of the field and the equivalence classes of binary quadratic forms to find the structure of the class group. We determine the structure by combining two of Shanks' algorithms [7, 8]. We utilize this method to find fields with cyclic factors that have order a large power of 2, or fields with class groups of high 5-ranks or high 7-ranks. / Master of Science
|
18 |
Products of diagonalizable matricesKhoury, Maroun Clive 00 December 1900 (has links)
Chapter 1 reviews better-known factorization theorems of a square
matrix. For example, a square matrix over a field can be expressed
as a product of two symmetric matrices; thus square matrices over
real numbers can be factorized into two diagonalizable matrices.
Factorizing matrices over complex num hers into Hermitian matrices
is discussed. The chapter concludes with theorems that enable one to
prescribe the eigenvalues of the factors of a square matrix, with
some degree of freedom. Chapter 2 proves that a square matrix over
arbitrary fields (with one exception) can be expressed as a product
of two diagona lizab le matrices. The next two chapters consider
decomposition of singular matrices into Idempotent matrices, and of
nonsingutar matrices into Involutions. Chapter 5 studies
factorization of a comp 1 ex matrix into Positive-( semi )definite
matrices, emphasizing the least number of such factors required / Mathematical Sciences / M.Sc. (MATHEMATICS)
|
19 |
Products of diagonalizable matricesKhoury, Maroun Clive 09 1900 (has links)
Chapter 1 reviews better-known factorization theorems of a square
matrix. For example, a square matrix over a field can be expressed
as a product of two symmetric matrices; thus square matrices over
real numbers can be factorized into two diagonalizable matrices.
Factorizing matrices over complex numbers into Hermitian matrices
is discussed. The chapter concludes with theorems that enable one to
prescribe the eigenvalues of the factors of a square matrix, with
some degree of freedom. Chapter 2 proves that a square matrix over
arbitrary fields (with one exception) can be expressed as a product
of two diagonalizable matrices. The next two chapters consider
decomposition of singular matrices into Idempotent matrices, and of
nonsingular matrices into Involutions. Chapter 5 studies
factorization of a complex matrix into Positive-(semi)definite
matrices, emphasizing the least number of such factors required. / Mathematical Sciences / M. Sc. (Mathematics)
|
20 |
A unifying approach to isotropic and radial positive definite kernels / Um estudo uniforme para núcleos positivos definidos radiais e isotrópicosGuella, Jean Carlo 25 February 2019 (has links)
In this work, we generalize three famous results obtained by Schoenberg: I) the characterization of the continuous positive definite isotropic kernels defined on a real sphere; II) the characterization of the continuous positive definite radial kernels defined on an Euclidean space; III) the characterization of the continuous conditionally negative radial kernels defined on an Euclidean space. From this new approach, we reobtain several results in the literature and obtain some new ones as well. With the exception of S1 and R , we obtain necessary and sufficient conditions in order that these kernels be strictly positive definite and strictly conditionally negative definite. / Neste trabalho, nós generalizamos três resultados famosos obtidos por Schoenberg: I) a caracterização dos núcleos contínuos isotrópicos positivos definidos em esferas reais; II) a caracterização dos núcleos contínuos radiais positivos definidos em espaços Euclidianos; III) a caracterização dos núcleos contínuos radiais condicionalmente negativos definidos em espaços Euclidianos. A partir destas novas abordagens, reobtemos vários resultados da literatura assim como obtemos novos. Com a exceção de S1 e R, obtemos condições necessárias e suficientes para que estes núcleos sejam estritamente positivos definidos e estritamente condicionalmente negativos definidos.
|
Page generated in 0.0716 seconds