• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 17
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 46
  • 46
  • 23
  • 20
  • 14
  • 11
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Vliv předoxidace manganistanem draselným na koagulaci neproteinových látek produkovaných řasou Chlorella vulgaris / Influence of preoxidation by potassium permanganate on coagulation of nonproteinaceous compounds produced by alga Chlorella vulgaris

Přech, Jiří January 2018 (has links)
6 Abstract: The presence of phytoplankton and its products (AOM) in source water is a current challenge in water treatment processes. The production of AOM increases with anthropogenic eutrophication of ecosystems. AOM impair the water treatment processes and may form harmful disinfection by-products. The traditional water treatment process is a coagulation, which is very efficient in removing phytoplankton cells, but this is not the case when removing some kinds of AOM. Especially its nonproteinaceous fraction with low molecular weight, which can represent majority of total organic carbon, is removed with very low efficiency. The removal of AOM by coagulation can be enhanced by preoxidation. This thesis examines the influence of preoxidation by potassium permanganate of nonproteinaceous fraction of COM of algae Chlorella vulgaris on its coagulation by aluminium sulphate and polyaluminiumchloride. To compare, solutions with nonproteinaceous COM were coagulated with and without preoxidation by five different doses of permanganate (0,025; 0,05; 0,1; 0,15 a 0,2 mg KMnO4 mg-1 DOC). The doses of permanganate and time need for oxidation (30 minutes) were determined by decreased DOC and permanganate during preoxidation experiments. The maximal DOC removals achieved both with and without preoxidation were 17 %...
42

Remoção de fitoplancton e microcistina de águas de abastecimento, pela associação das técnicas de flotação por ar dissolvido e oxidação química com cloro e permanganato de potássio / Removal of phytoplankton and microcystin from source water, by assotiation of dissolved air flotation and chemical oxidation with potassium permanganate and chlorine

Maurício Fernandes Perez 16 May 2008 (has links)
O presente trabalho de pesquisa teve como objetivo principal avaliar a remoção de fitoplancton e microcistina em cinco fluxogramas de tratamento de água para abastecimento, que tiveram como seqüência básica as etapas de coagulação, floculação, flotação por ar dissolvido e filtração, complementados com oxidação química em diferentes pontos da seqüência básica de tratamento estabelecida. Os ensaios foram realizados em escala de laboratório, utilizando água de estudo preparada mediante a mistura de água coletada no reservatório de Barra Bonita, no Estado de São Paulo, e cultura com elevada concentração de microcistina preparada em laboratório. A concentração de microcistina na água de estudo foi mantida no intervalo de 14 a 17 µg/L. O cloreto férrico foi utilizado como agente coagulante, o permanganato de potássio e o cloro, na forma de hipoclorito de sódio, foram utilizados como agentes oxidantes. Foi observada eficiência de remoção de fitoplancton de cerca de 99,9% devido às etapas de coagulação, floculação e flotação por ar dissolvido e, conseqüentemente, remoção de microcistina contida no interior das células íntegras. A oxidação com cloro realizada após a filtração, bem como a oxidação com a associação do permanganato de potássio e cloro realizada após a flotação, resultaram em eficiência de remoção de microcistina extracelular (microcistina livre no meio líquido) da ordem de 95%, atendendo ao padrão de potabilidade com cocentrações de microcistina menores que 1,0 µg/L. A oxidação da água bruta com permanganato de potássio associada à oxidação da água flotada com cloro, apresentou o melhor desempenho de remoção de microcistina extracelular, com eficiência superior a 98%. Em todos os ensaios de oxidação química foi constatada a influência da variação do pH na remoção de microcistina, sendo que o aumento de eficiência foi associado à diminuição dos valores de pH. Foram observados indícios de remoção de trihalometanos pela flotação por ar dissolvido e redução da formação de trihalometanos quando a oxidação química foi feita com a associação do permanganato de potássio e cloro. / The aim of this research was to study the phytoplankton and microcystin removal at different treatment conditions, all based in coagulation, flocculation, dissolved air flotation and filtration, complemented by chemical oxidation applied at different points of the basic treatment sequency. The lab scale experiments was conduted with raw water prepared by a mixture of natural water, collected in Barra Bonita reservoir at São Paulo State, Brazil, and a high concentrated Microcystis culture prepared in laboratory. The microcystin concentration in raw water was kept in a range of 14 to 17 µg/L. Ferric chloride was used as coagulant, and, potassium permanganate and chlorine (sodium hypochlorite) were used as oxidants. The results showed phytoplankton removal efficiency about 99,9% by the sequency of coagulation, flocculation and dissolved air flotation, resulting a great removal of microcystin retained into the whole cells. The chlorine oxidation after filtration, as well as the oxidation with potassium permanganate and chlorine after dissolved air flotation, resulted in a microcystin removal of about 95% and concentrations under the World Health Organization drinking water guideline value of 1,0 µg/L. The raw water potassium permanganate oxidation associated with the chlorine oxidation after flotation, leaded to the best results concerning microcystin removal, with efficiency above 98%. All experimental conditions with chemical oxidation showed a relevant effect of the pH on the microcystin removal, the decrease of pH values contributed to the increase of microcystin removal. It was observed signs of THM´s removal by the dissolved air flotation and reduction of THM´s production when the chemical oxidation took place with the association of potassium permanganate and chlorine.
43

Remoção de microcistina em águas provenientes de reservatório eutrofizado associando técnicas de clarificação, pré-oxidação com permanganato de potássio, adsorção em carvão ativado e pós-cloração / Removal of microcystins in water from eutrophic reservoir involving technical of clarification, pre-oxidation with potassium permanangate, adsorption with powdered activated carbon and post-chlorination

Jaqueline Almeida de Oliveira 03 July 2009 (has links)
O presente trabalho teve como objetivo avaliar a remoção de três concentrações diferentes de microcistina extracelular em diferentes combinações de tratamento de águas para abastecimento, em escala de bancada, que tiveram como sequência básica a clarificação associada ou não aos processos de pré-oxidação com \'K\'MN\'O IND.4\', adsorção em CAP e pós-cloração. Os resultados mostraram que para todas as águas estudadas o permanganato de potássio não interferiu nos mecanismos de coagulação/floculação e ainda mostrou-se uma alternativa segura para realização da pré-oxidação no que tange à formação de THMs. Na Fase 1, com concentração inicial de microcistina extracelular em torno de 1,4 \'mü\'g/L, a clarificação (coagulação, floculação, flotação por ar dissolvido e clarificação final) atendeu ao padrão de potabilidade que determina concentrações de microcistina menores que 1,0 \'mü\'g/L. Já na Fase 2, com concentração inicial microcistina extracelular em torno de 21,7 \'mü\'g/L, para o atendimento à legislação foi necessário associar a clarificação à pré-oxidação, dosando-se 1,0 ou 2,0 mg \'K\'MN\'O IND.4\'/L, e à pós-cloração com 3,0 mg \'CL IND.2\'/L. Na Fase 3, com concentração inicial de microcistina extracelular em torno de 64,1 \'mü\'g/L, a associação da clarificação com a adsorção com 60,0 mg/L de CAP e com a pós-cloração com 3,0 mg \'CL IND.2\'/L proporcionou residuais de microcistina extracelular inferiores à 1,0 \'mü\'g/L. Observou-se ainda, que nas Fases 1 e 3 a presença de matéria orgânica dissolvida interferiu negativamente nas sequências de tratamento ao consumir parte do permanganato de potássio destinado à oxidação da microcistina extracelular. Entretanto, na Fase 2 a demanda do pré-oxidante pelas substâncias húmicas parece ter impedido a lise de parte das células de Microcystis sp. / The present work had as objective to evaluate the removal of three different concentrations of extracellular microcystins in different combinations of water treatment for supplying, in bench scale, that had as basic sequence the clarification associated or not with the processes of pre-oxidation with \'K\'MN\'O IND.4\', adsorption on PAC and post-chlorination. The results showed that for all waters studied the potassium permanganate did not interfere in the mechanisms of coagulation/flocculation and also proved to be a safe alternative for achieving the pre-oxidation with regard to the formation of THMs. In Phase 1, with initial concentration of extracellular microcystin around 1.4 \'mü\'g/L, the clarification (coagulation, flocculation, dissolved air flotation and clarification final) met the World Health Organization drinking water guideline value of 1.0 \'mü\'g/L of microcystin. Already, in Phase 2, with initial concentration extracellular microcystin around 21.7 \'mü\'g/L, to meet the legislation was necessary to involved the clarification with the pre-oxidation, dosing 1.0 or 2.0 mg \'K\'MN\'O IND.4\'/L, and with the post-chlorination with 3.0 mg \'CL IND.2\'/L. In Phase 3, with initial concentration of extracellular microcystin around 64.1 \'mü\'g/L, the association of clarification with the adsorption with 60.0 mg/L of PAC and the post-chlorination with 3.0 mg\'CL IND.2\'/L provided residual extracellular microcystin below 1.0 \'mü\'g/L. It was also observed that in Phases 1 and 3 the presence of dissolved organic matter intervened negatively in the sequence of treatment when consuming part of the potassium permanganate destined to the oxidation of extracellular microcystin. However, in Phase 2 the demand for pre-oxidizing by the humic substances seems to have prevented the lysis of some cells of Microcystis sp.
44

Remoção de sulfeto de hidrogênio, ferro e manganês de águas de abastecimento através dos processos de dessorção gasosa, nanofiltração e oxidação com permanganato de potássio

Agudelo Castañeda, Dayana Milena January 2010 (has links)
Inúmeras regiões brasileiras apresentam problemas qualitativos em seus mananciais de abastecimento, originando dificuldades para a potabilização da água distribuída nas cidades. Geralmente, os consumidores julgam a segurança da água potável que bebem através de seus sentidos organolépticos. Os processos convencionais utilizados nas estações de tratamento de água não são efetivos na remoção de muitos compostos que causam cor, gosto e odor na água. Devido a isto, é comum que as companhias de saneamento recebam reclamações por parte dos consumidores sobre a qualidade da água distribuída. Dentre os compostos que causam gosto, odor e cor na água encontram-se o sulfeto de hidrogênio, o ferro e o manganês. O sulfeto gera um odor de “ovo podre”, perceptível a concentrações que variam entre 0,05 e 0,1 mg·L-1. Manganês e ferro estão associados principalmente a produção de cor e precipitados na água. Desta forma, o objetivo da pesquisa proposta foi estudar técnicas de tratamento alternativas as convencionais para controlar gosto, cor e odor na água potável pela presença de sulfeto de hidrogênio, ferro e manganês. Os processos investigados foram aeração em torre de dessorção, nanofiltração em membrana e oxidação com permanganato de potássio. Os testes foram realizados com água bruta oriunda do reservatório da Lomba do Sabão, em Porto Alegre. Os ensaios de oxidação anteriormente à clarificação físico-química constaram de 4 etapas. Na primeira, foram testados o cloreto férrico e o sulfato de alumínio, possibilitando a elaboração de diagramas de coagulação. Na segunda etapa, foi calculada a eficiência da coagulação na remoção de Fe(II), Mn(II) e H2S. Na terceira etapa, foi calculada a demanda do oxidante na água. Finalmente, na quarta etapa realizaram-se ensaios de oxidação do permanganato associado à clarificação físico-química. Os resultados mostraram que o processo de coagulação conseguiu remover o ferro satisfatoriamente, mas não o manganês. Nos ensaios usando permanganato os resultados mostraram que as remoções de ferro, manganês e sulfeto de hidrogênio foram de 92%; 59% e 94% (pH 7), e 93%; 74% e 100% (pH 8,0), respectivamente. No caso da relação estequiométrica, as reduções foram maiores quando foi usada a relação estequiométrica de 1,0 e pH 8,0 (89% para Mn e 95% para Fe). O protótipo de torre de dessorção, localizado na ETA Lomba do Sabão, foi operado com razões ar:água de 8 e 12 m3:m3. As remoções de ferro variaram entre 14% a 31%; para manganês, não houve redução aparente. As concentrações efluentes de sulfeto de hidrogênio foram inferiores ao limite de detecção do método analítico, mostrando que houve volatilização do gás neste processo. O protótipo do sistema de membranas de nanofiltração foi também instalado na ETA Lomba do Sabão. Foram realizados ensaios com vazões de 2 e 4 L∙min-1, correspondentes a taxas de aplicação de 14 e 28 L∙h-1∙m-2 a 25°C. As rejeições da membrana para a taxa de 14 L∙h-1∙m-2 foram de 91%, 96% e 100% (<LD) para ferro, manganês e sulfeto de hidrogênio, respectivamente; para a taxa de 28 L∙h-1∙m-2 as reduções foram de 89%, 92% e 100%. Os três processos mostraram ser efetivos para remover sulfeto de hidrogênio. A dessorção foi particularmente ineficiente na redução de Mn(II), ao contrário da oxidação com permanganato, onde a remoção atingiu cerca de 75% ao pH 8,0. A nanofiltração, nos ensaios realizados, atingiu os maiores valores de redução dos compostos estudados. / Many regions in Brazil have problems associated with the water quality of their supplies, which bring problems to the production of safe drinking water that is distributed in communities. Generally, consumers judge the drinking water safety through the use of their organoleptic senses. The conventional processes used in water treatment are not effective to remove many compounds that cause color, taste and odor in water. For this reason water utilities frequently receive complaints by angry consumers unsatisfied with the quality of drinking water. Among the compounds that cause taste, odor and color in drinking water are hydrogen sulfide, iron and manganese. Sulfide generates a "rotten egg" smell, perceptible at concentrations between 0.05 and 0.1 mg·L-1. Manganese and iron are mainly associated with the formation of color and precipitates in water. The objective of this research was to study alternative treatment technologies to remove hydrogen sulfide, iron and manganese from drinking water. The investigated processes were air-stripping, nanofiltration and oxidation with potassium permanganate. Air stripping and nanofiltration pilot plants were supplied with water from Lomba do Sabão reservoir, located in Porto Alegre. Potassium permanganate oxidation was studied in laboratory using Jar tests systems and water from Lomba do Sabão. Oxidation tests associated with chemical clarification were performed in four different phases. In the first, the coagulants ferric chloride and aluminum sulfate were tested, with preparation of coagulation diagrams. In the second phase, it was measured the removal of Fe(II), Mn(II) and H2S during chemical clarification. The water oxidation demand was tested in the third experimental phase. Finally, the fourth phase encompassed tests using potassium permanganate associated with chemical clarification for the removal of Fe(II), Mn(II) and H2S. The results demonstrated that coagulation removed iron efficiently, but not manganese. Using permanganate, reductions in iron, manganese and sulfide increased to 92%, 59% and 94% (pH 7,0), and 93%, 74% and 100% (pH 8,0), respectively. Higher removals were achieved at pH 8,0 and one time the compounds stoichiometric oxidation relation. The air-stripping tower prototype was located at the Lomba do Sabão Water Treatment Plant. It operated with air to water ratios between of 8 and 12 m3:m3. Iron removal rates varied from 14% to 31%, while there were no removal for manganese. Hydrogen sulfide concentrations in plant’s effluents were below the detection level, showing full volatilization of the gas during stripping. The nanofiltration system prototype was also installed at Lomba do Sabão Water Treatment Plant. Tests were performed using flowrates of 2 and 4 L·min-1, corresponding to hydraulic application rates of 14 e 28 L∙h-1∙m-2 a 25°C. The rejections for the 14 L∙h-1∙m-2 tests were 91%, 96% and 100% (<LD) for iron, manganese and sulfide, respectively; for 28 L∙h-1∙m-2, the reductions achieved 89%, 92%, and 100%. The tested treatment processes were effective for hydrogen sulfide removal. Air-stripping was particularly inefficient for Mn(II) removal; on the contrary, permanganate oxidation reached 75% at pH 8,0. Tests with nanofiltration reached the highest removal rates for the studied compounds.
45

Remoção de sulfeto de hidrogênio, ferro e manganês de águas de abastecimento através dos processos de dessorção gasosa, nanofiltração e oxidação com permanganato de potássio

Agudelo Castañeda, Dayana Milena January 2010 (has links)
Inúmeras regiões brasileiras apresentam problemas qualitativos em seus mananciais de abastecimento, originando dificuldades para a potabilização da água distribuída nas cidades. Geralmente, os consumidores julgam a segurança da água potável que bebem através de seus sentidos organolépticos. Os processos convencionais utilizados nas estações de tratamento de água não são efetivos na remoção de muitos compostos que causam cor, gosto e odor na água. Devido a isto, é comum que as companhias de saneamento recebam reclamações por parte dos consumidores sobre a qualidade da água distribuída. Dentre os compostos que causam gosto, odor e cor na água encontram-se o sulfeto de hidrogênio, o ferro e o manganês. O sulfeto gera um odor de “ovo podre”, perceptível a concentrações que variam entre 0,05 e 0,1 mg·L-1. Manganês e ferro estão associados principalmente a produção de cor e precipitados na água. Desta forma, o objetivo da pesquisa proposta foi estudar técnicas de tratamento alternativas as convencionais para controlar gosto, cor e odor na água potável pela presença de sulfeto de hidrogênio, ferro e manganês. Os processos investigados foram aeração em torre de dessorção, nanofiltração em membrana e oxidação com permanganato de potássio. Os testes foram realizados com água bruta oriunda do reservatório da Lomba do Sabão, em Porto Alegre. Os ensaios de oxidação anteriormente à clarificação físico-química constaram de 4 etapas. Na primeira, foram testados o cloreto férrico e o sulfato de alumínio, possibilitando a elaboração de diagramas de coagulação. Na segunda etapa, foi calculada a eficiência da coagulação na remoção de Fe(II), Mn(II) e H2S. Na terceira etapa, foi calculada a demanda do oxidante na água. Finalmente, na quarta etapa realizaram-se ensaios de oxidação do permanganato associado à clarificação físico-química. Os resultados mostraram que o processo de coagulação conseguiu remover o ferro satisfatoriamente, mas não o manganês. Nos ensaios usando permanganato os resultados mostraram que as remoções de ferro, manganês e sulfeto de hidrogênio foram de 92%; 59% e 94% (pH 7), e 93%; 74% e 100% (pH 8,0), respectivamente. No caso da relação estequiométrica, as reduções foram maiores quando foi usada a relação estequiométrica de 1,0 e pH 8,0 (89% para Mn e 95% para Fe). O protótipo de torre de dessorção, localizado na ETA Lomba do Sabão, foi operado com razões ar:água de 8 e 12 m3:m3. As remoções de ferro variaram entre 14% a 31%; para manganês, não houve redução aparente. As concentrações efluentes de sulfeto de hidrogênio foram inferiores ao limite de detecção do método analítico, mostrando que houve volatilização do gás neste processo. O protótipo do sistema de membranas de nanofiltração foi também instalado na ETA Lomba do Sabão. Foram realizados ensaios com vazões de 2 e 4 L∙min-1, correspondentes a taxas de aplicação de 14 e 28 L∙h-1∙m-2 a 25°C. As rejeições da membrana para a taxa de 14 L∙h-1∙m-2 foram de 91%, 96% e 100% (<LD) para ferro, manganês e sulfeto de hidrogênio, respectivamente; para a taxa de 28 L∙h-1∙m-2 as reduções foram de 89%, 92% e 100%. Os três processos mostraram ser efetivos para remover sulfeto de hidrogênio. A dessorção foi particularmente ineficiente na redução de Mn(II), ao contrário da oxidação com permanganato, onde a remoção atingiu cerca de 75% ao pH 8,0. A nanofiltração, nos ensaios realizados, atingiu os maiores valores de redução dos compostos estudados. / Many regions in Brazil have problems associated with the water quality of their supplies, which bring problems to the production of safe drinking water that is distributed in communities. Generally, consumers judge the drinking water safety through the use of their organoleptic senses. The conventional processes used in water treatment are not effective to remove many compounds that cause color, taste and odor in water. For this reason water utilities frequently receive complaints by angry consumers unsatisfied with the quality of drinking water. Among the compounds that cause taste, odor and color in drinking water are hydrogen sulfide, iron and manganese. Sulfide generates a "rotten egg" smell, perceptible at concentrations between 0.05 and 0.1 mg·L-1. Manganese and iron are mainly associated with the formation of color and precipitates in water. The objective of this research was to study alternative treatment technologies to remove hydrogen sulfide, iron and manganese from drinking water. The investigated processes were air-stripping, nanofiltration and oxidation with potassium permanganate. Air stripping and nanofiltration pilot plants were supplied with water from Lomba do Sabão reservoir, located in Porto Alegre. Potassium permanganate oxidation was studied in laboratory using Jar tests systems and water from Lomba do Sabão. Oxidation tests associated with chemical clarification were performed in four different phases. In the first, the coagulants ferric chloride and aluminum sulfate were tested, with preparation of coagulation diagrams. In the second phase, it was measured the removal of Fe(II), Mn(II) and H2S during chemical clarification. The water oxidation demand was tested in the third experimental phase. Finally, the fourth phase encompassed tests using potassium permanganate associated with chemical clarification for the removal of Fe(II), Mn(II) and H2S. The results demonstrated that coagulation removed iron efficiently, but not manganese. Using permanganate, reductions in iron, manganese and sulfide increased to 92%, 59% and 94% (pH 7,0), and 93%, 74% and 100% (pH 8,0), respectively. Higher removals were achieved at pH 8,0 and one time the compounds stoichiometric oxidation relation. The air-stripping tower prototype was located at the Lomba do Sabão Water Treatment Plant. It operated with air to water ratios between of 8 and 12 m3:m3. Iron removal rates varied from 14% to 31%, while there were no removal for manganese. Hydrogen sulfide concentrations in plant’s effluents were below the detection level, showing full volatilization of the gas during stripping. The nanofiltration system prototype was also installed at Lomba do Sabão Water Treatment Plant. Tests were performed using flowrates of 2 and 4 L·min-1, corresponding to hydraulic application rates of 14 e 28 L∙h-1∙m-2 a 25°C. The rejections for the 14 L∙h-1∙m-2 tests were 91%, 96% and 100% (<LD) for iron, manganese and sulfide, respectively; for 28 L∙h-1∙m-2, the reductions achieved 89%, 92%, and 100%. The tested treatment processes were effective for hydrogen sulfide removal. Air-stripping was particularly inefficient for Mn(II) removal; on the contrary, permanganate oxidation reached 75% at pH 8,0. Tests with nanofiltration reached the highest removal rates for the studied compounds.
46

Remoção de sulfeto de hidrogênio, ferro e manganês de águas de abastecimento através dos processos de dessorção gasosa, nanofiltração e oxidação com permanganato de potássio

Agudelo Castañeda, Dayana Milena January 2010 (has links)
Inúmeras regiões brasileiras apresentam problemas qualitativos em seus mananciais de abastecimento, originando dificuldades para a potabilização da água distribuída nas cidades. Geralmente, os consumidores julgam a segurança da água potável que bebem através de seus sentidos organolépticos. Os processos convencionais utilizados nas estações de tratamento de água não são efetivos na remoção de muitos compostos que causam cor, gosto e odor na água. Devido a isto, é comum que as companhias de saneamento recebam reclamações por parte dos consumidores sobre a qualidade da água distribuída. Dentre os compostos que causam gosto, odor e cor na água encontram-se o sulfeto de hidrogênio, o ferro e o manganês. O sulfeto gera um odor de “ovo podre”, perceptível a concentrações que variam entre 0,05 e 0,1 mg·L-1. Manganês e ferro estão associados principalmente a produção de cor e precipitados na água. Desta forma, o objetivo da pesquisa proposta foi estudar técnicas de tratamento alternativas as convencionais para controlar gosto, cor e odor na água potável pela presença de sulfeto de hidrogênio, ferro e manganês. Os processos investigados foram aeração em torre de dessorção, nanofiltração em membrana e oxidação com permanganato de potássio. Os testes foram realizados com água bruta oriunda do reservatório da Lomba do Sabão, em Porto Alegre. Os ensaios de oxidação anteriormente à clarificação físico-química constaram de 4 etapas. Na primeira, foram testados o cloreto férrico e o sulfato de alumínio, possibilitando a elaboração de diagramas de coagulação. Na segunda etapa, foi calculada a eficiência da coagulação na remoção de Fe(II), Mn(II) e H2S. Na terceira etapa, foi calculada a demanda do oxidante na água. Finalmente, na quarta etapa realizaram-se ensaios de oxidação do permanganato associado à clarificação físico-química. Os resultados mostraram que o processo de coagulação conseguiu remover o ferro satisfatoriamente, mas não o manganês. Nos ensaios usando permanganato os resultados mostraram que as remoções de ferro, manganês e sulfeto de hidrogênio foram de 92%; 59% e 94% (pH 7), e 93%; 74% e 100% (pH 8,0), respectivamente. No caso da relação estequiométrica, as reduções foram maiores quando foi usada a relação estequiométrica de 1,0 e pH 8,0 (89% para Mn e 95% para Fe). O protótipo de torre de dessorção, localizado na ETA Lomba do Sabão, foi operado com razões ar:água de 8 e 12 m3:m3. As remoções de ferro variaram entre 14% a 31%; para manganês, não houve redução aparente. As concentrações efluentes de sulfeto de hidrogênio foram inferiores ao limite de detecção do método analítico, mostrando que houve volatilização do gás neste processo. O protótipo do sistema de membranas de nanofiltração foi também instalado na ETA Lomba do Sabão. Foram realizados ensaios com vazões de 2 e 4 L∙min-1, correspondentes a taxas de aplicação de 14 e 28 L∙h-1∙m-2 a 25°C. As rejeições da membrana para a taxa de 14 L∙h-1∙m-2 foram de 91%, 96% e 100% (<LD) para ferro, manganês e sulfeto de hidrogênio, respectivamente; para a taxa de 28 L∙h-1∙m-2 as reduções foram de 89%, 92% e 100%. Os três processos mostraram ser efetivos para remover sulfeto de hidrogênio. A dessorção foi particularmente ineficiente na redução de Mn(II), ao contrário da oxidação com permanganato, onde a remoção atingiu cerca de 75% ao pH 8,0. A nanofiltração, nos ensaios realizados, atingiu os maiores valores de redução dos compostos estudados. / Many regions in Brazil have problems associated with the water quality of their supplies, which bring problems to the production of safe drinking water that is distributed in communities. Generally, consumers judge the drinking water safety through the use of their organoleptic senses. The conventional processes used in water treatment are not effective to remove many compounds that cause color, taste and odor in water. For this reason water utilities frequently receive complaints by angry consumers unsatisfied with the quality of drinking water. Among the compounds that cause taste, odor and color in drinking water are hydrogen sulfide, iron and manganese. Sulfide generates a "rotten egg" smell, perceptible at concentrations between 0.05 and 0.1 mg·L-1. Manganese and iron are mainly associated with the formation of color and precipitates in water. The objective of this research was to study alternative treatment technologies to remove hydrogen sulfide, iron and manganese from drinking water. The investigated processes were air-stripping, nanofiltration and oxidation with potassium permanganate. Air stripping and nanofiltration pilot plants were supplied with water from Lomba do Sabão reservoir, located in Porto Alegre. Potassium permanganate oxidation was studied in laboratory using Jar tests systems and water from Lomba do Sabão. Oxidation tests associated with chemical clarification were performed in four different phases. In the first, the coagulants ferric chloride and aluminum sulfate were tested, with preparation of coagulation diagrams. In the second phase, it was measured the removal of Fe(II), Mn(II) and H2S during chemical clarification. The water oxidation demand was tested in the third experimental phase. Finally, the fourth phase encompassed tests using potassium permanganate associated with chemical clarification for the removal of Fe(II), Mn(II) and H2S. The results demonstrated that coagulation removed iron efficiently, but not manganese. Using permanganate, reductions in iron, manganese and sulfide increased to 92%, 59% and 94% (pH 7,0), and 93%, 74% and 100% (pH 8,0), respectively. Higher removals were achieved at pH 8,0 and one time the compounds stoichiometric oxidation relation. The air-stripping tower prototype was located at the Lomba do Sabão Water Treatment Plant. It operated with air to water ratios between of 8 and 12 m3:m3. Iron removal rates varied from 14% to 31%, while there were no removal for manganese. Hydrogen sulfide concentrations in plant’s effluents were below the detection level, showing full volatilization of the gas during stripping. The nanofiltration system prototype was also installed at Lomba do Sabão Water Treatment Plant. Tests were performed using flowrates of 2 and 4 L·min-1, corresponding to hydraulic application rates of 14 e 28 L∙h-1∙m-2 a 25°C. The rejections for the 14 L∙h-1∙m-2 tests were 91%, 96% and 100% (<LD) for iron, manganese and sulfide, respectively; for 28 L∙h-1∙m-2, the reductions achieved 89%, 92%, and 100%. The tested treatment processes were effective for hydrogen sulfide removal. Air-stripping was particularly inefficient for Mn(II) removal; on the contrary, permanganate oxidation reached 75% at pH 8,0. Tests with nanofiltration reached the highest removal rates for the studied compounds.

Page generated in 0.2859 seconds